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1. INTRODUCTION

Platforms facilitate interactions among users in two-sided (or multi-sided)
markets. Online commerce companies (e.g., Amazon and eBay) connect buyers
and sellers. Media platforms (e.g., social networking services, newspapers, and
portals) bring viewers to advertisers. Ride-hailing services (e.g., Uber and Lyft)
match drivers and riders. Video-sharing services (e.g., YouTube and TikTok)
gather content creators, viewers, and advertisers to one place. A key feature
demonstrated by these industries is network externality: as more users from one
side of the market join a platform, users from the other side will see greater value
in joining the same platform.

The presence of network externality brings about an effect that challenges
the conventional relationship between competition and social welfare (i.e., social
welfare rises with more competition). Offering its service at a lower price to one
side, a platform may attract more users from both sides and increase its profit. In
the case of symmetric platforms, the latter competition will bring the equilibrium
price down to marginal cost, with all platforms getting an equal share of the
market. Yet this does not necessarily mean that users are better off. Dispersed
across several platforms, users will derive less utility from network externality
and if this reduction is substantial enough, it may outweigh benefits from the
lower price.

We study a model of platform competition in two-sided markets that formal-
izes the above intuition. Following seminal papers on two-sided markets (Rochet
and Tirole, 2003, Armstrong, 2006), we assume that users on each side earn two
types of utility by joining a platform: (i) the intrinsic benefit arising from con-
suming services provided by the platform, which is heterogeneous across users;
and (ii) the (cross-side) network externality, which depends on the number (mea-
sure) of users from the other side on board the same platform. Platforms compete
by simultaneously setting prices (membership fees for entering a platform) for
two sides and users subsequently choose which platform to join, if any.

To analyze this game, we adopt a refinement of subgame perfect equilib-
rium as an equilibrium concept. The refinement says that users on either side
coordinate in their platform choice, so that a platform with lower prices attracts
more users. We show that in each symmetric equilibrium, each platform earns a
zero profit. This zero-profit result applies to any equilibrium where all platforms
charge the same prices (for each side, all platforms set the same price but the
price for one side need not equal the price for the other side). The zero-profit
result is new and quite unexpected, given what we know from the literature.
Heterogeneity of the intrinsic benefit users derive makes platforms differentiated
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products. The literature on Bertrand competition for differentiated goods sug-
gests that profits will be positive. Our analysis shows that the latter lesson is not
valid in our model. Underlying the difference is our refinement of subgame per-
fection. The coordination requirement that more users are attracted to platforms
with lower prices brings about intense price competition among platforms. In our
model, its effect turns out sufficiently strong to drive platforms’ profits to zero,
despite their advantage arising from product differentiation.Concerning welfare
implications, we focus on the equilibrium where all platforms charge marginal
cost and ask how welfare levels vary with the number of platforms in the market.
It turns out that social welfare decreases as the number of platforms in oligopoly
increases, regardless of the values of parameters for marginal cost and network
externality. As long as multiple firms operate, the price reduction effect due to
competition is achieved in full. Yet with platforms splitting the market, network
effects weaken and a welfare loss follows. Thus, among all oligopolies involv-
ing different numbers of platforms, duopoly yields the highest level of social
welfare.

Next, we shift attention to platform monopoly, characterize the equilibrium,
and compare its outcomes to duopoly outcomes. The monopolist platform’s
equilibrium pricing strategy depends on the relative magnitudes of marginal cost
and network externality. The most interesting case is one in which marginal cost
is moderate, so that the monopolist sells to a positive yet less than full share of
users on each side of the market. In that case, each side is charged the aver-
age of marginal cost and 1. The share of users from the other side joining the
platform enters a user’s utility function and 1 is the maximum of those shares.
While monopoly incurs the usual deadweight loss, the level of social welfare in
monopoly may be larger than that in duopoly. More precisely, for each value of
marginal cost, we find a threshold for network externality such that monopoly
yields a higher welfare level than duopoly if and only if network externality is
stronger than the threshold. Further, the threshold is non-decreasing in the cost
parameter.

The proposition that competition may not translate to a welfare gain is not
new and was previously noted in the following theoretical studies. Correia-da-
Silva et al. (2019) consider a model where platforms supply a homogeneous
service and compete in quantity (which differs from our assumption of price
competition). They find that a merger between platforms may benefit or harm
consumers on both sides of the market depending on the extent of network ef-
fects. Consumers are better off with fewer platforms if network effects are strong
enough. In a two-sided market model that allows sellers to price their products,
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Ko and Shen (2021) study conditions under which market dominance arises and
its impacts on welfare. With strong network effects, competition gives rise to
a dominant (monopolist) platform that captures all sellers and buyers and the
resulting social welfare is higher than in a symmetric equilibrium with evenly
split market shares. In multi-sided markets, Tan and Zhou (2021) also show that
the effects of competition can be at odds with the received wisdom. As platform
competition intensifies, market prices and platform profits can rise and consumer
surplus can fall. In particular, there exists a cutoff for the number of platforms
in the market, above which the perverse pattern about prices and platform profits
materializes. Our results on welfare implications of platform competition are
in line with these studies. The impact of competition on price and welfare has
been investigated from an empirical angle too. Analyzing data from the Cana-
dian newspaper industry in the late 1990s, which underwent a series of mergers,
Chandra and Collard-Wexler (2009) observe that increased concentration did not
yield higher prices for subscription or advertising.1 Mergers may have disparate
impacts on two sides of the market. Based on data from the 1996-2006 U.S.
radio industry, Jeziorski (2014) finds that consolidation of radio stations led to
a small increase in listener welfare and a substantial decrease in advertiser wel-
fare. In an investigation of data from the German TV magazine market, Song
(2021) shows that even with higher post-merger ad prices, advertisers are not
necessarily worse off and the effects on readers are negligible.

It should also be noted that some papers report mixed welfare effects of
platform competition, unlike the studies mentioned above. Anderson and Peitz
(2020) study media markets consisting of multi-homing advertisers and single-
homing viewers. They establish a “see-saw” relationship between advertisers
and viewers: if entry decreases total platform profits, as would often be the case,
advertiser surplus falls whereas viewer surplus rises. In a two-sided market in-
volving buyers and sellers, Teh et al. (2023) show that increased platform compe-
tition results in a lower total fee although the fee structure may change in several
directions after entry. Whether the shift in the fee structure favors buyers or sell-
ers is determined by the fraction of buyers multi-homing and only one side may
gain. In terms of modeling, our approach follows seminal contributions by Ro-
chet and Tirole (2003, 2006) and Armstrong (2006), which are further developed
recently by Tan and Zhou (2021) and Teh et al. (2023). Similarly to these papers,
we take prices as the platforms’ key instrument for strategizing and let them en-
gage in Bertrand competition. Our results on platform competition in oligopoly

1Chandra and Collard-Wexler (2009) also provide a theoretical model that shows the effects
of a merger on prices for readers and advertisers to be ambiguous.
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turn out starker than the existing results by Correia-da-Silva et al. (2019), Ko and
Shen (2021), and Tan and Zhou (2021). This is due largely to some simplifying
assumptions we work with, which renders analysis very tractable. The assump-
tions include the distribution of the intrinsic benefit users derive from platforms,
the homogeneous technology of platforms, the single-homing behavior of users,
and the membership-fee feature of prices.

While we are concerned with Bertrand competition, several papers investi-
gate the effects of Cournot competition among platforms on social welfare. An
early contribution by Schiff (2003) compares three market structures: monopoly
and Cournot duopolies with single- and multi-homing. If we confine attention to
single-homing, monopoly achieves higher social welfare than a Cournot duopoly
with single-homing does. As discussed above, Correia-da-Silva et al. (2019) find
conditions under which a merger between platforms benefits or harms users, as-
suming that platforms compete in quantity. Tremblay et al. (2023) permit various
homing possibilities in Cournot platform competition and show that social wel-
fare decreases as the number of platforms increases for the most commonly con-
sidered homing allocations. Our findings on welfare consequences of platform
competition echo main messages of these papers under the different assumption
of Bertrand competition.

The rest of the paper is organized as follows. We set up a model for two-sided
markets in Section 2 and analyze platforms’ equilibrium behavior in oligopoly
in Section 3. To assess welfare implications of the latter, we study platform
monopoly as a benchmark in Section 4 and draw a comparison of the two in
Section 5. For a smooth passage, all proofs and additional observations are rele-
gated to Appendix A.

2. THE MODEL

Consider a market consisting of two sides. Let SSS ≡ {1,2} be the set of sides.
Each side s ∈ S has a unit mass of users (customers), denoted by IIIs ≡ [0,1].
Given the symmetry we assume below for the two sides, it is most plausible
to interpret users as consumers of match-making service (e.g., subscription to
dating platforms), seeking to interact with agents on the other side. Users derive
utility from the interaction and platforms can facilitate it. Suppose that KKK ≥ 2
identical platforms operate in the market. In a slight abuse of notation, we denote
the set of platforms by KKK ≡ {1, · · · ,K} too. To accommodate a unit mass of
users from side s ∈ S, each platform k ∈ K incurs a zero fixed cost and a constant
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marginal cost ccc ∈ R+ and charges a price pppks ∈ R+ to them for the service it
provides.

By joining a platform, a user on side s ∈ S derives two types of utility. One is
the intrinsic membership benefit, denoted XXX s, that the user earns from consum-
ing services provided by the platform. We assume that Xs is uniformly distributed
on [0,1], with its distribution function denoted by FFF . The realization of Xs is pri-
vately known to an individual user while its distribution is common knowledge
among all users and platforms. The second is network effects that arise from
interacting, on the chosen platform, with users on the other side and its magni-
tude is determined in part by the mass of users joining that platform. For each
k ∈ K and each t ∈ S\{s}, let nnnkt ∈ [0,1] be the measure of users on side t joining
platform k. Let ααα ∈ (0,1) be the parameter for network effects. When a user on
side s adopts platform k, he earns the network benefit of αnkt . The term αnkt
captures the network externality that is inherent to user experience on platforms.
In sum, if a user on side s joins platform k that has measure nkt of users from
side t and pays pks, his payoff is Xs +αnkt − pks; the payoff from not joining at
all is zero. Let nnns ≡ ∑k∈K nks be the total measure of users on side s joining some
platform.

