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1. INTRODUCTION

Since Hamilton (1989), almost all extensions and applications of regime
switching models have been based on the assumption that the latent regime-
indicator variable follows a Markovian switching process.1 Moreover, the litera-
ture has mostly focused on a first-order Markov-switching process with some ex-
ceptions that include Hering et al. (2015), who estimate a regime-switching vec-
tor autoregressive model with a second-order Markov-switching process; Neale
et al. (2016), who estimate a second-order Markov-switching model with time
varying transition probabilities; and Siu et al. (2009), who consider higher-order
Markov switching processes for modelling risk management.

In the meantime, for binary time series in which the regime-indicator vari-
able is observed, general p-th order Markov models have been investigated by re-
searchers such as Zeger and Qaqish (1988), Raftery (1985), and Li (1994). These
binary time series models have been further extended to the case of ARMA mod-
els by Startz (2008). Dueker (2005), Chauvet and Potter (2005) and Kauppi and
Saikkonen (2008) consider estimation of non-Markovian binary processes, by
introducing a Probit model in which the latent continuous variable follows an
autoregressive process. Our study is closely related with Dueker (2005), Chau-
vet and Potter (2005) and Kauppi and Saikkonen (2008) in that our econometric
approach enables estimation of unobserved non-Markovian binary processes.

To date, little attention has been paid to regime switching models with non-
Markovian latent regime indicator variables, except in Chib and Dueker (2004)2.
We revisit the following version of the non-Markovian regime switching model

1Albert and Chib (1993a) is the first paper that presents Bayesian estimation of a Markov-
switching model in which the pdf of the dependent variable (yt ) depends on not just the current
state St but previous values of St as well. For an overview of econometric analysis of time series
that are subject to changes in regime, readers are referred to Hamilton (2016). For the economic
applications of the Markov regime switching model, readers are referred to Yang et al. (2019),
Choi (2019), and Jeong et al. (2022).

2To estimate the model, Chib and Dueker (2004) cast equations (1), (2) and (3) into a state-
space model and employ linear approximation to the non-linear measurement equation with the
extended Kalman filter. However, the nature of this approximation is unknown and the resulting
prediction error for yt obtained from the extended Kalman filter is non-normal, while the Kalman
filter recursion is only valid under the assumption of normality. We have confirmed that their
estimation method does not work for our simulation and empirical applications.
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considered by them:

yt = x′tβSt +σSt εt , εt ∼ i.i.d.N(0,1), St = {0,1},
βSt = β0 +(β1 −β0)St , (1)

σ
2
St
= σ

2
0 +(σ2

1 −σ
2
0 )St ,

where St is a latent regime-indicator variable. The transitional dynamics of St is
given by the following Probit specification:

St = 1[S∗t ≥ 0], (2)

S∗t = α(1−ψ)+ψS∗t−1 +ωt , ωt ∼ i.i.d.N(0,1),

where 1[.] is the indicator function; |ψ|< 1; and S∗t is a continuous latent variable
with E(S∗t ) = α .3 The joint distribution of εt and ωt is specified as:4[

εt

ωt

]
∼ i.i.d.N

([
0
0

]
,

[
1 ρ

ρ 1

])
. (3)

The distinction between the above model and a first-order Markov switching
model can be best explained by a business cycle model in which boom or re-
cession is represented by a particular realization of St ∈ {0,1}. For a first-order
Markov-switching model, for example, conditional on knowing that last period
was a recession, no other past information is relevant in predicting the business
condition this period. For the above non-Markovian regime switching model,
however, the severity of recession, which is determined by the level of S∗t−1, car-
ries additional information in predicting the current business condition. That is,
the discrete latent variable St generated by equations (2) and (3) depends not
only on the sign of S∗t−1 but also on the level of S∗t−1.

The crucial feature of the Non-Markovian regime-switching model lies in its
ability to capture varying durations of regimes, unlike the conventional Markov-
switching model. The latter assumes a constant expected duration for each

3In this study, we have not considered higher order Auto-Regressive (AR) processes due to
the challenges in identifying AR coefficients. Accurate identification typically requires a substan-
tial number of regime switches within the data, a scenario that is relatively rare in the fields of
economics and finance.

4When equation (2) is replaced by

St = 1[S∗t ≥ 0],

S∗t = α0 +α1St−1 +ωt , ωt ∼ i.i.d.N(0,1),

we have a first-order Markov switching model with endogenous switching (Kim et al., 2008).
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regime, solely reliant on the immediate past state, due to the time-invariant nature
of its transition probabilities.5 In contrast, the Non-Markovian model introduces
a dynamic layer through S∗t−1, a cumulative sum of past shocks that encodes the
entire regime switching history. This accumulated shock value then dynamically
modulates the expected duration of the current regime. For instance, a low pos-
itive value of S∗t−1 suggests a brief stay in regime 1, while a large positive value
implies that the expected duration would be much longer. This flexibility makes
the Non-Markovian model a natural choice for capturing temporal variations in
regime durations.

Note that the continuous latent variable S∗t−1 in equation (2) carries all the
information on the past regimes that is hidden in the data, and this makes the
regime indicator variable St a non-Markovian process. For making inferences on
St from the above model, a key would be in appropriately integrating out S∗t−1
from the joint distribution for St and S∗t−1 conditional on the parameters of the
model and data.6 Here, integrating out S∗t−1 would be equivalent to integrating
out all the past regime indicator variables. This is why maximum likelihood
estimation of a non-Markovian switching model may be infeasible.

In this paper, we derive a Markov Chain Monte Carlo (MCMC) procedure
for estimating non-Markovian switching models without resorting to approxima-
tions. We take advantage of the Markovian property of the latent variable S∗t in
equation (2) and show that the conventional Gibbs sampling is enough in gener-
ating latent variables St and S∗t conditional on all the parameters of the model.
Derivation of the full conditional distribution for S∗t extends the work of Albert
and Chib (1993b), who present MCMC methods for static Probit models. Once
the St and S∗t variables are generated, generating the parameters of the model is
standard. We apply the non-Markovian switching models and the proposed al-
gorithms to the business cycle modelling of postwar real GDP and the volatility
modelling of weekly stock returns.

Our proposed estimation algorithm for regime dynamics relies on a single-
move sampling approach, where latent variables are drawn one at a time. Given
that this single-move sampler conditions the latent variables on other time pe-
riods, it is typically characterized by a slower convergence speed. To address
this concern, we recommend using convergence diagnostics such as those pro-

5For example, if St−1 = 1 and the corresponding regime transition probability Pr[St =
1|St−1 = 1,St−2, ...,S1] = Pr[St = 1|St−1 = 1] = 0.99, the expected duration of regime 1 is 100,
calculated as 1

1−0.99 .
6For making inferences on St from a conventional first-order Markov switching model, a key

is in integrating out St−1 from the joint distribution of St and St−1 conditional on the parameters
of the model and data. This is straightforward as St−1 is discrete.
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posed by Geweke (1992), Gelman and Rubin (1992), and Raftery and Banfield
(1991) to ensure satisfactory convergence. In our empirical applications, we
specifically utilize the Potential Scale Reduction Factor (PSRF) from Gelman
and Rubin (1992) as our convergence diagnostic tool.

While the proposed model successfully captures the dynamics of two regimes,
extending it to a general N-regime case requires a more sophisticated framework.
The multinomial Probit specification of Hwu et al. (2021) offers a promising
approach. However, incorporating this framework would introduce additional
complexity in both parameter estimation and computational demands due to the
presence of multiple continuous latent variables influencing the discrete regime-
indicator variable. Therefore, exploring this extension remains an open question
for future studies.

The rest of the paper is organized as follows. Section 2 provides an algorithm
for estimating a non-Markovian exogenous switching model with ρ = 0. In
Section 3, the algorithm in Section 2 is extended to the case of endogenous
switching with ρ ̸= 0. Section 4 provides a simulation study in order to show
that the proposed algorithm works well. Pitfalls of estimating a non-Markovian
switching process by a Markovian switching model are also discussed. Section
5 deals with applications, and Section 6 concludes.