Our game proceeds in two stages. First, platforms simultaneously set prices.
Next, observing the price profile, users on both sides simultaneously choose a
platform to join, if any. For simplicity, we do not allow the possibility of multi-
homing.

Before introducing an equilibrium notion, let us describe strategies for all
players. For each k ∈K, platform kkk’s (pure) strategy is a pair (pk1, pk2)∈RS

+ of
prices. Let ppp ≡ (pk1, pk2)k∈K ∈RS×K

+ be the profile of prices set by all platforms.
For each i ∈ I1 ∪ I2, user iii’s (pure) strategy is a mapping zzzi : RS×K

+ → K ∪{0},
associating with each price profile p ∈ RS×K

+ his choice of a platform zi(p) ∈
K ∪{0}, where for convenience, we denote by 0 the option of not joining any
platform. Let zzz ≡ (zi)i∈I1∪I2 be the profile of user strategies. Given p and z, for
each k ∈ K and each s ∈ S, let mmmks(((ppp,,,zzz))) ≡

∫
i∈Is

111{zi(p)=k} di be the measure of
users on side s joining platform k.2

As a solution concept, we consider a refinement of subgame perfect equilib-
rium. Let us call a strategy profile (((ppp,,,zzz)))≡ ((pk1, pk2)k∈K ,(zi)i∈I1∪I2) an equilib-
rium if the following conditions hold:

(i) (User payoff maximization) For all distinct s, t ∈ S, each i ∈ Is, and each

2Here 111{zi(p)=k} is the indicator function whose value is 1 if zi(p) = k and 0 otherwise.
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q ∈ RS×K
+ ,

zi(q) ∈ arg max
k∈K∪{0}

Xs +αmkt(q,z′i,z−i)−qks, (1)

where z′i : RS×K
+ → K ∪{0} satisfies z′i(q) = k and for notational simplicity, we

take the objective function to be zero if k = 0.
(ii) (Platform profit maximization) For each k ∈ K,

(pk1, pk2) ∈ arg max
qk1,qk2∈R+

(qk1 − c)mk1
(
(qk1,qk2),(pℓ1, pℓ2)ℓ∈K\{k},z

)
+(qk2 − c)mk2

(
(qk1,qk2),(pℓ1, pℓ2)ℓ∈K\{k},z

)
. (2)

(iii) (User coordination) For all k, ℓ ∈ K, all s, t ∈ S, and each q ∈ RS×K
+ , if

qks < qℓs, qkt ≤ qℓt , and mℓs(q,z) > 0, then mks(q,z) > mℓs(q,z) and mkt(q,z) ≥
mℓt(q,z).

Conditions (i) and (ii) are the usual optimality condition for users and plat-
forms required by subgame perfection. On the other hand, condition (iii), the
user coordination condition, refines the concept of subgame perfection by steer-
ing users to platforms with lower prices. It comes into play only when one
platform is more price-competitive than another and leads users to hold the ex-
pectation that cheaper platforms will attract more users.

The user coordination condition is a reasonable restriction on user expecta-
tion and captures the prominent role played by price in markets with network
externality. Particularly in an early stage of competition, price is a key criterion
guiding users’ platform choice. If network effects are presumed to be relatively
small or their magnitudes are hard to anticipate, a user would determine which
platform to join by comparing the price a platform charges and the intrinsic mem-
bership benefit it offers to him. Thus, platforms with lower prices are likely to
have more users on board. The user coordination condition is also a common
feature of consumer behavior that platforms recognize and exploit in real-life
two-sided markets. In digital industries where the marginal cost of serving an
additional user is small, platforms often provide services for free or at negligible
prices. The objective of this pricing scheme is to expand the platforms’ reach
and market share first, allow network effects to grow, and then charge fees for
premium services and advertising once it can assert dominance in the market.
In our model, the user coordination condition has the effect of escalating price
competition among platforms. A consequence, shown in Theorem 1 below, is
that for no platform can a positive profit be supported in equilibrium.

We search for a symmetric equilibrium (((ppp,,,zzz))) where all platforms charge
the same prices and users are evenly divided across the platforms; i.e., for all
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k, ℓ ∈ K and each s ∈ S, pks = pℓs and mks(p,z) = mℓs(p,z)). This is a natu-
ral refinement of equilibrium because all platforms are completely symmetric.
Also, it should be noted that our definition of symmetric equilibrium requires
the platforms to choose the same price profile (i.e., for all k, ℓ ∈ K, (pk1, pk2) =
(pℓ1, pℓ2)), but not the same prices for the two sides (i.e., for any k ∈K, pk1 = pk2
is not required).

3. EQUILIBRIUM ANALYSIS

First, we show that all platforms earn a zero profit in symmetric equilibria.
All proofs, including the one for the following theorem, are in Appendix A.

Theorem 1. In each symmetric equilibrium, each platform earns a zero profit.

Our model contains elements of Bertrand competition with differentiated
goods. Users earn the intrinsic benefit (Xs for each side s ∈ S) from platforms,
which are heterogeneous across users. The conventional wisdom from the liter-
ature on Bertrand competition with differentiated goods says that firms should
have positive profits. By contrast, Theorem 1 shows that competition drives
platfroms’ profits to zero, regardless of the level of network effects (α). This
zero-profit result hinges critically on the user coordination condition we impose
as a part of the definition of equilibrium in Section 2. The condition represents
intense price competition in which platforms operate to win more users in the
market and increase network effects. While it is not too demanding a require-
ment on consumer behavior in theory, users may not coordinate on platforms
as systematically and neatly in reality. Users may respond to small price dif-
ferentials differently or be led to different expectations on the level of network
externality they can enjoy on each platform. Therefore, we interpret Theorem 1
as providing a theoretical limit to which platforms tend when price competition
intensifies and users, unsure of which platform will emerge dominant, can base
their platform choice solely on prices.

Some techniques used to prove Theorem 1 are also interesting. In showing
that if a symmetric equilibrium were to give positive profits, a platform would
have a profitable deviation, we draw on theorems on the comparative statics of
fixed points by Villas-Boas (1997) and characterize measures of users joining a
platform when a deviation arises. See Appendix A.2 for details.

Next, we turn to welfare implications of equilibrium outcomes. In a sym-
metric equilibrium, all platforms charge the same price to each side and there
is an unambiguous way of measuring consumer surplus. Suppose that plat-
forms choose prices (ρ1,ρ2) in the equilibrium, resulting in measures (n1,n2)
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Table 1: Solution to system (3) of equations

Cases Required conditions Solution (n1,n2)

1 0 ≤ ψ1 ≤ K2 −α2 0 ≤ ψ2 ≤ K2 −α2
(

K2(1−ρ1)+Kα(1−ρ2)
K2−α2 , K2(1−ρ2)+Kα(1−ρ1)

K2−α2

)
2 ρ1 ≥ 1 ρ2 ≥ 1 (0,0)
3 ρ1 ≤ α

K ρ2 ≤ α

K (1,1)
4 ψ1 ≤ 0 ρ2 ≤ 1 (0,1−ρ2)
5 ρ1 ≤ 1 ψ2 ≤ 0 (1−ρ1,0)
6 ψ1 ≥ K2 −α2 α

K ≤ ρ2 ≤ 1+ α

K

(
1,1+ α

K −ρ2
)

7 α

K ≤ ρ1 ≤ 1+ α

K ψ2 ≥ K2 −α2
(
1+ α

K −ρ1,1
)

of users joining some platform. Then the side-1 users’ demand for platform
service is DDD1

(
ρρρ1,,,

n2
K

)
≡ Pr

[
X1 ≥ ρ1 −α

n2
K

]
= 1−F

(
ρ1 −α

n2
K

)
; i.e., n1 = 1−

F
(
ρ1 −α

n2
K

)
. Thus, the consumer surplus for side 1 is defined as VVV 1

(
ρρρ1,,,

n2
K

)
≡∫

∞

ρ1
D1
(
x, n2

K

)
dx. The latter depends not only on the price charged to consumers

on side 1 but the measure of consumers joining the platform from side 2. For
side 2, the demand DDD2

(
ρρρ2,,,

n1
K

)
and consumer surplus VVV 2(((ρρρ2,,,

n1
K ))) are defined

similarly. Since all platforms earn a zero profit in a symmetric equilibrium, the
consumer surpluses for the two sides constitute social welfare.

To find equilibrium welfare levels, it is important to study the behavior of the
following system of equations in (n1,n2):{

n1 = 1−F
(
ρ1 − α

K n2
)

;
n2 = 1−F

(
ρ2 − α

K n1
)
.

(3)

As we show below, the above system has a unique solution for all values of ρ1
and ρ2 (see Appendix A.1).