2. BAYESIAN INFERENCE OF A NON-MARKOVIAN
EXOGENOUS SWITCHING MODEL: A PRELIMINARY

The non-Markovian nature of St in the model can be understood by rewriting
the second equation in (2) as

S∗t = α +ωt +ψωt−1 +ψ
2
ωt−2 + . . . , (4)

where, due to equation (2), Pr[St− j = 1|S∗t− j−1] is positively related to ωt− j for
j = 0,1,2, .... Equation (4) therefore suggests that S∗t , and thus, St is a function
of all the past history of regimes. That is, we no longer have the Markovian
property for St , as

f (St |S∗t−1) = f (St |St−1,St−2,St−3, . . . ,S0) (5)

̸= f (St |St−1,St−2, . . . ,St−p),

where p is finite.
Intractability of the maximum likelihood estimation for the above model can

be easily seen by considering the likelihood function, given below for the case
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of ρ = 0:

L =
T

∏
t=1

f (yt |It−1) (6)

=
T

∏
t=1

(
∑
St

f (yt |St , It−1) f (St |It−1)

)
,

where It−1 refers to information up to t −1; and

f (St |It−1) =
∫

f (St ,S∗t−1|It−1)dS∗t−1 (7)

=
∫

f (St |S∗t−1) f (S∗t−1|It−1)dS∗t−1

= ∑
St−1

∑
St−2

. . .∑
S0

f (St |St−1,St−2, . . . ,S0) f (St−1,St−2, . . . ,S0|It−1).

As the joint distribution of St and S∗t−1 conditional on past information depends
on all the history of past regimes (St−1, St−2,..., S0), evaluation of equation (7) is
intractable within the classical framework.7

In this section, we consider Bayesian inference of a non-Markovian exoge-
nous switching model with ρ = 0 in equation (3). We note that, due to the Marko-
vian property of S∗t , we can employ the Gibbs sampling approach for drawing
S̃T =

(
S0 S1 S2 . . . ST

)′ and S̃∗T =
(
S∗0 S∗1 S∗2 . . . S∗T

)′.
To get an insight into how the Gibbs sampling approach can be implemented

for an exogenous switching model, we first consider the following decomposi-
tion for the joint posterior density of S̃T , S̃∗T , and the parameters of the model:

f (β̃ , σ̃2, Ã, S̃∗T , S̃T |ỸT ) = f (β̃ , σ̃2|Ã, S̃∗T , S̃T ,ỸT ) f (Ã|S̃∗T , S̃T ,ỸT ) f (S̃∗T , S̃T |ỸT ) (8)

= f (β̃ , σ̃2|S̃T ,ỸT ) f (Ã|S̃∗T ) f (S̃∗T , S̃T |ỸT ),

where β̃ =
(
β0 β1

)′; σ̃2 =
(
σ2

0 σ2
1
)′; Ã=

(
α ψ

)′; and ỸT =
(
y1 y2 . . . yT

)′.
7When St follows a first-order Markov process, for which latent variable S∗t can be specified

as S∗t = α0 +α1St−1 +ωt , ωt ∼ i.i.d.N(0,1), equation (7) collapses to

f (St |It−1) = ∑
St−1

f (St ,St−1|It−1)

= ∑
St−1

f (St |St−1) f (St−1|It−1),

where f (St−1|It−1) can be evaluated recursively, and thus, the maximum likelihood estimation of
the model is feasible as in Hamilton (1989).
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Here, a key to Bayesian estimation of a non-Markovian switching model is
to apply the single-move Gibbs sampling to the last term in equation (8), i.e., to
draw St and S∗t , t = 1,2, ...,T , from the following full conditional distribution:

f (S∗t ,St |S̃∗̸=t , S̸̃=t ,ỸT ) = f (S∗t |S̃∗̸=t , S̸̃=t ,St ,ỸT ) f (St |S̃∗̸=t , S̸̃=t ,ỸT ), t = 1,2, ...,T,
(9)

where S̸̃=t refers to S̃T with an exclusion of St and S̃∗̸=t refers to S̃∗T with an
exclusion of S∗t .

Equation (9) allows us to take advantage of the Markovian property of S∗t .
Furthermore, the decompositions in equations (8) and (9) lead to the follow-
ing steps for the MCMC procedure, which can be repeated until convergence is
achieved:8

Step 1: Generate St and S∗t conditional on all the parameters of the model, S̃∗̸=t , S̸̃=t

and ỸT , for t = 1,2, ...,T . For each t, we generate St and S∗t sequentially,
in the following way:

Step 1.A: Generate St from f (St |S̃∗̸=t , S̸̃=t ,ỸT ). Then, replace the t−th row of
S̃T by the generated St .

Step 1.B: Generate S∗t from f (S∗t |S̃∗̸=t , S̃ ̸=t ,St ,ỸT ), where St is generated in Step
1.A. Then, replace the t−th row of S̃∗T by the generated S∗t .

Step 2: Generate Ã conditional on S̃∗T .

Step 3: Generate β̃ and σ̃2 conditional on S̃T and ỸT .

In what follows, we focus on deriving the full conditional distributions from
which St and S∗t can be drawn. The derivation of the full conditional distribution
for Step 2 or 3 based on equation (1) or (2) is standard.

2.1. GENERATING ST CONDITIONAL ON S̃∗̸=T , S̃ ̸=T , Ã, β̃ , σ̃2 AND ỸT

Conditional on S∗t−1, all the other past information is irrelevant in making
inference about St or about the sign of S∗t , due to the Markovian nature of S∗t .
Likewise, conditional on S∗t+1, all the other future information is irrelevant in
making inferences about St or about the sign of S∗t . Keeping these in mind,

8Hereafter, we suppress the model parameters in the full conditional distributions associated
with St and/or S∗t for notational simplification.
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consider the following derivation for the joint density of St and S∗t conditional on
S̃∗̸=t , S̃ ̸=t , and data ỸT :

f (S∗t ,St |S̃∗̸=t , S̃ ̸=t ,ỸT ) = f (S∗t ,St |S∗t−1,S
∗
t+1,yt) (10)

∝ f (yt ,S∗t+1,S
∗
t ,St |S∗t−1)

= f (yt |St) f (S∗t+1|S∗t ) f (S∗t ,St |S∗t−1)

= f (yt |St) f (S∗t+1|S∗t ) f (S∗t |S∗t−1) f (St |S∗t )

∝

[
1

σSt

φ

(
yt − x′tβSt

σSt

)][
1√
V

φ

(
S∗t −µt√

V

)]
f (St |S∗t ),

where φ(.) is the pdf of the standard normal distribution and f (St |S∗t ) = 1[S∗t ≥
0]St +1[S∗t < 0](1−St), with 1[.] denoting the indicator function;

V =
1

1+ψ2 ; and µt = α +
1

1+ψ2 (ψ(S∗t+1 −α)+ψ(S∗t−1 −α)). (11)

The second term in the last line in equation (10) is obtained from the follow-
ing derivation for the f (S∗t+1|S∗t ) f (S∗t |S∗t−1) term in the fourth line of equation
(10) conditional on S∗t−1 and S∗t+1:

f (S∗t+1|S∗t ) f (S∗t |S∗t−1) ∝ exp
[
−1

2
(
(ηt+1 −ψηt)

2 +(ηt −ψηt−1)
2)]

∝ exp

[
− 1

2 1
1+ψ2

(
ηt −

1
1+ψ2 (ψηt+1 +ψηt−1)

)2
]
,

(12)

where ηt = S∗t −α .
Finally, by integrating S∗t out of equation (10) we obtain the following results:

f (St = 0|S̃∗̸=t , S̃ ̸=t ,ỸT )

∝

∫
∞

−∞

[
1

σ0
φ

(
yt − x′tβ0

σ0

)][
1√
V

φ

(
S∗t −µt√

V

)]
f (St = 0|S∗t )dS∗t (13)

=
∫ 0

−∞

[
1

σ0
φ

(
yt − x′tβ0

σ0

)][
1√
V

φ

(
S∗t −µt√

V

)]
dS∗t

=
1

σ0
φ

(
yt − x′tβ0

σ0

)
Φ

(
− µt√

V

)
,
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f (St = 1|S̃∗̸=t , S̃ ̸=t ,ỸT )

∝

∫
∞

−∞

[
1

σ1
φ

(
yt − x′tβ1

σ1

)][
1√
V

φ

(
S∗t −µt√

V

)]
f (St = 1|S∗t )dS∗t (14)

=
∫

∞

0

[
1

σ1
φ

(
yt − x′tβ1

σ1

)][
1√
V

φ

(
S∗t −µt√

V

)]
dS∗t

=
1

σ1
φ

(
yt − x′tβ1

σ1

)
Φ

(
µt√
V

)
,

where Φ(.) is the CDF of the standard normal distribution. Thus, we can gener-
ate St based on the following probabilities:

P(St = i|S̃∗̸=t , S̃ ̸=t ,ỸT ) =
f (St = i|S̃∗̸=t , S̃ ̸=t ,ỸT )

f (St = 0|S̃∗̸=t , S̃ ̸=t ,ỸT )+ f (St = 1|S̃∗̸=t , S̃ ̸=t ,ỸT )
, i = 0,1.

(15)

2.2. GENERATING S∗T CONDITIONAL S̃∗̸=T , ST , S̸̃=T , Ã, β̃ , σ̃2, AND ỸT

The full conditional density f (S∗t |S̃∗̸=t , S̃ ̸=t ,St ,ỸT ), from which S∗t is to be
drawn, can be derived based on equations (10). As the first term on the last line
of equation (10) is a part of the normalizing constant conditional on St , we have
the following results:

f (S∗t |S̃∗̸=t , S̃ ̸=t ,St ,ỸT ) ∝ f (S∗t ,St |S̃∗̸=t , S̸̃=t ,ỸT ) (16)

∝

[
1

σSt

φ

(
yt − x′tβSt

σSt

)][
1√
V

φ

(
S∗t −µt√

V

)]
f (St |S∗t )

∝
1√
V

φ

(
S∗t −µt√

V

)
f (St |S∗t ),

which suggests that we can generate S∗t from the following truncated normal
distribution:

S∗t |S̃∗̸=t , S̸̃=t ,St ,ỸT ∼ N(µt ,V )(1[S∗t ≥0]St+1[S∗t <0](1−St)), (17)

where µt and V are given in equation (11).
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3. BAYESIAN INFERENCE OF A NON-MARKOVIAN
ENDOGENOUS SWITCHING MODEL

In this section, we consider Bayesian inference of a non-Markovian endoge-
nous switching model, in which ρ ̸= 0 in equation (3). A key to appropriate
derivation of the MCMC algorithm lies in the fact that we can rewrite ωt as a
function εt (i.e., ωt = ρεt +

√
(1−ρ2)ω∗

t ), so that we can rewrite equation (2)
as:

S∗t+ j = α(1−ψ)+ψS∗t+ j−1 +ρεt+ j +
√

1−ρ2ω
∗
t+ j, (18)

where ω∗
t+ j ∼ i.i.d.N(0,1), E(ω∗

t+ jεt+ j) = 0, and εt+ j =
yt+ j−x′t+ jβSt+ j

σSt+ j
.

We note that, unlike in the case of exogenous regime switching, derivation of
the full conditionals for Ã =

(
α ψ ρ

)′, β̃ =
(
β0 β1

)′, and σ̃2 =
(
σ2

0 σ2
1
)′

in Steps 2 and 3 are not standard any more. We therefore explain each step in
detail in what follows.

3.1. GENERATING ST CONDITIONAL ON S̃∗̸=T , S̸̃=T , Ã, β̃ , σ̃2, AND ỸT

In deriving the full conditional density f (St |S̃∗̸=t , S̃ ̸=t ,ỸT ), we first derive the
joint density f (S∗t ,St |S̃∗̸=t , S̸̃=t ,ỸT ), and then S∗t is integrated out of this joint den-
sity.9 For an exogenous switching model, yt+1 and St+1 are irrelevant in deriving
this joint density. However, equation (18) suggests that S∗t+1 is a function of
εt+1, which is a function of yt+1 and St+1, as well as S∗t . Thus, unlike in the
case of an exogenous switching model, yt+1 and St+1 terms play important roles
when deriving the joint density f (S∗t ,St |S̃∗̸=t , S̃ ̸=t ,ỸT ) in the case of endogenous
switching. Keeping this in mind, let us consider the following derivation:

f (S∗t ,St |S̃∗̸=t , S̃ ̸=t ,ỸT ) (19)

= f (S∗t ,St |S∗t−1,S
∗
t+1,St+1,yt+1,yt)

∝ f (S∗t+1,St+1,yt+1,S∗t ,St ,yt |S∗t−1)

= f (S∗t+1,St+1,yt+1|S∗t ) f (S∗t ,St ,yt |S∗t−1)

= f (S∗t+1|S∗t ,St+1,yt+1) f (St+1,yt+1|S∗t ) f (S∗t |S∗t−1,St ,yt) f (St ,yt |S∗t−1)

= f (S∗t+1|S∗t ,St+1,εt+1) f (yt+1,St+1|S∗t ) f (S∗t |S∗t−1,St ,εt) f (yt ,St |S∗t−1),

9All the densities in Sections 3.1 and 3.2 are conditional on Ã, β̃ , and σ̃2. However, we
suppress them for the sake of notational brevity.
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where the first and the third terms in the last line are given as

f (S∗t+ j|S∗t+ j−1,St+ j,εt+ j) =
f (S∗t+ j|S∗t+ j−1,εt+ j) f (St+ j|S∗t+ j)

f (St+ j|S∗t+ j−1,εt+ j),
j = 0,1; (20)

and, as shown in Appendix A, product of the second and the fourth terms in the
last line can be derived as

f (yt+ j,St+ j|S∗t+ j−1) =
1

σSt+ j

φ

(yt+ j − x′t+ jβSt+ j

σSt+ j

)
f (St+ j|S∗t+ j−1,εt+ j), j = 0,1.

(21)
By substituting equations (20) and (21) into equation (19), we have the fol-

lowing intermediate result:

f (St ,S∗t |S̃∗̸=t , S̃ ̸=t ,ỸT ) ∝
1

σSt

φ

(
yt − x′tβSt

σSt

)
f (S∗t+1|S∗t ,εt+1) f (S∗t |S∗t−1,εt) f (St |S∗t ).

(22)

Here, as shown in Appendix B, f (S∗t+1|S∗t ,εt+1) f (S∗t |S∗t−1,εt) term can be derived
as:

f (S∗t+1|S∗t ,εt+1) f (S∗t |S∗t−1,εt) ∝ g(εt(St))
1√
V

φ

(
S∗t −µt√

V

)
, (23)

where

V =
1−ρ2

1+ψ2 ; and µt =α+
1

1+ψ2 (ψ(S∗t+1−α)−ρψεt+1+ψ(S∗t−1−α)+ρεt),

(24)

g(εt(St)) = exp{−
ρ2ε2

t +2ρψ(S∗t−1 −α)εt − (1+ψ2)(µt −α)2

2(1−ρ2)
}, (25)

where εt =
yt−x′t βSt

σSt
.