A concrete expression for the solution (n1,n2) depends on (ρ1,ρ2) and can
be categorized into seven cases, as in Table 1. Let ψ1(ρ1,ρ2) ≡ K2(1− ρ1)+
Kα(1−ρ2) and ψ2(ρ1,ρ2) ≡ K2(1−ρ2)+Kα(1−ρ1). The values of ψ1 and
ψ2 play a key role in determining the nature of a solution. Figure 1 illustrates
conditions required for each case in Table 1. The conditions rely on when
the inequality constraint 0 ≤ ns ≤ 1 for s ∈ S turns out to be binding. For in-
stance, the solution (n1,n2) falls in the interior of the unit squre [0,1]2 if only
if ψ1(ρ1,ρ2),ψ2(ρ1,ρ2) ∈

(
0,K2 −α2

)
(observe that ψ1(ρ1,ρ2) and ψ2(ρ1,ρ2)

are the numerators of the expression for the solution (n1,n2) in Case 1). Ac-
cording to system (3), as the (common) price ρ1 for side 1 decreases to 0, n1
increases to the upper bound 1 but when exactly it hits the upper bound hinges
on the the price ρ2 for side 2. At a high value of ρ2, a relatively small measure
of users on side 2 joins the platforms (n2 decreases), so that n1 reaches the upper
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0 1

1

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

Case 7

ρ1

ρ2

α

K

α

K

ψ1 = K2 −α2

ψ2 = 0

ψ1 = 0

ψ2 = K2 −α2

Figure 1: Illustrating the required conditions of Table 1 in the (ρ1,ρ2) space.

bound only when ρ1 is quite low. As ρ2 decreases, the threshold for ρ1 at which
the upper bound binds n1 increases. This is why the border between Cases 1 and
6 slopes downward in Figure 1. The other three borders limiting Case 1 can be
explained similarly. On the other hand, in Cases 2–7, at least one of n1 and n2
hits the upper bound 1 or the lower bound 0. For example, if ρ1,ρ2 ≥ 1 as in
Case 2, ψ1(ρ1,ρ2),ψ2(ρ1,ρ2)≤ 0, placing n1 and n2 at the lower bound 0. Here
the threshold 1 is the maximum of the intrinsic benefit Xs (s ∈ S). If ρ1 and ρ2
are sufficiently small as in Case 3 (ρ1,ρ2 ≤ α

K ), then facing low prices on both
sides, all users optimally join the platforms, i.e., n1 = n2 = 1.

Now consider a symmetric equilibrium (p,z) such that for each k ∈ K,

(pk1, pk2) = (c,c).
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This can be a benchmark equilibrium because the two sides of the market are
treated symmetrically and all platforms make a zero profit (as Theorem 1 shows).
In equilibrium (p,z), the total measures (n1,n2)≡ (∑k∈K mk1(p,z),∑k∈K mk2(p,z))
of users joining any platform on the equilibrium path solve a version of sys-
tem (3) where (ρ1,ρ2) is replaced by (c,c). Its welfare consequences are sum-
marized in the following proposition (the proof is simple and is therefore omit-
ted).

Proposition 1. Consider a symmetric equilibrium in which each platform charges
c to each side.

(1) If α

K ≤ c ≤ 1, then the consumer surplus for each side is 1
2

[
K(1−c)

K−α

]2
and

the social welfare is
[

K(1−c)
K−α

]2
.

(2) If c < α

K , then the consumer surplus for each side is 1
2 +

α

K − c and the
social welfare is 1+2

(
α

K − c
)
.

(3) If c > 1, then the consumer surplus for each side and the social welfare
are both zero.

We may interpret the above proposition in conjunction with Table 1 and Fig-
ure 1. The equilibrium considered in the proposition has (ρ1,ρ2) = (c,c). In
Figure 1, this means that (ρ1,ρ2) lies on the 45-degree line through the origin,
falling in one of Cases 1, 2, and 3. If α

K ≤ ρ1 = ρ2 = c ≤ 1, then Case 1 applies

and the total measures of users are
(

K2(1−ρ1)+Kα(1−ρ2)
K2−α2 , K2(1−ρ2)+Kα(1−ρ1)

K2−α2

)
, re-

sulting in the consumer surplus of 1
2

[
K(1−c)

K−α

]2
for each side. In line with our

intuition, the latter quantity is decreasing in the marginal cost (c) and increasing
in the network effect parameter (α). Next, if ρ1 = ρ2 = c > 1, i.e., the marginal
cost exceeds the maximum intrinsic benefit from joining a platform, then Case
2 applies and the platforms’ prices are too high to attract any user, leading to
zero welfare gain for platforms and users. Finally, if ρ1 = ρ2 = c < α

K , i.e., the
marginal cost is smaller than the maximum level of externality (α · 1

K ) when all
users join and are split evenly across all platforms, then Case 3 applies and all
users adopt some platform, yielding the consumer surplus of 1

2 +
α

K − c for each
side. As long as ρ1 = ρ2 = c < α

K , decreasing (ρ1,ρ2) further will not affect the
equilibrium measures (n1,n2) of users on platforms as they have already reached
the upper bound 1. However, when the prices ρ1 = ρ2 = c fall by ∆c > 0, the sur-
plus for each user rises by ∆c. This explains why the consumer surplus 1

2 +
α

K −c
for each side is linear in c. A similar interpretation is valid for linearity in α

K .
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4. THE CASE OF PLATFORM MONOPOLY

To better assess implications of platform competition, we analyze the case
of platform monopoly in parallel. Suppose that a single platform operates in
the market, with the same technology as in Section 2. Since there is only one
platform, in this section we drop the subscript k that indicates the platform’s
identity and write (((ppp1,,, ppp2))) for its prices and (((nnn1,,,nnn2))) for the measures of users
joining it.

We continue to work with the solution concept introduced in Section 2 but
it reduces to standard subgame perfection in this section. Further, user strate-
gies need not enter analysis as prominently as before because their optimality
is quite obvious. Suppose that the monopolist platform has set prices (p1, p2).
Users decide only on whether or not to join the platform. Their strategies can
be collectively represented by measures (n1,n2) of users on the two sides adopt-
ing the platform. At prices (p1, p2), the equilibrium measures (n1,n2) of joining
users are determined by the following system of equations (this follows from an
argument similar to that in Section 3):{

n1 = 1−F (p1 −αn2)

n2 = 1−F (p2 −αn1)
(4)

As we show in Appendix A.1, system (4) has a unique solution for all values of
p1 and p2 and we can denote it by nnn1(((ppp1,,, ppp2))) and nnn2(((ppp1,,, ppp2))). This uniqueness
alone determines which user should optimally join the platform. Therefore, we
may leave out user strategies when describing equilibria.

The platform seeks to maximize its profit. That is, it chooses prices to solve:

max
p1,p2∈R+

π(p1, p2)≡ (p1 − c)n1(p1, p2)+(p2 − c)n2(p1, p2). (5)

Assuming that user strategies are given by n1(p1, p2) and n2(p1, p2), we refer to
the platform’s strategy (p1, p2) as an equilibrium if it solves (5).

To search for equilibria, we need to solve (4) first. For completeness, we
provide solution (n1(p1, p2),n2(p1, p2)) to (4) although it is similar to what we
found in Section 3. Let φ1(p1, p2) ≡ 1− p1 +α(1− p2) and φ2(p1, p2) ≡ 1−
p2 +α(1− p1). The types of the solution vary with values of φ1 and φ2 and
are as in Table 2. Figure 2 illustrates conditions required for the seven cases in
Table 2. Note that system (4) is similar to system (3). The only difference is that
α

K in (3) is replaced by α (and the price variables ρ1 and ρ2 are replaced by p1
and p2). Consequently, the required conditions and the solution in Table 2 can be
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Table 2: Solution to system (4) of equations

Cases Required conditions Solution (n1,n2)

1 0 ≤ φ1 ≤ 1−α2 0 ≤ φ2 ≤ 1−α2
(

1−p1+α(1−p2)
1−α2 , 1−p2+α(1−p1)

1−α2

)
2 p1 ≥ 1 p2 ≥ 1 (0,0)
3 p1 ≤ α p2 ≤ α (1,1)
4 φ1 ≤ 0 p2 ≤ 1 (0,1− p2)
5 p1 ≤ 1 φ2 ≤ 0 (1− p1,0)
6 φ1 ≥ 1−α2 α ≤ p2 < 1+α (1,1+α − p2)
7 α ≤ p1 ≤ 1+α φ2 ≥ 1−α2 (1+α − p1,1)

obtained by substituting K = 1 in Table 1. In Figure 2, this change shows in the
form of a narrower diamond-shaped region for Case 1 relative to Figure 1. The
interpretation we gave for (ψ1(ρ1,ρ2),ψ2(ρ1,ρ2)) in the discussion following
system (3) can easily be adapted to (φ1(p1, p2),φ2(p1, p2)).

Next, we turn attention to the platform’s problem, namely (5). As one can see
from Table 2, the objective function is not differentiable at some points (whose
measure is zero), which warrants some care in solving (5). Let CCC ≡ {(p1, p2) ∈
R2
+ : 0≤ φ1(p1, p2)≤ 1−α2 and 0≤ φ2(p1, p2)≤ 1−α2}. This is the diamond-

shaped region in Figure 2, on the interior of which the objective function of (5) is
differentiable. For the purpose of profit maximization, we can restrict attention
to (p1, p2)’s in C because there always exists (p1, p2) ∈ C that yields the max-
imum profit. This observation allows us to take the usual first-order approach
when the solution lies in the interior of C. Appendix A.3 shows the first-order
conditions for (5) and derives a variant of the Lerner formula from them. In
general, the nature and value of the solution, i.e., the monopolistic equilibrium,
are determined by the relative magnitudes of α and c. Our next result gives the
exact relationship.

Theorem 2. In the platform monopoly case, the following holds for equilibria.
(1) If 2α −1 ≤ c ≤ 1, then the unique equilibrium is (p∗1, p∗2) =

( c+1
2 , c+1

2

)
∈

[α,1]2.
(2) If c < 2α −1, then the unique equilibrium is (p∗1, p∗2) = (α,α).
(3) If c > 1, then the set of equilibria consists of (p∗1, p∗2) ∈R2

+ with p∗1, p∗2 ≥
1, all of which are outcome-equivalent.

Remark 1. In the above equilibria, the resulting measures (n1(p∗1, p∗2),n2(p∗1, p∗2))

of users joining the platform are
(

1−c
2(1−α) ,

1−c
2(1−α)

)
if 2α − 1 ≤ c ≤ 1, (1,1) if

c < 2α −1, and (0,0) if c > 1. Also, although the above equilibria are of simple
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Case 1

Case 2

Case 3

Case 4
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Case 6

Case 7

p1

p2

α

α

φ1 = 1−α2

φ2 = 0

φ1 = 0

φ2 = 1−α2

Figure 2: Illustrating the required conditions of Table 2 in the (p1, p2) space.

form, establishing them is not trivial, as our proof indicates. The main difficulty
concerns non-differentiability of the objective function in (5) at some points in
the constraint set, possibly at or around profit maximizers. △

The equilibria characterized in Theorem 2 depend on c and α in an intuitive
manner. When c is neither too high nor too low (2α −1 ≤ c ≤ 1), the monopo-
list platform’s prices (p∗1, p∗2), belonging to the region C representing Case 1 in
Figure 2, are increasing in c and hence the equilibrium measures of users are de-
creasing in c. As c falls below 2α −1, however, the platform attracts all users on
both sides and fixes the prices at α , corresponding to the point in Figure 2 where
the region for Case 1 is tangent to the region for Case 3. When c exceeds 1, the
maximum intrinsic benefit, optimality requires the platform to charge at least 1
to both sides, i.e., to choose any point in the region for Case 2 in Figure 2. This
induces no user to join the platform and the resulting profit is zero regardless of
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which (p∗1, p∗2) with p∗1, p∗2 ≥ 1 is chosen.
Next, we derive welfare implications of monopoly pricing. With side 1’s

demand for platform service given by D1(p1,n2) = 1−F (p1 −αn2), the con-
sumer surplus for side 111 can be defined as VVV 1(((ppp1,,,nnn2))) ≡

∫
∞

p1
D1(x,n2)dx. The

consumer surplus for side 222, VVV 2(((ppp2,,,nnn1))), is defined similarly. As usual, social
welfare is the sum of the consumer surpluses for the two sides and the platform’s
profit. With Theorem 2 and Remark 1 at hand, it is simple to find consumer sur-
plus and the platform’s profit. Therefore, we state them below without a proof.

Proposition 2. In the platform monopoly case, equilibria have the following
welfare implications.

(1) If 2α −1 ≤ c ≤ 1, then the platform’s profit is (1−c)2

2(1−α) and the consumer

surplus for each side is (1−c)2

8(1−α)2 , so that the social welfare is (1−c)2(3−2α)
4(1−α)2 .

(2) If c < 2α − 1, then the platform’s profit is 2(α − c) and the consumer
surplus for each side is 1

2 , so that the social welfare is 2(α − c)+1.
(3) If c > 1, then the platform’s profit and the consumer surplus for each side

are both zero (and so is the social welfare).

As was the case with Theorem 2, the welfare levels in the above proposition
depend on the relative magnitudes of c and α . For a moderate value of c with
2α − 1 ≤ c ≤ 1, the platform charges c+1

2 to both sides. Thus, a decrease in c
raises the equilibrium measures of users on the platform, their consumer surplus,
and the platform’s profit. If c is too low in the sense of satisfying c < 2α −1, the
prices are fixed at p∗1 = p∗2 = α and the full measures of users adopt the platform.
Thus, the platform appropriates any further decrease in c as its profit (and hence
the functional form 2(α − c)) and the consumer surplus remains constant.

5. WELFARE COMPARISON

Let us now compare welfare levels achieved when multiple or a single plat-
form operates in the market. Denote by SSSWWW (((KKK,,,ααα,,,ccc))) the level of social welfare
when there are K ∈ N platforms in the market, the network effect parameter
is α ∈ (0,1), and the cost parameter is c ≥ 0. Our next result says that for
oligopolies, social welfare decreases as more platforms are in the market; and
which among duopoly and monopoly yields higher social welfare depends on
the magnitudes of network externality and marginal cost.

Theorem 3. (1) For each c ∈ [0,1) and each α ∈ (0,1), SW (K,α,c) is decreas-
ing in K when K ≥ 2.
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(a)

(b)

Figure 3: Plotting the graphs of SW (K,α,c) for K ∈ {1,2}

(2) For each c∈ [0,1), there is a threshold α̂(c)∈ (0,1) such that SW (1,α,c)>
SW (2,α,c) if and only if α > α̂(c). In fact, letting α ∈ (0,1) be the solution to

3−2α

4(1−α)2 =
4

(2−α)2 ,3 if c ≥ α

2 , then α̂(c) = α; and if c < α

2 , then α̂(c) is the solu-

3Numerically, α ≈ 0.418545 · · · .
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tion to (1−c)2(3−2α)
4(1−α)2 = 1+α −2c, α̂(c)< α , and α̂(c) is increasing in c.

Remark 2. When c ≥ 1, welfare comparison becomes trivial because consumer
surplus and the platforms’ profit all fall to zero regardless of how many platforms
operate in the market. △

In view of Proposition 1, part (1) of Theorem 3 is quite intuitive. We already

know that for K ≥ 2, SW (K,α,c) is
[

K(1−c)
K−α

]2
if α

K ≤ c ≤ 1, 1+ 2
(

α

K − c
)

if

c < α

K , and 0 if c > 1. The expressions
[

K(1−c)
K−α

]2
and 1+2

(
α

K − c
)

are decreas-
ing in K. Using this, one can show that for any fixed c ∈ [0,1) and α ∈ (0,1),
SW (K,α,c) > SW (K + 1,α,c) although the threshold α

K also varies as K in-
creases.

Concerning part (2) of Theorem 3, we provide a visual illustration. Panel (a)
of Figure 3 plots the graphs of SW (K,α,c) for K ∈ {1,2} (the vertical axis mea-
sures the social welfare level SW (·) and the other two axes measure α and c).
The orange and blue surfaces represent SW (1,α,c) and SW (2,α,c), respec-
tively. As hinted in Propositions 1 and 2, the two surfaces are continuous but
not smooth. For relatively small values of α and c, the blue surface is above the
orange surface. However, as α and c grow, the orange surface gradually rises
above the blue surface. At what value of α this reversal takes place depends on
c. If c is large enough (c ≥ α

2 ), the two surfaces intersect at the same α̂(c) = α

but otherwise, α̂(c) decreases as c decreases. To better understand the behavior
of SW (1,α,c) and SW (2,α,c) at a fixed c, say c = 0.4, we place a vertical plane
in transparent green in panel (a). Cutting through the orange and blue surfaces
at c = 0.4, the green plane emphasizes how the orange surface overtakes the
blue surface as α increases. Panel (b) is a two-dimensional view of the intersec-
tion of the green plane with the orange and blue surfaces. It plots SW (1,α,c)
and SW (2,α,c) while fixing c at 0.4 (which exceeds α

2 ) and varying only α .
The orange curve representing SW (1,α,0.4) and the blue curve representing
SW (2,α,0.4) are both increasing in α . The orange curve crosses the blue curve
from below at α̂(0.4) = α ≈ 0.418545 · · · , as indicated by Theorem 3.

The message of Theorem 3 that competition can decrease social welfare is
in line with some earlier theoretical (Correia-da-Silva et al., 2019; Ko and Shen,
2021; Tan and Zhou, 2021) and empirical (Chandra and Collard-Wexler, 2009;
Song, 2021) contributions. We are able to provide a complete answer to which
market structure achieves higher social welfare because the stylized nature of
our model renders welfare comparison tractable. It should also be noted that
Theorem 3 relies fundamentally on Theorem 1, which is quite different from the
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typical insight from the literature on Bertrand competition with differentiated
goods.

Another interesting point of comparison pertains to equilibrium prices in
different market structures. Let us compare the monopoly equilibrium in Theo-
rem 2 to the oligopoly equilibrium in Proposition 1 where all platforms set their
prices for both sides equal to the marginal cost c. If 2α − 1 ≤ c ≤ 1, then the
monopoly price c+1

2 exceeds the oligopoly price c (since c < 1). A similar ob-
servation is valid when c < 2α − 1. Therefore, users on both sides face higher
prices in monopoly than in oligopoly (for any K ≥ 2). This consequence differs
from Chandra and Collard-Wexler (2009). The latter study proves that merg-
ers in a two-sided market do not necessarily raise the price for either side of
the market and supports the findings empirically based on data from the Cana-
dian newspaper industry. The difference between our results and Chandra and
Collard-Wexler (2009) can be attributed to the fact that with Bertrand competi-
tion in effect in our model, each platform in oligopoly earns a zero profit and any
price above c is not realized in equilibrium.

6. CONCLUDING REMARKS

In a simple model of two-sided markets, we studied the behavior of plat-
forms competing in price and compared its welfare implications with those of
platform monopoly. Our first result concerned platforms’ profit in oligopoly. In
each symmetric equilibrium, the profit for each platform is zero. This zero-profit
result is quite unexpected because firms engaged in Bertrand competition with
differentiated goods usually earn positive profits. Then we turned attention to
monopoly and characterized the optimal pricing for the monopolist platform.
Our last result drew a comparison of the welfare levels attained in oligopoly
and monopoly. Unlike in markets without network effects, social welfare is de-
creasing in the number of platforms. This leaves only two market structures,
duopoly and monopoly, as candidates for welfare maximization. Which of the
latter two is welfare-dominant depends on the magnitudes of network effects and
the platforms’ marginal cost. If network effects are weak relative to the marginal
cost, duopoly maximizes social welfare. With strong network effects in place,
monopoly achieves the highest welfare level.