By substituting equation (23) in equation (22), we obtain the following final
derivation for the full conditional joint distribution for St and S∗t :

f (St ,S∗t |S̃∗̸=t , S̃ ̸=t ,ỸT )

∝

[
1

σSt

φ

(
yt − x′tβSt

σSt

)][
g(εt(St))

1√
V

φ

(
S∗t −µt√

V

)]
f (St |S∗t ), (26)

where f (St |S∗t ) = 1[S∗t ≥ 0]St +1[S∗t < 0](1−St). Here, unlike in the case of ex-
ogenous switching model, g(εt(St)) term is not a part of the normalizing constant
as it is a function of St .
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Finally, by integrating S∗t out of equation (22) we obtain

f (St = 0|S̃∗̸=t , S̃ ̸=t ,ỸT ) (27)

∝

∫
∞

−∞

[
1

σ0
φ

(
yt − x′tβ0

σ0

)][
g(εt(St = 0))

1√
V

φ

(
S∗t −µt√

V

)]
f (St = 0|S∗t )dS∗t

=
∫ 0

−∞

[
1

σ0
φ

(
yt − x′tβ0

σ0

)][
g(εt(St = 0))

1√
V

φ

(
S∗t −µt√

V

)]
dS∗t

=

[
1

σ0
φ

(
yt − x′tβ0

σ0

)][
g(εt(St = 0))Φ

(
− µt√

V

)]
,

f (St = 1|S̃∗̸=t , S̃ ̸=t ,ỸT ) (28)

∝

∫
∞

−∞

[
1

σ1
φ

(
yt − x′tβ1

σ1

)][
g(εt(St = 1))

1√
V

φ

(
S∗t −µt√

V

)]
f (St = 1|S∗t )dS∗t

=
∫

∞

0

[
1

σ1
φ

(
yt − x′tβ1

σ1

)][
g(εt(St = 1))

1√
V

φ

(
S∗t −µt√

V

)]
dS∗t

=

[
1

σ1
φ

(
yt − x′tβ1

σ1

)][
g(εt(St = 1))Φ

(
µt√
V

)]
where Φ(.) is the CDF of the standard normal distribution. Thus, we can gener-
ate St based on the following probabilities:

P(St = i|S̃∗̸=t , S̃ ̸=t ,ỸT ) =
f (St = i|S̃∗̸=t , S̃ ̸=t ,ỸT )

f (St = 0|S̃∗̸=t , S̃ ̸=t ,ỸT )+ f (St = 1|S̃∗̸=t , S̃ ̸=t ,ỸT )
, i = 0,1.

(29)

3.2. GENERATING S∗T CONDITIONAL ON Ã, β̃ , σ̃2, S̃∗̸=T , ST , S̃ ̸=T , AND ỸT

The full conditional density f (S∗t |S̃∗̸=t , S̃ ̸=t ,St ,ỸT ), from which S∗t is to be
drawn, can be derived based on equations (26). Conditional on St , the first term
on the right-hand-side of equation (26) and the g(εt(St)) term are a part of the
normalizing constant. We have the following result:

f (S∗t |S̃∗̸=t , S̸̃=t ,St ,ỸT ) (30)

∝ f (S∗t ,St |S̃∗̸=t , S̃ ̸=t ,ỸT )

∝

[
1

σSt

φ

(
yt − x′tβSt

σSt

)][
g(εt(St))

1√
V

φ

(
S∗t −µt√

V

)]
f (St |S∗t )

∝
1√
V

φ

(
S∗t −µt√

V

)
f (St |S∗t ),
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which indicates that we can generate S∗t from the following truncated normal
distribution:

S∗t |S̃∗̸=t , S̸̃=t ,St ,ỸT ∼ N(µt ,V )(1[S∗t ≥0]St+1[S∗t <0](1−St)), (31)

where µt and V are given in equation (24).

3.3. GENERATING Ã = (α,ψ,ρ)′ CONDITIONAL ON β̃ , σ̃2, S̃∗T , S̃T , AND
ỸT

Generating ρ conditional on α , ψ , β̃ , σ̃2, S̃∗T , S̃T , and ỸT

The full conditional density from which ρ is drawn can be derived as:10

f (ρ|S̃∗T , S̃T ,ỸT ) ∝ f (S̃∗T , S̃T ,ỸT |ρ) f (ρ) (32)

=
T

∏
t=1

[ f (S∗t ,St ,yt |S̃∗t−1, S̃t−1,Ỹt−1,ρ)] f (S∗0,S0) f (ρ)

∝

T

∏
t=1

[ f (S∗t |S∗t−1,St ,yt ,ρ) f (St ,yt |S∗t−1,ρ)] f (ρ)

∝

T

∏
t=1

[ f (S∗t |S∗t−1,St ,εt ,ρ) f (St ,yt |S∗t−1,ρ)] f (ρ),

where f (ρ) is the prior density of ρ; and f (S∗t |S∗t−1,St ,εt ,ρ) and f (St ,yt |S∗t−1,ρ)
are given in equations (20) and (21), respectively, with the ρ parameter sup-
pressed. By substituting equations (20) and (21) into equation (32), we obtain
the following target density of ρ:

f (ρ|S̃∗T ,ỸT , S̃T ) ∝

T

∏
t=1

[ f (S∗t |S∗t−1,εt ,ρ)] f (ρ), (33)

where the density f (S∗t |S∗t−1,εt ,ρ) can be derived from equation (18), as given
below:

f (S∗t |S∗t−1,εt ,ρ) ∝
1√

(1−ρ2)
φ

(
S∗t −α(1−ψ)−ψS∗t−1 −ρεt√

(1−ρ2)

)
. (34)

10For the sake of notational brevity, we suppress α , ψ , β̃ , and σ̃2 in the conditional density of
ρ .
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The intuition is that, conditional on S̃∗T and ε̃T , all that matters for the derivation
of the likelihood function for ρ is equation (18).

For the Metropolis-Hastings algorithm, let ρo denote the accepted ρ at the
previous MCMC iteration and ρn is a newly generated candidate from the fol-
lowing random walk candidate generating distribution:

ρn = ρo + ε, ε ∼ N(0,c)1[−ρ0−1<ε<−ρ0+1], (35)

so that ρn is constrained to be between -1 and 1. Based on the target posterior
density of ρ in equation (33), we employ the following acceptance probability
to decide whether to accept or reject ρn:

α(ρn,ρo) = min{1,
∏

T
t=1[ f (S

∗
t |S∗t−1,εt ,ρn)] f (ρn)

∏
T
t=1[ f (S

∗
t |S∗t−1,εt ,ρo)] f (ρo)

}. (36)

Generating α conditional on ρ , ψ , β̃ , σ̃2, S̃T , S̃∗T , and ỸT

Rearranging equation (18), we have(
S∗t −ψS∗t−1 −ρεt√

1−ρ2

)
= α

(
1−ψ√
1−ρ2

)
+ω

∗
t , ω

∗
t ∼ i.i.d.N(0,1), (37)

and drawing α from the full conditional distribution derived based on this equa-
tion is standard.

Generating ψ conditional on ρ , α , β̃ , σ̃2, S̃T , S̃∗T , and ỸT

Rearranging equation (18), we have

Ŝ∗t = ψzt +ω
∗∗
t , ω

∗∗
T ∼ i.i.d.N(0,1), (38)

where Ŝ∗t = (S∗t −α −ρεt)/
√

1−ρ2 and zt = (S∗t−1 −α)/
√

1−ρ2. Drawing ψ

from an appropriate full conditional distribution derived based on this equation
is standard.

3.4. GENERATING β̃ = (β0,β1)
′ AND σ̃2 = (σ2

0 ,σ
2
1 )

′ CONDITIONAL ON
Ã, S̃T , S̃∗T , AND DATA ỸT

Generating β̃ conditional on σ̃2, Ã, S̃T , S̃∗T , and data ỸT
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From the joint normality of εt and ωt in equation (3), we can write εt as
a function of ωt (i.e., εt = ρωt +

√
1−ρ2ε∗

t ), which allows us to rewrite the
regression equation in equation (1) as:

yt = x′tβSt +σSt ρωt +σSt

√
1−ρ2ε

∗
t , ε

∗
t ∼ i.i.d.N(0,1), (39)

where ωt = S∗t −α(1−ψ)−ψS∗t−1. Thus, the full conditional distribution from
which β̃ =

(
β0 β1

)′ is to be drawn can be easily derived from the following
regression equation that is obtained by rearranging equation (39):

y∗t = xtβSt + ε
∗∗
t , ε

∗∗
t ∼ i.i.d.N(0,σ2

St
(1−ρ

2)), (40)

y∗t = yt −σSt ρωt . Considering the shock ωt in this MCMC step is crucial as em-
phasized by Kim et al. (2008) because the regime switching βSt will be correlated
with the error term εt , which causes an endogeneity issue without controlling for
ωt .

Generating σ̃2 conditional on β̃ , Ã, S̃T , and data ỸT

As ρ is irrelevant in making inference on σ̃2, this step is based on equation
(1). To further explain the validity of this MCMC step, we rewrite the joint
distribution of the two variables as(

yt

S∗t

)
| St , S̃∗t−1 ∼ N

((
xtβSt

S∗t−1

)
,

(
σ2

St
ρσSt

σSt 1

))
. (41)

Because the error terms can be obtained, their joint distribution is easily specified
as (

et

ωt

)
| St , S̃∗t−1 ∼ N

((
0
0

)
,

(
σ2

St
ρσSt

σSt 1

))
(42)

whose marginal distribution of et = σSt εt is simply N(0,σ2
St
). Based on the idea

of collapsed Gibbs sampling that integrates out S∗t for all time periods, we use
the marginal distribution of et instead of the joint distribution of et and ωt when
sampling σ2

St
. Thus, conditional on β̃ , it is straightforward to generate σ̃2 from

an appropriate posterior distribution. Alternatively, we can employ the condi-
tional density of S̃∗t conditioning on εt in equation (39) for the posterior sampling
step. In this case, the posterior sampling should be performed by an Metropolis-
Hastings algorithm. If we adopt a random walk candidate generating distribution
as for ρ , the acceptance probability is given by

α(σ2
i,n,σ

2
i,o) = min{1,

∏
T
t=1[ f (yt |yt−1,ωt ,σ

2
i,n,ρ)] f (σ

2
i,n)

∏
T
t=1[ f (yt |yt−1,ωt ,σ2

i,o,ρ)] f (σ
2
i,o)

}. (43)
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for i = 0,1 where f (yt |yt−1,ωt ,σ
2
i ,ρ) is the observation density based on equa-

tion (39) and f (σ2
i,n) is the prior density. The support of the prior distribution is

σ2
i,n > 0. We have confirmed that all simulation and empirical results from the

two described algorithms are identical. In the following sections, we use the the
Metropolis-Hastings algorithm to draw the posterior samples of σ2

i,n.

4. SIMULATION STUDY

In this section, we conduct a simulation study in order to evaluate the per-
formance of the proposed algorithm for Bayesian estimation of non-Markovian
regime switching models. Our simulation study is based on the following non-
Markovian switching model:

yt = β0(1−St)+β1St +(γ0(1−St)+ γ1St)xt +(σ0(1−St)+σ1St)εt , (44)

St = 1[S∗t ≥ 0], S∗t = α(1−ψ)+ψS∗t−1 +ωt ,(
εt

ωt

)
∼ i.i.d.N

((
0
0

)
,

(
1 ρ

ρ 1

))
,

where 1[.] is the indicator function.
When generating data, we consider the following several alternative cases

that differ in the parameter values assigned:

Case #1: [Exogenous Switching, No Exogenous Variable]

ρ = 0; β0 = 1; β1 =−1; γ0 = 0; γ1 = 0; σ
2
0 = 0.5; σ

2
1 = 1; ψ = 0.9; α = 0

Case #2: [Endogenous Switching, No Exogenous Variable]

ρ = 0.9; β0 = 1; β1 =−1; γ0 = 0; γ1 = 0; σ
2
0 = 0.5; σ

2
1 = 1; ψ = 0.9; α = 0

Case #3: [Endogenous Switching, No Exogenous Variable]

ρ = 0.9; β0 = 1; β1 =−1; γ0 = 0; γ1 = 0; σ
2
0 = 0.5; σ

2
1 = 1; ψ = 0.98; α = 0

Case #4: [Endogenous Switching, Exogenous Variable]
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ρ = 0.9; β0 = 1; β1 =−1; γ0 =−1; γ1 = 1; σ
2
0 = 0.5; σ

2
1 = 1; ψ = 0.9; α = 0

All cases except Case #4 do not consider any exogenous variable. By comparing
Case #2 and Case #3, we can test for how the persistence of the latent AR(1)
variable influences the performance of the proposed algorithm. By comparing
Case #2 and Case #4, we can test for how the presence of the exogenous variable
xt influences the performance of the proposed algorithm.

For each case, we generate 500 samples of 500 or 1,000 observations. For
estimation, we apply both the non-Markovian and Markovian switching models.
For each model and for each case, we obtain the sampling distribution of the
posterior mean for each parameter. Moreover, we compute a Bayesian model se-
lection criterion, the Watanabe-Akaike Information Criterion (WAIC) developed
by Watanabe (2010) for each generated sample to see if WAIC selects a right
model.

In this simulation exercise, we adopt weakly informative priors for all pa-
rameters. For the parameters βSt and γSt , we assume N(0,52). The prior for σ2

St

is IG(3,3×0.2) where 3 is the shape parameter and 3×0.2 is the scale parame-
ter. For the Markov regime-switching model, we set the priors for the parameters
α0 and α1 to follow normal distributions, N(−1.5,1) and N(1.5,1), respectively.
In the non-Markovian regime-switching model, the parameters α and Ψ are as-
sumed to follow a normal distribution, N(0,1), and a truncated normal distri-
bution, T N(0.9,0.12) over the interval [−1,1], respectively. It is important to
note that the prior for ψ is not informative because any dynamics of St observed
in real data are likely to be captured within the range [0.8,1]. Lastly, the prior
for the correlation parameter ρ is assumed to be a truncated normal distribution
defined between -1 and 1.

Table 1 reports the results for Case #1. Regardless of the sample size, es-
timation results for the non-Markovian exogenous switching model based on
the proposed algorithm show in little bias in the parameter estimates. The only
noticeable difference for different sample sizes is that the standard deviations
decrease when the sample size increases. However, estimation results for the
Markovian exogenous switching model show bias in some parameter estimates
when T = 500, and this bias does not disappear even when T = 1000. As shown
in the last row of Table 1, WAIC selects a right model with high probabilities.

Table 2 reports the results for Case #2. Again, regardless of the sample size,
estimation results for a correctly specified model based on the proposed algo-
rithm show little bias in the parameter estimates. However, estimation results
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Table 1: Sampling Distributions of Posterior Mean based on Markovian and
Non-Markovian Models [DGP: Exogenous Switching, No Exogenous Variable]

yt = βSt +σSt εt , E[εt ] = 0, E[εt ·ωt ] = 0

Non-Markovian Switching (M1): S∗t = α(1−ψ)+ψS∗t−1 +ωt ,

Markovian Switching (M2): S∗t = αs−1 +ωt ,

Estimated Model

Parameter True Value
Non-Markovian Switching Markovian Switching

T = 500 T = 1,000 T = 500 T = 1,000
β0 1 1.00 (0.06) 1.00 (0.04) 0.99 (0.07) 1.00 (0.04)
β1 -1 -0.96 (0.11) -1.00 (0.07) -0.88 (0.12) -0.93 (0.07)
σ2

0 0.5 0.51 (0.06) 0.50 (0.04) 0.53 (0.07) 0.52 (0.05)
σ2

1 1 1.06 (0.13) 1.03 (0.10) 1.20 (0.15) 1.15 (0.11)
α 0 0.07 (0.35) 0.05 (0.37) - -
ψ 0.9 0.91 (0.03) 0.91 (0.03) - -
α0 - - - -1.28 (0.16) -1.27 (0.13)
α1 - - - 1.37 (0.17) 1.33 (0.15)

WAIC Pr(M1 is preferred) = 0.88(T = 500),0.94(T = 1,000)