Our findings are established in a model with several simplifying assump-
tions. The assumptions limit relevance and applicability of the model. However,
the resulting increase in tractability allows us to obtain cleaner results. These
results are qualitatively consistent with earlier papers on platform competition,
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such as Correia-da-Silva et al. (2019), Ko and Shen (2021), and Tan and Zhou
(2021). With regard to the issue of regulating two-sided markets, our findings
serve as a cautionary tale and call for a nuanced approach to evaluating conse-
quences of platform mergers and anti-trust policies. A broad message emerging
from our results is that network externality should enter any complete analysis
of platform industries as a key factor since it heavily influences which market
structures or policy measures enhance social welfare.
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A. APPENDIX: PROOFS AND FURTHER OBSERVATIONS

This appendix contains proofs and observations that were omitted in Sec-
tions 3–5. We first establish uniqueness of the solution to system (4) because
it is needed to prove Theorem 1. After proving Theorem 1, we derive the first-
order conditions for the monopolist equilibrium. Finally, we prove Theorems 2
and 3

A.1. UNIQUENESS OF THE SOLUTION TO SYSTEM (4)

As a first step toward identifying equilibria, we study system (4) of equations
in detail. Define a mapping Φ : [0,1]2 → [0,1]2 as for each x ≡ (x1,x2) ∈ [0,1]2,
Φ(x) = (1−F(p1 −α1x2),1−F(p2 −α2x1)) ∈ [0,1]2. Notice that (n1,n2) is a
solution to (4) if and only if it is a fixed point of Φ. Now we establish that (4)
has a unique solution by showing that Φ is a contraction mapping.

Lemma 1. For each (p1, p2) ∈ R2
+ and each α ∈ (0,1), system (4) of equations

has a unique solution.

Proof. It is enough to show that the mapping Φ is a contraction. Let x,y∈ [0,1]2.
Note that

∥Φ(x)−Φ(y)∥2 = [F(p1 −αx2)−F(p1 −αy2)]
2 +[F(p2 −αx1)−F(p2 −αy1)]

2 .

We proceed in two steps.

Step 1: Showing that [F(p1 −αx2)−F(p1 −αy2)]
2 ≤ [α(x2 − y2)]

2.
Case 1: p1 −αx2 ∈ (0,1) and p1 −αy2 ∈ (0,1).
[F(p1 −αx2)−F(p1 −αy2)]

2 = (αx2 −αy2)
2, so that the claim holds.

Case 2: p1 −αx2 ∈ (0,1) and p1 −αy2 ≥ 1.
This case holds if and only if y2 ≤ p1−1

α
< x2 < p1

α
, which, in particular,

implies that 0 < x2 − p1−1
α

≤ x2 − y2. Then [F(p1 −αx2)−F(p1 −αy2)]
2 =

(αx2 − p1 +1)2 ≤ [α(x2 − y2)]
2.

Case 3: p1 −αx2 ∈ (0,1) and p1 −αy2 ≤ 0.
This case holds if and only if p1−1

α
< x2 < p1

α
≤ y2, which, in particular,

implies that 0 < p1
α
− x2 ≤ y2 − x2. Then

[F(p1 −αx2)−F(p1 −αy2)]
2 = (p1 −αx2)

2 ≤ [α(y2 − x2)]
2 .

Case 4: p1 −αx2 ≥ 1 and p1 −αy2 ∈ (0,1).
This case is symmetric to Case 2.
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Case 5: p1 −αx2 ≥ 1 and p1 −αy2 ≥ 1.
Trivially, [F(p1 −αx2)−F(p1 −αy2)]

2 = 0.
Case 6: p1 −αx2 ≥ 1 and p1 −αy2 ≤ 0.
This case holds if and only if x2 ≤ p1−1

α
< p1

α
≤ y2, which, in particular,

implies 0 < 1
α
= p1

α
− p1−1

α
< y2 − x2. Thus, [F(p1 −αx2)−F(p1 −αy2)]

2 =

1 ≤ [α(y2 − x2)]
2.

Case 7: p1 −αx2 ≤ 0 and p1 −αy2 ∈ (0,1).
This case is symmetric to Case 3.
Case 8: p1 −αx2 ≤ 0 and p1 −αy2 ≥ 1.
This case is symmetric to Case 6.
Case 9: p1 −αx2 ≤ 0 and p1 −αy2 ≤ 0.
Trivially, [F(p1 −αx2)−F(p1 −αy2)]

2 = 0.

Step 2: Showing that Φ is a contraction with Lipschitz constant α < 1.
An argument similar to that in Step 1 implies that

[F(p2 −αx1)−F(p2 −αy1)]
2 ≤ [α(x1 − y1)]

2 .

Then

∥Φ(x)−Φ(y)∥ ≤
[
α

2(x2 − y2)
2 +α

2(x1 − y1)
2] 1

2 = α ∥x− y∥ .

A.2. PROOF OF THEOREM 1

Before proving Theorem 1, we make some preliminary observations about
the following system of equations:{

x1 = 1−F(p1 −αx2)

x2 = 1−F(p2 −αx1)
(6)

Denote the solution to (6) by x(p1, p2,α)≡ (x1(p1, p2,α),x2(p1, p2,α)). In the
next two lemmas, we show that x1(·) and x2(·) respond to changes in (p1, p2,α)
in an intuitive manner.

Lemma 2. For each s ∈ S, xs(·) is non-decreasing in α .

Proof. Let s ∈ S. Let α, α̃ ∈ (0,1) satisfy α < α̃ . Define Φ̃ in the same way
as Φ is defined, except that α is replaced by α̃ . Both Φ and Φ̃ are contrac-
tion mappings. Further, Φ ≤ Φ̃ (i.e., for each x ∈ [0,1]2, Φ(x) ≤ Φ̃(x)). Fi-
nally, Φ̃ is non-decreasing in x. Thus, by Theorem 2 in Villas-Boas (1997),
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the fixed points x(p1, p2,α) and x(p1, p2, α̃) of Φ and Φ̃, respectively, satisfy
x(p1, p2,α) ≤ x(p1, p2, α̃). That is, each of x1(·) and x2(·) is non-decreasing in
α .

Lemma 3. For all s, t ∈ {1,2}, xs(·) is non-increasing in pt .

Proof. Let s, t ∈ {1,2}. Let pt , p̂t ∈ R+ satisfy pt < p̂t . Define Φ̂ in the same
way as Φ is defined, except that pt is replaced by p̂t (but ps remains unchanged).
Both Φ and Φ̂ are contraction mappings. Further, Φ ≥ Φ̂ (i.e., for each x ∈
[0,1]2, Φ(x) ≥ Φ̂(x)). Finally, Φ is non-decreasing in x. Thus, by Villas-Boas
(1997, Theorem 2), the fixed points x(ps, pt ,α) and x(ps, p̂t ,α) of Φ and Φ̂,
respectively, satisfy x(ps, pt ,α)≥ x(ps, p̂t ,α). That is, each of x1(·) and x2(·) is
non-increasing in pt .

With the aid of the above two lemmas, we now prove Theorem 1. Let (p,z) be
a symmetric equilibrium. Denote the common prices in (p,z) by ρ1 and ρ2,
respectively. Consider platform k ∈ K. For each qk ∈ R2

+, let π(qk) be plat-
form k’s profit from charging qk when all the other platforms charge p−k =
(ρ1,ρ2)ℓ∈K\{k}. To show π(ρ1,ρ2)= 0, suppose, by contradiction that π(ρ1,ρ2)>
0. Clearly, ρ1 > c or ρ2 > c should hold. Without loss of generality, assume that
ρ1 > c. Distinguishing the following two cases, we show that platform k has a
profitable deviation.

Case 1: ρ2 > 0.
Let ρ ′

1 ∈ (c,ρ1) and ρ ′
2 ∈ (0,ρ2). Assume that platform k deviates to p′k ≡

(ρ ′
1,ρ

′
2). For each (ℓ,s) ∈ K × S, let nℓs ≡ mℓs(p,z), n′ℓs ≡ mℓs(p′k, p−k,z), ns ≡

∑ℓ∈K nℓs, and n′s ≡ ∑ℓ∈K n′ℓs. At the price profile p, the total measures (n1,n2) of
users joining any platform solve the following system of equations:{

n1 = 1−F
(
ρ1 − α

K n2
)

;
n2 = 1−F

(
ρ2 − α

K n1
)
.

(7)

Because (p,z) is a symmetric equilibrium, nk1 =
n1
K and nk2 =

n2
K , so that plat-

form k’s profit is π(ρ1,ρ2) =
n1
K (ρ1 − c)+ n2

K (ρ2 − c).
Now we show that for each ℓ ∈ K\{k}, n′ℓ1 = n′ℓ2 = 0. Let ℓ ∈ K\{k}. Sup-

pose, by contradiction, that n′ℓ1 > 0; the case n′ℓ2 > 0 is similar. Since p′k1 < pℓ1
and p′k2 < pℓ2, the user coordination condition implies that n′k1 > n′ℓ1. Together
with p′k2 < pℓ2, this means that no user on side 2 would join platform ℓ, i.e.,
n′ℓ2 = 0. Now since n′k2 ≥ 0 = n′ℓ2 and p′k1 < pℓ1, no user on side 1 would join
platform ℓ, i.e., n′ℓ1 = 0, a contradiction.
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By the claim proved in the previous paragraph, (n′1,n
′
2) = (n′k1,n

′
k2) and

π(ρ ′
1,ρ

′
2) = n′1(ρ

′
1−c)+n′2(ρ

′
2−c). Further, (n′1,n

′
2) solves the following system

of equations: {
n′1 = 1−F (ρ ′

1 −αn′2) ;
n′2 = 1−F (ρ ′

2 −αn′1) .
(8)

Let (n̂1, n̂2) be the solution to{
n̂1 = 1−F (ρ1 −α n̂2) ;
n̂2 = 1−F (ρ2 −α n̂1) .

(9)

The parameters
(

α

K ,ρ1,ρ2
)
, (α,ρ ′

1,ρ
′
2), and (α,ρ1,ρ2) of (7), (8), and (9),

respectively, satisfy α

K < α and (ρ1,ρ2) ≫ (ρ ′
1,ρ

′
2). Applying Lemmas 2 and

3, it follows that (n1,n2) ≦ (n̂1, n̂2) ≦ (n′1,n
′
2). Also, (n′1,n

′
2) → (n̂1, n̂2) as

(ρ ′
1,ρ

′
2) → (ρ−

1 ,ρ−
2 ). Now to show that platform k gains from deviating to p′k

(i.e., π(ρ1,ρ2)< π(ρ ′
1,ρ

′
2)), we distinguish two subcases.