Table 2: Sampling Distributions of Posterior Mean based on Markovian and
Non-Markovian Models [DGP: Endogenous Switching, No Exogenous Variable]

yt = βSt +σSt εt , E[εt ] = 0, E[εt ·ωt ] = ρ

Non-Markovian Switching (M1): S∗t = α(1−ψ)+ψS∗t−1 +ωt ,

Markovian Switching (M2): S∗t = αs−1 +ωt ,

Estimated Model

Parameter True Value
Non-Markovian Switching Markovian Switching

T = 500 T = 1,000 T = 500 T = 1,000
β0 1 0.97 (0.04) 0.98 (0.02) 0.85 (0.10) 0.87 (0.02)
β1 -1 -0.98 (0.09) -0.98 (0.03) -0.80 (0.10) -0.78 (0.03)
σ2

0 0.5 0.51 (0.06) 0.52 (0.02) 0.50 (0.10) 0.47 (0.02)
σ2

1 1 1.02 (0.10) 1.01 (0.04) 1.00 (0.10) 0.99 (0.04)
α 0 -0.09 (0.43) 0.00 (0.20) - -
ψ 0.9 0.91 (0.02) 0.90 (0.01) - -
ρ 0.9 0.90 (0.04) 0.90 (0.01) 0.57 (0.20) 0.52 (0.05)
α0 - - - -1.39 (0.17) -1.38 (0.07)
α1 - - - 1.38 (0.12) 1.41 (0.08)

WAIC Pr(M1 is preferred) = 0.99(T = 500),1(T = 1,000)



CHANG-JIN KIM AND JAEHO KIM 133

Table 3: Sampling Distributions of Posterior Mean based on Markovian and
Non-Markovian Models [DGP: Endogenous Switching, No Exogenous Variable]

yt = βSt +σSt εt , E[εt ] = 0, E[εt ·ωt ] = ρ

Non-Markovian Switching (M1): S∗t = α(1−ψ)+ψS∗t−1 +ωt ,

Markovian Switching (M2): S∗t = αs−1 +ωt ,

Estimated Model

Parameter True Value
Non-Markovian Switching Markovian Switching

T = 500 T = 1,000 T = 500 T = 1,000
β0 1 0.98 (0.03) 0.99 (0.02) 0.91 (0.06) 0.67 (0.43)
β1 -1 -1.01 (0.05) -0.98 (0.04) -0.83 (0.17) -0.68 (0.33)
σ2

0 0.5 0.50 (0.05) 0.50 (0.05) 0.57 (0.27) 0.74 (0.39)
σ2

1 1 0.99 (0.11) 0.99 (0.08) 1.13 (0.25) 1.26 (0.29)
α 0 -0.14 (0.50) 0.06 (0.55) - -
ψ 0.98 0.98 (0.01) 0.98 (0.01) - -
ρ 0.9 0.85 (0.05) 0.84 (0.04) 0.43 (0.37) 0.51 (0.32)
α0 - - - -2.01 (0.45) -1.69 (0.78)
α1 - - - 1.93 (0.70) 2.08 (0.85)

WAIC Pr(M1 is preferred) = 0.99(T = 500),1(T = 1,000)

for a misspecified model show considerable bias in some parameter estimates
regardless of the sample size. For example, the estimates of the ρ parameter
considerably underestimate the true value when a Markovian switching model
is employed. While the true value of ρ is 0.9, the sample mean of the poste-
rior mean is around 0.5. Note that, for Case #1, we estimated the two models
under the maintained assumption that the true value ρ = 0 is known. For Case
#2, however, ρ is assumed unknown and estimated, and a misspecified model
leads to considerable bias in its estimates. This is the reason why the problem
of employing a mis-specified model (i.e., a Markovian switching model) may be
more severe for the case of endogenous switching than for that of the exogenous
switching. As for Case #1, WAIC works well for model comparison.

In Table 3 of Case #3, our analysis shifts focus to a scenario with a more per-
sistent S∗t , resulting in regimes of greater persistence and the reduced number of
regime switches for a given sample size. Within this DGP, the superior efficacy
of the non-Markovian regime-switching model is consistently observed. It’s im-
portant to note that assuming the regimes follow a first-order Markov process
leads to significantly biased estimates of the model parameters. Interestingly,
even with a large sample size, this bias issue remains unresolved in the Markov
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Table 4: Sampling Distributions of Posterior Mean based on Markovian and
Non-Markovian Models [DGP: Endogenous Switching, Exogenous Variable]

yt = βSt + xtγSt +σSt εt , E[εt ] = 0, E[εt ·ωt ] = ρ

Non-Markovian Switching (M1): S∗t = α(1−ψ)+ψS∗t−1 +ωt ,

Markovian Switching (M2): S∗t = αs−1 +ωt ,

Estimated Model

Parameter True Value
Non-Markovian Switching Markovian Switching

T = 500 T = 1,000 T = 500 T = 1,000
β0 1 0.98 (0.04) 0.99 (0.04) 0.96 (0.06) 0.96 (0.05)
β1 -1 -0.98 (0.07) -0.98 (0.05) -0.95 (0.09) -0.94 (0.06)
γ0 1 0.99 (0.03) 1.00 (0.02) 1.00 (0.03) 1.01 (0.02)
γ1 -1 -0.99 (0.03) -0.99 (0.03) -0.98 (0.04) -1.00 (0.03)
σ2

0 0.5 0.51 (0.06) 0.53 (0.05) 0.48 (0.05) 0.50 (0.04)
σ2

1 1 1.01 (0.10) 1.03 (0.07) 1.00 (0.10) 1.00 (0.07)
α 0 -0.08 (0.38) -0.04 (0.31) - -
ψ 0.9 0.91 (0.02) 0.90 (0.02) - -
ρ 0.9 0.90 (0.04) 0.91 (0.02) 0.66 (0.09) 0.65 (0.07)
α0 -1.5 - - -1.18 (0.19) -1.15 (0.14)
α1 1.2 - - 1.15 (0.19) 1.14 (0.14)

WAIC Pr(M1 is preferred) = 0.99(T = 500),1(T = 1,000)

regime-switching model.

In Case #4 where an additional exogenous variable xt is incorporated, we ob-
tain the same conclusion. The results of Table 4 reveal that the Non-Markovian
regime-switching model exhibits marginally superior performance compared to
its Markovian counterpart in a more generalized scenario. We think that the
presence of additional regime-dependent parameters in the model, enriching the
dataset with more information on regime changes, tends to diminish the impact
of adopting different regime dynamics assumptions.

In sum, the proposed algorithms for non-Markovian switching models re-
sult in little bias in the parameter estimates. On the contrary, estimating a non-
Markovian switching process by a Markovian switching model results in con-
siderable bias in the parameter estimates, especially when the data generating
process involves endogenous switching.
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5. APPLICATIONS

We evaluate the performance of regime-switching models using two real
datasets: market stock returns and real GDP growth rates. The regime-switching
models are estimated utilizing the proposed estimation algorithm. For the pur-
pose of model comparison, we employ WAIC, as in the simulation section. A
model is considered preferable if it exhibits a lower WAIC value.

Additionally, to verify satisfactory convergence of the MCMC chain, we re-
port the Potential Scale Reduction Factor (PSRF) proposed by Gelman and Ru-
bin (1992). A PSRF value close to 1 indicates stronger evidence of the MCMC
chain successfully converging to the stationary posterior distribution, which is
crucial for the reliability of our model estimates.

In our estimation process, we have deliberately chosen to use weakly infor-
mative priors for all model parameters. This approach is aimed at ensuring that
the priors exert minimal influence on the Bayesian posterior estimates, thereby
maintaining the objectivity of our analysis. The prior distributions are reported
in the second column of each result table.

5.1. NON-MARKOVIAN VERSUS MARKOVIAN SWITCHING MODELS
OF WEEKLY STOCK RETURN VOLATILITY

Figure 1: Weekly Excess Stock Returns [Jan, 1990 - May, 2017]

Recognizing abrupt changes in stock return volatility is crucial because fi-
nancial markets rapidly integrate new information. Traditional stochastic volatil-
ity models, which assume gradual changes in volatility, might fail to capture
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dramatic shifts. Additionally, the duration of volatility regimes can vary over
time, a characteristic not accounted for in conventional Markov switching mod-
els. For instance, economic events like wars, supply chain disruptions, and un-
foreseen monetary policies can impact financial markets for different durations.
In this context, our proposed Non-Markovian regime switching model is more
appropriately suited than the Markov regime switching model for capturing these
dynamics.

In this section, we also consider the leverage effect within a regime-switching
model of the stock return volatility. In the literature on stochastic volatility,
asymmetry in the stock return is typically modeled by introducing the leverage
effect. By denoting ζt as the innovation to the stock return volatility and εt as
the innovation to the stock return, one approach is to assume E(ζtεt) ̸= 0 and the
other is to assume E(ζtεt−1) ̸= 0. For example, the former is adopted by Jacquier
et al. (2004) and the latter is adopted by Harvey and Shephard (1996), among
others. Yu (2005) provides a discussion on some of the issues related to these
two alternative approaches to modelling the leverage effect.

By noting that ωt in equation (2) is equivalent to ζt in a stochastic volatility,
we adopt the assumption that E(εtωt) ̸= 0 in line with Jacquier et al. (2004). An
empirical model that we employ is given below:

rt = β0 +β1rt−1 +(σ0(1−St)+σ1St)εt , σ
2
0 < σ

2
1 ,

Non-Markovian Switching: St = 1[S∗t ≥ 0], S∗t = α(1−ψ)+ψS∗t−1 +ωt ,

Markovian Switching: St = 1[S∗t ≥ 0], S∗t = α0 +α1St−1 +ωt ,[
εt

ωt

]
∼ i.i.d.N

([
0
0

]
,

[
1 ρ

ρ 1

])
where rt is the excess stock return.

Data we use are the weekly excess stock return for value-weighted portfolio
of all CRSP firms listed on the NYSE, AMEX, or NASDAQ. The sample period
is from the first week of January 1990 to the fourth week of May 2017.11 The
sample for our study deliberately omits the period of the Covid pandemic and
subsequent years. Incorporating this turbulent period necessitates specialized
modeling tools beyond the scope of our current framework. Thus, we earmark
the extension of our model to include this period as an avenue for future research
because our study’s primary objective is to develop a valid Bayesian estimation
method for non-Markovian regime-switching models. The data are plotted in
Figure 1.

11The excess return data are freely available at the data library of Kenneth R. French’s home
page.
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Table 5: Bayesian Posterior Estimates of Exogenous Regime Switching Models
[Weekly Excessive Return: 1990:M1-W1-2017:M5:W4]

Prior Non-Markov Switching Markov Switching
Parameter Distribution Mean (SD) 90% HPDI PSRF Mean (SD) 90% HPDI PSRF

β0 N (0,22) 0.28 (0.05) [0.21, 0.36] 1.000 0.26 (0.05) [0.18, 0.35] 1.000
β1 N (0,22) -0.08 (0.03) [-0.13, -0.04] 1.000 -0.08 (0.03) [-0.13, -0.04] 1.000
σ2

0 IG(1,1) 2.24 (0.15) [2.00, 2.47] 1.005 2.60 (0.20) [2.28, 2.93] 1.007
σ2

1 IG(1,2) 13.29 (1.39) [11.19, 15.54] 1.005 15.95 (2.23) [12.60, 19.41] 1.009
α N (−1,22) -2.39 (1.18) [-4.27, -0.53] 1.011 - - -
ψ N (0.9,12) 0.98 (0.01) [0.96, 0.99] 1.032 - - -
α0 N (−1.5,22) - - - -2.17 (0.15) [-2.41, -1.92] 1.003
α1 N (1,22) - - - 1.54 (0.18) [1.25, 1.84] 1.008

WAIC 3001.457 3018.112

Figure 2: Posterior Mean of the Volatility from Markovian and non-Markovian
Endogenous Switching Models [Excess Returns: Jan, 1990 - May, 2017]
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Table 6: Bayesian Posterior Estimates of Endogenous Regime Switching Models
[Weekly Excessive Return: 1990:M1-W1-2017:M5:W4]

Prior Non-Markov Switching Markov Switching
Parameter Distribution Mean (SD) 90% HPDI PSRF Mean (SD) 90% HPDI PSRF

β0 N (0,22) 0.26 (0.04) [0.19, 0.33] 1.001 0.26 (0.05) [0.18, 0.34] 1.000
β1 N (0,22) -0.09 (0.03) [-0.13, -0.04] 1.001 -0.09 (0.03) [-0.14, -0.05] 1.000
σ2

0 IG(1,1) 2.12 (0.13) [1.90, 2.34] 1.010 2.65 (0.20) [2.33, 2.99] 1.007
σ2

1 IG(1,2) 12.96 (1.21) [11.06, 14.92] 1.008 17.36 (2.46) [13.54, 21.23] 1.009
α N (−1,22) -1.84 (0.77) [-3.06, -0.60] 1.016 - - -
ψ N (0.9,12) 0.97 (0.01) [0.96, 0.99] 1.005 - - -
ρ T N(0,1) -0.68 (0.07) [-0.80, -0.58] 1.004 -0.43 (0.10) [-0.60, -0.26] -
α0 N (−1.5,22) - - - -2.10 (0.13) [-2.31, -1.88] 1.003
α1 N (1,22) - - - 1.40 (0.15) [1.15, 1.66] 1.008

WAIC 2981.444 3017.501

Table 5 and Table 6 report Bayesian estimates for four competing models,
i.e., non-Markovian and Markovian switching models with endogenous switch-
ing (ρ ̸= 0) and those with exogenous switching (ρ = 0). The reported WAICs in
the tables indicate that endogenous switching or the leverage effect is an impor-
tant feature of the stock return volatility. That is, the Bayesian model selection
criterion favors models with endogenous switching or the leverage effect to those
with exogenous switching. We thus focus our attention on comparing these two
models with endogenous switching.

Table 6 reports that the posterior mean of ρ is -0.43 with a small posterior
standard deviation (0.10) for the Markovian switching model, while it is -0.68
with a smaller posterior standard deviation (0.07) for the non-Markovian switch-
ing model. As discussed in Section 4, this result is what we would expect if the
true data generating process is non-Markovian. Actually, between these two
endogenous switching models, the non-Markovian switching model (WAIC=
2981) is strongly preferred to the Markovian switching model (WAIC=3017).

Figure 2 plots and compares the posterior means of time-varying volatility
obtained from these models. Figure 3 plots the posterior means of S∗t obtained
from the two competing models. These figures show how inferences based on
potentially misspecified model (a Markovian switching model) can be very dif-
ferent from those based on a non-Markovian switching model, which is strongly
preferred by the Bayesian model selection criterion. From Figure 2 and the
reported WAIC, we conclude that the durations of the high and low volatility
regimes are not constant over time.
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Figure 3: Posterior Mean of S∗t from Markovian and non-Markovian Endogenous
Switching Models of Volatility [Excess Returns: Jan, 1990 - May, 2017]

5.2. MARKOVIAN VERSUS NON-MARKOVIAN SWITCHING MODELS
OF REAL GDP

Figure 4: Quarterly Real GDP Growth Rate [1952Q1-2007Q2]

It is well known that the durations of economic expansion and recession are
asymmetric in the maceroconomics literature. Regime switching models have
been frequently used to capture this important nature of the real GDP data. How-
ever, it is not certain that the durations of regimes differ across the different eco-
nomic recessions and expansions. In this section, comparing the Markovin and
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Table 7: Bayesian Posterior Estimates of Exogenous Regime Switching Models
[Quarterly Real GDP Growth Rate: 1952:Q1-2007:Q2]

Prior Non-Markov Switching Markov Switching
Parameter Distribution Mean (SD) 90% HPDI PSRF Mean (SD) 90% HPDI PSRF