Case 1.1: ρ2 ≥ c.
Since π(ρ1,ρ2) > 0, either n1 > 0 or n2 > 0. Without loss of generality,

assume that n1 > 0.4 Then nk1 =
n1
K < n1 ≤ n̂1. Observe that

lim
(ρ ′

1,ρ
′
2)→(ρ−

1 ,ρ−
2 )

n′1(ρ
′
1 − c) = n̂1(ρ1 − c)≥ n1(ρ1 − c)> nk1(ρ1 − c); and

lim
(ρ ′

1,ρ
′
2)→(ρ−

1 ,ρ−
2 )

n′2(ρ
′
2 − c) = n̂2(ρ2 − c)≥ n2(ρ2 − c)≥ nk2(ρ2 − c).

Thus, for (ρ ′
1,ρ

′
2) with c < ρ ′

1 < ρ1 and 0 < ρ ′
2 < ρ2 close enough to (ρ1,ρ2),

π(ρ ′
1,ρ

′
2)> π(ρ1,ρ2), so that (p,z) is not an equilibrium, a contradiction.

Case 1.2: 0 < ρ2 < c.
Since π(ρ1,ρ2) =

n1
K (ρ1 − c)+ n2

K (ρ2 − c) > 0 and ρ2 < c, n1 > 0. Also, as
(ρ ′

1,ρ
′
2)→ (ρ−

1 ,ρ−
2 ), π(ρ ′

1,ρ
′
2)= n′1(ρ

′
1−c)+n′2(ρ

′
2−c)→ n̂1(ρ1−c)+ n̂2(ρ2−

c). For the claim that for (ρ ′
1,ρ

′
2) close enough to (ρ1,ρ2), p′k = (ρ ′

1,ρ
′
2) is a

profitable deviation (i.e., π(ρ ′
1,ρ

′
2)> π(ρ1,ρ2)), it is enough to show that

n̂1(ρ1 − c)+ n̂2(ρ2 − c)> n1(ρ1 − c)+n2(ρ2 − c). (10)

The rest of the argument in Case 1.2 proves (10).

4Suppose that n1 = 0. Then π(ρ1,ρ2)> 0 implies n2 > 0 and ρ2 > c. Together with ρ1 > c,
this case is similar to the case of n1 > 0.
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For each (x1,x2) ∈ [0,1]2 and each v ∈ (0,1), let ϕ1(x1,x2;v)≡ x1 +F(ρ1 −
vx2)−1 and ϕ2(x1,x2;v)≡ x2+F(ρ2−vx1)−1, where we treat v as a parameter.
By Lemma 1, for each v ∈ (0,1), the system of equations ϕ1(x1,x2;v) = 0 and
ϕ2(x1,x2;v) = 0 has a unique solution; call it x(v) ≡ (x1(v),x2(v)). Clearly,
x
(

α

K

)
= (n1,n2) and x(α) = (n̂1, n̂2). Also, ϕ1 and ϕ2 are differentiable almost

everywhere and continuous. Whenever the partial derivatives of ϕ1 and ϕ2 exist,
∂ϕ1
∂x1

= ∂ϕ2
∂x2

= 1, ∂ϕ1
∂x2

, ∂ϕ2
∂x1

∈ {0,−v}, ∂ϕ1
∂v ∈ {0,−x2}, and ∂ϕ2

∂v ∈ {0,−x1}. The
exact values of these partial derivatives depend on whether F(·) is constant on
a neighborhood around ρ1 − vx2 and on a neighborhood around ρ2 − vx1. The
function x(v) is continuous in v and we may obtain its derivatives (when they
exist) by applying the implicit function theorem:

(
x′1(v)
x′2(v)

)
=−

(
∂ϕ1
∂x1

∂ϕ1
∂x2

∂ϕ2
∂x1

∂ϕ2
∂x2

)−1(
∂ϕ1
∂v

∂ϕ1
∂v

)
=

1

1− ∂ϕ1
∂x2

∂ϕ2
∂x1

(
∂ϕ2
∂v

∂ϕ1
∂x2

− ∂ϕ1
∂v

∂ϕ1
∂v

∂ϕ2
∂x1

− ∂ϕ2
∂v

)
. (11)

First, we show that n̂1 −n1 ≥ n̂2 −n2. Observe that for each s ∈ {1,2},

n̂s = xs(α) = xs

(
α

K

)
+
∫
[ α

K ,α]
x′s(v)dv = ns +

∫
[ α

K ,α]
x′s(v)dv.

Thus, the claim is equivalent to
∫
[ α

K ,α] x
′
1(v)dv ≥

∫
[ α

K ,α] x
′
2(v)dv. For the lat-

ter, it suffices to show that for each v ∈
[

α

K ,α
]

at which x is differentiable,
x′1(v) ≥ x′2(v). Let v ∈

[
α

K ,α
]
. We distinguish the following four cases. (a)

First, assume that F(·) is constant around ρ1 − vx2 and around ρ2 − vx1. By
(11), (x′1(v),x

′
2(v)) = (0,0). (b) Second, assume that F(·) is not constant around

ρ1 − vx2 and is constant on around ρ2 − vx1. By (11), (x′1(v),x
′
2(v)) = (x2(v),0).

(c) Third, assume that F(·) is not constant around ρ1 − vx2 and is not constant
around ρ2 − vx1. By (11), (x′1(v),x

′
2(v)) =

(
vx1(v)+x2(v)

1−v2 , x1(v)+vx2(v)
1−v2

)
. Under the

assumption ρ1 > c > ρ2, for each v ∈ (0,1), x1(v)≤ x2(v), so that x′1(v)≥ x′2(v).
(d) Finally, the case where F(·) is constant around ρ1 − vx2 and is not constant
around ρ2−vx1 never arises. To see this, note that since x1(v)≥ x1

(
α

K

)
= n1 > 0

(recall that x1(v) is non-decreasing in v), F(·) can be constant around ρ1 − vx2
only if F(ρ1 − vx2) = 0, so that x1(v) = 1. Under the assumption ρ1 > c > ρ2,
x2(v)≥ x1(v) = 1, which means that F(ρ2 − vx1) = 0, a contradiction.

Since ρ1 > c > ρ2, n2 ≥ n1 > 0. Further, since π(ρ1,ρ2)> 0, c−ρ2
ρ1−c <

n1
n2

≤ 1,
so that ρ1 − c > c−ρ2. Combining the latter with the claim n̂1 − n1 ≥ n̂2 − n2
proved in the previous paragraph yields (10).

Case 2: ρ2 = 0.
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Let ρ ′
1 ∈ (c,ρ1). Assume that platform k deviates to p′k ≡ (ρ ′

1,0). For each
(ℓ,s) ∈ K × S, define nℓs,n′ℓs, ns, and n′s as in Case 1. At the price profile p, the
total measures (n1,n2) of users joining any platform solve the following system
of equations5: {

n1 = 1−F
(
ρ1 − α

K n2
)

;
n2 = 1.

(12)

That is, n1 = 1−F
(
ρ1 − α

K

)
and n2 = 1. Further, nk1 =

n1
K and nk2 =

1
K . Since

π(ρ1,0)> 0, n1 > 0.
An argument similar to that in Case 1 shows that for each ℓ∈K\{k}, n′ℓ1 = 0.

Thus, n′1 = n′k1 and (n′1,n
′
2) solves:{

n′1 = 1−F
(
ρ ′

1 −αn′k2

)
;

n′2 = 1.
(13)

Next, we show that for each ℓ ∈ K\{k}, n′ℓ2 = 0. Let ℓ ∈ K\{k}. By the
user coordination condition, ∀h ∈ K\{k}, n′k2 ≥ n′h2. Thus, since 1 = n′2 =
n′k2 +∑h∈K\{k} n′h2, it follows that n′k2 ≥ 1

K . Then 0 < n1 = 1−F
(
ρ1 − α

K

)
≤

1−F
(
ρ ′

1 −αn′k2

)
= n′1. Since n′k1 = n′1 > 0, n′ℓ1 = 0, and p′k2 = 0 = pk2, no user

on side 2 would join platform ℓ, i.e., n′ℓ2 = 0.
In sum, n′k1 = 1−F(ρ ′

1−α1) and n′k2 = 1, so that π(ρ ′
1,0)= [1−F(ρ ′

1 −α)] (ρ ′
1−

c)− c. Now we distinguish two subcases.

Case 2.1: F
(
ρ1 − α

K

)
= 0.

This case implies F (ρ ′
1 −α) = 0. Then π(ρ1,0) = 1

K (ρ1 −2c) > 0 and
π(ρ ′

1,0) = ρ ′
1 − 2c. For ρ ′

1 ∈ (c,ρ1) close enough to ρ1, π(ρ ′
1,0) > π(ρ1,0),

so that (p,z) is not an equilibrium, a contradiction.

Case 2.2: F
(
ρ1 − α1

K

)
> 0.

First, we show that there is ρ ′
1 ∈ (c,ρ1) such that[

1−F(ρ ′
1 −α)

]
(ρ ′

1 − c)≥
[
1−F

(
ρ1 −

α

K

)]
(ρ1 − c).

Suppose not. Then for each ρ ′
1 ∈ (c,ρ1),[

1−F
(

ρ1 −
α

K

)]
(ρ ′

1 − c)≤
[
1−F(ρ ′

1 −α)
]
(ρ ′

1 − c)

<
[
1−F

(
ρ1 −

α

K

)]
(ρ1 − c),

5Because ρ2 = 0, all users on side 2 will join some platform.
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where the first inequality follows from F
(
ρ1 − α

K

)
≥ F(ρ ′

1 −α). Letting ρ ′
1 →

ρ
−
1 in the above inequalities yields F

(
ρ1 − α

K

)
= F(ρ1 −α). Since α > 0 and

F
(
ρ1 − α

K

)
< 1 (because n1 > 0), this is possible only if F

(
ρ1 − α

K

)
= 0, a con-

tradiction.
Now by the claim proved in the previous paragraph,

π(ρ ′
1,0) =

[
1−F(ρ ′

1 −α)
]
(ρ ′

1 − c)− c

≥
[
1−F

(
ρ1 −

α

K

)]
(ρ1 − c)− c

= Kπ(ρ1,0)

> π(ρ1,0),

so that (p,z) is not an equilibrium, a contradiction.

A.3. THE FIRST-ORDER CONDITIONS FOR THE MONOPOLIST
EQUILIBRIUM

In this subsection, we provide the first-order conditions for the monopolist’s
profit maximization problem (5) when the solution lies in the interior of the
region C (defined in Section 4). Then we turn them into a variant of the Lerner
formula.

Let (p∗1, p∗2) be a solution to (5) lying in the interior of C. Since the objective
function in (5) is differentiable, (p∗1, p∗2) is characterized by the following first-
order conditions:

n1 +(p∗1 − c)
∂n1

∂ p1
+(p∗2 − c)

∂n2

∂ p1
= 0; (14)

n2 +(p∗2 − c)
∂n2

∂ p2
+(p∗1 − c)

∂n1

∂ p2
= 0, (15)

where n1 = n1(p∗1, p∗2) and n2 = n2(p∗1, p∗2). By the implicit function theorem,(
∂n1
∂ p1

∂n1
∂ p2

∂n2
∂ p1

∂n2
∂ p2

)
=− 1

1−α2

(
1 α

α 1

)
.

With these expressions for ∂ns
∂ pt

(s, t ∈ S), Equations (14) and (15) can be written
more concisely as

n1 −
1

1−α2 [p
∗
1 − c+α(p∗2 − c)] = 0
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and

n2 −
1

1−α2 [p
∗
2 − c+α(p∗1 − c)] = 0.

We can turn conditions (14) and (15) into a variant of the Lerner formula.
For all s, t ∈ S, let ηst ≡ − ∂ns

∂ pt
· pt

ns
be side s’s demand elasticity with respect to

price pt . The first-order conditions are equivalent to the following:

n1 = n1
p∗1 − c

p∗1
η11 +n2

p∗2 − c
p∗1

η21;

n2 = n2
p∗2 − c

p∗2
η22 +n1

p∗1 − c
p∗2

η12.

A.4. PROOF OF THEOREM 2

In this subsection, we prove Theorem 2 by means of several lemmas. First,
we show that in solving the profit maximization problem (5), it is enough to
consider only (p1, p2)’s in C.

Lemma 4. There exists (p1, p2) ∈C solving problem (5).6

Proof. We show that for each p ∈R2
+\C, there exists p′ ∈C with π(p′)≥ π(p).

Case 1: p1, p2 ≥ 1.
Clearly, π(p1, p2) = 0 = π(1,1) and (1,1) ∈C.

Case 2: p1 ≤ 1 and φ2(p1, p2)< 0.
At p, n1(p) = 1− p1 and n2(p) = 0. Let p′2 satisfy φ2(p1, p′2) = 0. Then

p′ ≡ (p1, p′2) ∈ S. Further, n1(p′) = 1− p1 and n2(p′) = 0, so that π(p1, p2) =
π(p1, p′2).
Case 3: p2 ≤ 1 and φ1(p1, p2)< 0.

This case is symmetric to Case 2.
Case 4: p1, p2 ≤ α .

Then n1 = 1 = n2. Thus, π(p)≤ π(α,α) and (α,α) ∈ S.
Case 5: p1 < α , p2 ≥ α , and φ1(p1, p2)> 1−α2.

Then n1(p) = 1 and n2(p) = 1+α − p2. Let p′1 satisfy φ1(p′1, p2) = 1−α2.
Then p′ ≡ (p′1, p2) ∈ S. Further, n1(p′) = 1 and n2(p′) = 1+α − p2, so that
π(p1, p2)≤ π(p1, p′2).
Case 6: p2 < α , p1 ≥ α , and φ2(p1, p2)> 1−α2.

This case is symmetric to Case 5.

6This lemma does not exclude the possibility that there is another profit-maximizing choice
(p′1, p′2) ∈ R2

+\C.
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As indicated in Theorem 2, the values of α and c can be categorized into
three cases: (i) 2α −1 ≤ c ≤ 1; (ii) c < 2α −1; and (iii) c > 1. The next lemma
identifies the solution to (5) for the first case.

Lemma 5. Assume that 2α−1≤ c≤ 1. Then (p∗1, p∗2) = ( c+1
2 , c+1

2 ) is the unique
solution to (5).

Proof. It suffices to show that for each p ∈ C with p ̸= ( c+1
2 , c+1

2 ), there is
p′ ∈ C such that π(p′) > π(p). Let p ∈ C\

{
( c+1

2 , c+1
2 )
}

. Recall that n1(p) =
1−p1+α(1−p2)

1−α2 and n2(p) = 1−p2+α(1−p1)
1−α2 . Let us distinguish two cases.

Case 1: p1 > p2 or p1 < p2.
Assume that p1 > p2; the case p1 < p2 is similar. Consider a small change

from (p1, p2) to (p1 +d p1, p2 +d p2) ∈C, where d p2 =−d p1 and d p1 < 0 (i.e.,
move away from p along a line of slope −1 in the north-west direction).7 Then

dπ(p1, p2) =
∂π(p1, p2)

∂ p1
d p1 +

∂π(p1, p2)

∂ p2
d p2

=−2(p1 − p2)

1+α
d p1

> 0.

Thus, for d p1 < 0 close enough to zero, π (p1 +d p1, p2 −d p1)> π(p1, p2).

Case 2: p1 = p2 >
c+1

2 or p1 = p2 <
c+1

2 .
Assume that p1 = p2 >

c+1
2 ; the case p1 = p2 <

c+1
2 is similar. Let ρ ≡ p1(=

p2). Consider a small change from (p1, p2) to (p1 +d p1, p2 +d p2) ∈C, where
d p1 = d p2 < 0 (i.e., move away from p along a line of slope 1 in the south-west
direction).

dπ(p1, p2) =
∂π(p1, p2)

∂ p1
d p1 +

∂π(p1, p2)

∂ p2
d p2

=−2(2ρ − c−1)
1−α

d p1

> 0,

where the inequality follows from ρ > c+1
2 . Thus, for d p1 < 0 close enough to

zero, π (p1 +d p1, p2 +d p1)> π(p1, p2).

7Clearly, for any p ∈C with p1 < p2, if d p1 < 0 is close enough to zero, then (p1+d p1, p2+
d p2) ∈C.
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In view of the other two cases, the case 2α−1≤ c≤ 1 is one where the value
of c is neither too small nor too big, so that the solution lies on the “diagonal” of
region C. If c is small enough, in the sense of satisfying c < 2α −1, the platform
lowers the prices to the extent that all users on both sides are on board. The
following lemma makes this point.

Lemma 6. Assume that c< 2α−1. Then (p∗1, p∗2)= (α,α) is the unique solution
to (5).

Proof. Since uniqueness is simple to check, we only show that (p∗1, p∗2) = (α,α)
solves (5). For the latter claim, it suffices to prove that for each (p1, p2) ∈C, if
φ1(p) < 1−α2 or φ2(p) < 1−α2, then p is not a solution to (5). Assume that
φ1(p)< 1−α2; the case φ2(p)< 1−α2 is similar. We distinguish two cases.

Case 1: φ2(p)< 1−α2.
Then it is possible to decrease p1 slightly without leaving C (and without

affecting p2). Further, using n1(p) = 1−p1+α(1−p2)
1−α2 and n2(p) = 1−p2+α(1−p1)

1−α2 ,

∂π(p)
∂ p1

= n1(p)− 1
1−α2 (p1 − c)− α

1−α2 (p2 − c)

=
1

1−α2 [2(1− p1)+2α(1− p2)+(1+α)(c−1)]

<
c−2α +1

1−α

< 0,

where the first inequality follows from φ1(p) < 1−α2. Thus, decreasing p1
slightly will increase π , so that p is not profit-maximizing.

Case 2: φ2(p) = 1−α2.
First, note that φ2(p) = 1−α2 is possible only if p1 > α . Consider a small

change from (p1, p2) to (p1 + d p1, p2 + d p2) ∈ C, where d p2 = −α d p1 and
d p1 < 0 (i.e., move away from p along the line φ2 = 1−α2 in the north-west
direction). In this case, n1(p) = 1+α − p1 and n2(p) = 1. Thus,

dπ(p1, p2) =
∂π(p1, p2)

∂ p1
d p1 +

∂π(p1, p2)

∂ p2
d p2

= (c+1−2p1)d p1

> 0,

where the inequality follows from d p1 < 0 and c+ 1− 2p1 < c+ 1− 2α < 0.
Thus, p is not profit-maximizing.
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Finally, we consider the case where c is large enough, that is, c > 1. Our next
lemma shows that (1,1) solves (5).

Lemma 7. Assume that c > 1. Then (p∗1, p∗2) = (1,1) is a solution to (5).

Proof. It is enough to show that for each (p1, p2)∈C, if φ1(p)> 0 or φ2(p)> 0,
then p is not a solution to (5). Assume that φ1(p) > 0; the case φ2(p) > 0 is
similar. We distinguish two cases.

Case 1: φ2(p)> 0.
Then it is possible to increase p1 slightly without leaving C (and without

affecting p2). Further, using n1(p) = 1−p1+α(1−p2)
1−α2 and n2(p) = 1−p2+α(1−p1)

1−α2 ,

∂π(p)
∂ p1

= n1(p)− 1
1−α2 (p1 − c)− α

1−α2 (p2 − c)

=
1

1−α2 [2(1− p1)+2α(1− p2)+(1+α)(c−1)]

>
c−1
1−α

> 0,

where the first inequality follows from φ1(p) > 0. Thus, increasing p1 slightly
will increase π , so that p is not profit-maximizing.

Case 2: φ2(p) = 0.
First, note that φ2(p) = 0 is possible only if p2 < 1. Consider a small change

from (p1, p2) to (p1 + d p1, p2 + d p2) ∈ C, where d p2 = −α d p1 and d p1 > 0
(i.e., move away from p along the line ϕ2 = 0 in the south-east direction). In this
case, n1(p) = 1− p1 and n2(p) = 0. Thus,

dπ(p1, p2) =
∂π(p1, p2)

∂ p1
d p1 +

∂π(p1, p2)

∂ p2
d p2

= (c+1−2p1)d p1

> 0,

where the inequality follows from d p1 > 0 and c+1−2p1 > c−1 > 0. Thus, p
is not profit-maximizing.

Now we characterize the set of equilibria and show that all equilibria are
outcome-equivalent.
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Lemma 8. Assume that c > 1. Then each (p∗1, p∗2) ∈ R2
+ is a solution to (5) if

and only if p∗1, p∗2 ≥ 1. Further, all solutions are outcome-equivalent.

Proof. Let (p∗1, p∗2) ∈ R2
+. To prove the “if” part, it is enough to note that any

(p∗1, p∗2) with p∗1, p∗2 ≥ 1 yields n1(p∗1, p∗2) = 0 = n2(p∗1, p∗2) and π(p∗1, p∗2) = 0 =
π(1,1), so that (p∗1, p∗2) is an equilibrium, with its outcome equivalent to that of
(1,1).

Next, to prove the “only if” part, suppose, by contradiction, that (p∗1, p∗2)
solves (5) but p∗1 < 1; the case p∗2 < 1 is similar. Then n1(p∗1, p∗2) > 0, so that
n1(p∗1, p∗2)(p∗1 − c)< 0. If p∗2 ≤ c, then π(p∗1, p∗2)< 0 = π(1,1), a contradiction.
Assume, henceforth, that p∗2 > c. If φ2(p∗1, p∗2) ≤ 0, then n2(p∗1, p∗2) = 0, so that
π(p∗1, p∗2)< 0 = π(1,1), a contradiction. If φ2(p∗1, p∗2)> 0, then as we saw in the
proof of Lemma 7 (Case 1), increasing p∗1 slightly will increase the platform’s
profit slightly, a contradiction.

A.5. PROOF OF THEOREM 3

Part (1). Let c ∈ [0,1) and α ∈ (0,1). Choose K ∈ N with K ≥ 2. We show that

SW (K,α,c)> SW (K+1,α,c). First, if α ≤Kc, then SW (K,α,c)=
[

K(1−c)
K−α

]2
>[

(K+1)(1−c)
K+1−α

]2
= SW (K+1,α,c). Next, if Kc<α ≤ (K+1)c, then SW (K,α,c)=

1+ 2
(

α

K − c
)
> 1 = SW (K +1,(K +1)c,c) ≥ SW (K + 1,α,c). Finally, if α >

(K+1)c, then SW (K,α,c)= 1+2
(

α

K − c
)
> 1+2

(
α

K+1 − c
)
= SW (K+1,α,c).

Part (2). For each α ∈ (0,1), let g(α) ≡ 3−2α

4(1−α)2 − 4
(2−α)2 . It is simple to see

that g(α) = 0 has a unique solution in (0,1); let us denote it by α (numerically,
α ≈ 0.418545 · · · ).8 Then for each α ∈ (0,1), α > α implies g(α) > 0; and
α < α implies g(α)< 0. Let us distinguish four cases.

Case 1: 1
2 ≤ c < 1.

8To see this, since limα→0+ g(α) = − 1
4 and limα→1− g(α) = ∞, the intermediate value

theorem implies that g(α) = 0 has a sol in (0,1). For uniqueness, it is enough to show

that for each α ∈ (0,1), g′(α) > 0. Let α ∈ (0,1). Note that g′(α) =
1− α

2
(1−α)3 − 1

(1− α

2 )
3 and

g′′(α) =
5
2 −α

(1−α)4 −
3
2

(1− α

K )4 . Since 5
2 − α > 3

2 and 1 − α < 1 − α

2 , g′′(α) > 0. Together with

limα→0+ g′(α) = 0, this means that for each α ∈ (0,1), g′(α)> 0.
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Then

SW (1,
c+1

2
,c) = 2− c

> 2(1− c)

> [2(1− c)]2

= sup
α∈(0,1)

SW (2,α,c),

where the last equality holds because given c ≥ 1
2 , for each α ∈ (0,1), α < 1 ≤

2c, so that for each α ∈ (0,1), SW (2,α,c) =
(

2(1−c)
2−α

)2
. Thus, with c fixed

in [1
2 ,1), SW (2,α,c) and SW (1,α,c) cross only in (0, c+1

2 ); further, for each

α ∈ (0, c+1
2 ), SW (2,α,c) = 4(1−c)2

(2−α)2 and SW (1,α,c) = (1−c)2(3−2α)
4(1−α)2 . As we saw

above, g(α) = 0 has a unique solution α in (0, c+1
2 ) and that is where SW (1,α,c)

crosses SW (2,α,c) from below. Thus, α̂(c) = α .

Case 2: 1
3 ≤ c < 1

2 .
Then

SW (1,
c+1

2
,c) = 2− c

> 2(1− c)

= sup
α∈(0,1)

SW (2,α,c),

where the last equality follows from the fact that for α > 2c, SW (2,α,c) =
1+α−2c. Thus, with c fixed in [1

3 ,
1
2), SW (2,α,c) and SW (1,α,c) cross only in

(0, c+1
2 ); further, for each α ∈ (0, c+1

2 ), SW (2,α,c) = 4(1−c)2

(2−α)2 and SW (1,α,c) =
(1−c)2(3−2α)

4(1−α)2 . Proceeding as in Case 1, we may take α̂(c) = α .

Case 3: α

2 ≤ c < 1
3 .

Then

SW (1,
c+1

2
,c) = 2− c

> 2(1− c)

= sup
α∈(0,1)

SW (2,α,c),

where the last equality follows from the fact that for α > 2c, SW (2,α,c) =
1+α −2c. Thus, with c fixed in [α

2 ,
1
3), SW (2,α,c) and SW (1,α,c) cross only
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in (0, c+1
2 ). Since for each α ∈ (0,2c], SW (2,α,c) = 4(1−c)2

(2−α)2 and SW (1,α,c) =
(1−c)2(3−2α)

4(1−α)2 , proceeding as in Case 2, it follows that in (0,2c], SW (1,α,c) crosses
SW (2,α,c) from below at α = α . On the other hand, the two do not cross in
(2c, c+1

2 ).9 Thus, α̂(c) = α .

Case 4: c < α

2 .
For each α ∈ (0,1), let h(α) ≡ SW (1,α,c)− SW (2,α,c). We proceed in

four steps.
Step 1: For each α ∈ (0,2c), h(α)< 0.
Let α ∈ (0,2c). Then α < α , so that by our observation about α above,

g(α)< 0. Since h(α) = (1− c)2g(α), h(α)< 0.
Step 2: On [2c, c+1

2 ], h(α) = 0 has a unique solution, which we denote
by α̂(c).

For each α ∈ [2c, c+1
2 ], h(α) = (1−c)2(3−2α)

4(1−α)2 − (1+α −2c). First, h( c+1
2 ) =

c+1
2 > 0. Second, since h(2c) = (1−c)2(3−4c)

4(1−2c)2 −1 = (1− c)2g(2c) and for c < α

2 ,
g(2c) < 0 (by our argument above), h(2c) < 0. Now the intermediate value
theorem implies that h(α) = 0 has a solution in [2c, c+1

2 ]. Next, concerning
uniqueness, it is enough to show that h′ > 0 on [2c, c+1

2 ]. Note that h′(α) =
(1−c)2(2−α)

2(1−α)3 −1 and h′′(α) = (1−c)2(5−2α)
2(1−α)4 . Since h′′(α) > 0, h′(α) is minimized

at α = 2c. Since h′(2c) = 7c
(1−2c)3

[
(c− 9

14)
2 + 3

196

]
≥ 0, with equality only if

c = 0, the claim follows.
Step 3: For each α ∈ ( c+1

2 ,1), h(α)> 0.
For each α ∈ [ c+1

2 ,1), h(α) = α . Since h( c+1
2 ) = c+1

2 > 0 and for each
α ∈ ( c+1

2 ,1), h′(α) = 1 > 0, the claim follows.
Step 4: α̂(c) is an increasing function of c on [0, c

2) and for each c ∈ [0, α

2 ),
α̂(c)< α .

The above three steps uniquely defines α̂(c) ∈[2c, c+1
2 ] for each c ∈ [0, α

2 ).

Note that h(α̂(c)) = 0 can be written as
(

1− 1−α̂(c)
1−c

)2
= 1

2 −
1

4(1−α̂(c)) . To prove

monotonicity of α̂(c), suppose, by contradiction, that there exist c,c′ ∈ [0, α

2 )

with c < c′ and α̂(c) ≥ α̂(c′). Since α̂(c) > c and α̂(c′) > c′,
(

1− 1−α̂(c)
1−c

)2
>(

1− 1−α̂(c′)
1−c′

)2
but 1

2 −
1

4(1−α̂(c)) ≤
1
2 −

1
4(1−α̂(c′)) , a contradiction. Thus, α̂(c) is

9For each α ∈ (2c, c+1
2 ), SW (2,α,c) = 1+α −2c and SW (1,α,c) = (1−c)2(3−2α)

4(1−α)2 . Now it is

enough to note that SW (2,2c,c) < SW (1,2c,c); and for each α ∈ (2c, c+1
2 ), ∂

∂α
SW (2,α,c) = 1

and ∂

∂α
SW (1,α,c) = (1−c)2(2−α)

2(1−α)3
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increasing in c.
Finally, the claim that for each c ∈ [0, α

2 ), α̂(c)< α follows from α̂
(

α

2

)
= α

and monotonicity of α̂(c) on [0, α

2 ).
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