β0,0 N (1,22) 1.29 (0.16) [1.03, 1.54] 1.000 1.31 (0.15) [1.06, 1.56] 1.001
β1,0 N (−1,22) -0.36 (0.37) [-0.75, 0.16] 1.001 -0.27 (0.30) [-0.66, 0.20] 1.001
β0,1 N (0.5,22) 0.92 (0.07) [0.81, 1.04] 1.000 0.93 (0.07) [0.81, 1.04] 1.000
β1,1 N (−0.5,22) 0.20 (0.24) [-0.16, 0.59] 1.001 0.24 (0.22) [-0.10, 0.59] 1.001
σ2

0 IG(1,1) 0.87 (0.16) [0.63, 1.13] 1.000 0.88 (0.15) [0.65, 1.12] 1.000
σ2

1 IG(1,1) 0.21 (0.04) [0.15, 0.27] 1.000 0.21 (0.04) [0.15, 0.27] 1.000
α N (−1,22) -1.18 (0.61) [-2.05, -0.18] 1.001 - - -
ψ N (0.9,12) 0.75 (0.11) [0.60, 0.92] 1.003 - - -
α0 N (−1.5,22) - - - -1.42 (0.26) [-1.83, -1.00] 1.001
α1 N (1,22) - - - 0.69 (0.31) [0.22, 1.19] 1.000

WAIC 253.23 252.63

Table 8: Bayesian Posterior Estimates of Endogenous Regime Switching Models
[Quarterly Real GDP Growth Rate: 1952:Q1-2007:Q2]

Prior Non-Markov Switching Markov Switching
Parameter Distribution Mean (SD) 90% HPDI PSRF Mean (SD) 90% HPDI PSRF

β0,0 N (1,22) 1.40 (0.23) [1.02, 1.76] 1.002 1.41 (0.19) [1.10, 1.70] 1.000
β1,0 N (−1,22) -0.45 (0.35) [-0.91, 0.08] 1.000 -0.62 (0.48) [-1.27, 0.11] 1.001
β0,1 N (0.5,22) 0.96 (0.09) [0.82, 1.11] 1.001 0.96 (0.09) [0.82, 1.10] 1.000
β1,1 N (−0.5,22) 0.13 (0.26) [-0.29, 0.57] 1.000 0.09 (0.31) [-0.42, 0.57] 1.001
σ2

0 IG(1,1) 0.94 (0.18) [0.67, 1.22] 1.000 0.98 (0.19) [0.69, 1.28] 1.000
σ2

1 IG(1,1) 0.22 (0.04) [0.15, 0.28] 1.000 0.22 (0.04) [0.16, 0.30] 1.000
ρ0 T N(0,1) 0.27 (0.43) [-0.36, 0.89] 1.003 0.43 (0.30) [0.00, 0.89] 1.000
ρ1 T N(0,1) 0.27 (0.38) [-0.42, 0.91] 1.003 0.31 (0.34) [-0.25, 0.90] 1.000
α N (−1,22) -1.11 (0.63) [-2.05, -0.11] 1.000 - - -
ψ N (0.9,12) 0.78 (0.09) [0.65, 0.92] 1.003 - - -
α0 N (−1.5,22) - - - -1.36 (0.26) [-1.77, -0.93] 1.000
α1 N (1,22) - - - 0.59 (0.30) [0.12, 1.09] 1.000

WAIC 269.31 275.92
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non-Markovian models, we test if the durations of economic regimes are statis-
tically different.

Consider the following model specification for the log of real GDP covering
the period 1952Q1 - 2007Q2:

yt = β0,Mt (1−St)+β1,Mt St +σMt εt , β0,Mt > β1,Mt ,

Non-Markovian Switching: St = 1[S∗t ≥ 0], S∗t = α(1−ψ)+ψS∗t−1 +ωt ,

Markovian Switching: St = 1[S∗t ≥ 0], S∗t = α0 +α1St−1 +ωt ,[
εt

ωt

]
∼ i.i.d.N

([
0
0

]
,

[
1 ρ

ρ 1

])
,

where Mt = 0 if t < 1984Q4, and Mt = 1 otherwise; yt is the log difference
of real GDP plotted in Figure 4. β0,Mt and β1,Mt represent the mean growth
rate of real GDP during boom and recession, respectively. Following Kim and
Nelson (1999), we assume that these mean growth rates as well as the standard
deviation of the shocks (σMt ) underwent a structural break with the onset of the
Great Moderation in 1984Q4. Note that the above model can be considered as
an extension of Kim and Nelson (1999)’s model, in which the regime-indicator
variable follows a first-order Markovian exogenous switching process, to the
case of non-Markovian endogenous switching. In our research, similar to what
is done in the stock market context, we intentionally exclude the Global Financial
Crisis period and the years following it from our sample. This decision is due
to the complex nature of this period, which would require advanced modeling
techniques that are not part of our existing framework. Therefore, we identify the
inclusion of this period in our model as a potential area for future investigation.

We estimate four competing models, i.e., non-Markovian and Markovian
switching models with endogenous switching (ρ ̸= 0) and those with exogenous
switching (ρ = 0). If we focus on the results for endogenous switching models
reported in Table 8, a non-Markovian switching model seems to be preferred to
a Markovian switching model by WAIC. However, the results in Table 7 show
that models with exogenous switching have much lower WAIC’s than those with
endogenous switching. We thus focus on the discussion of the results for exoge-
nous switching models in Table 7.

Estimation results for the two models with exogenous switching seem to be
very close. Plots of recession probabilities from both the Markovian and non-
Markovian exogenous switching models are presented in Figure 5, and they are
almost identical. Plots of the latent variable S∗t from the two models presented in
Figure 6 are also very close. Besides, the WAIC’s for these two models are very
close, suggesting that the two models are equally preferred. This result suggests
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Figure 5: Posterior Probability of Recession from Markovian and non-
Markovian Exogenous Switching Models of Business Cycle [Real GDP Growth:
1952Q1-2007Q2]

Figure 6: Posterior Mean of S∗t from Markovian and non-Markovian Exogenous
Switching Models of Business Cycle [Real GDP Growth: 1952Q1-2007Q2]
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that there is no compelling evidence to support the existence of heterogeneous
durations in economic recessions and expansions. While this empirical finding
is intriguing, it is challenging to determine whether it stems from a paucity of
data or if it truly reflects the inherent characteristics of the economic regimes.

6. CONCLUSION

In this paper, we present algorithms for Bayesian estimation of non-Markovian
switching models. Our simulation study shows that the proposed algorithms
work well and that estimating a non-Markovian process by a Markovian switch-
ing model may be problematic, especially in the presence of endogenous switch-
ing. Our empirical results suggests that, for modeling the regime-switching na-
ture of the business cycle based on real GDP, the convention of assuming Marko-
vian switching for the regime-indicator variable seems to be valid. For modeling
volatility of the stock return, however, the non-Markovian switching model is
strongly preferred to the Markovian switching model.
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A. APPENDIX: DERIVATION OF EQUATION (21)

In this appendix, we derive equation (21) for j = 0. For this purpose, by
denoting y∗t as a realization of yt for which we want to compute f (y∗t ,St |S∗t−1),
consider the following CDF based on f (yt ,St |S∗t−1):

∫ y∗t

−∞

f (yt ,St |S∗t−1)dyt =
∫ y∗t

−∞

f (yt |S∗t−1) f (St |S∗t−1,yt)dyt (45)

=
∫ y∗t −x′t βSt

σSt

−∞

f (εt |S∗t−1) f (St |S∗t−1,εt)dεt

=
∫ y∗t −x′t βSt

σSt

−∞

φ(εt) f (St |S∗t−1,εt)dεt ,

where φ(.) refers to the p.d.f. of the standard normal distribution and the second
line holds due to the variable change εt =

yt−x′t βSt
σSt

.

By differentiating equation (42) with respect to yt∗, we obtain

(y∗t ,St |S∗t−1) =
1

σSt

φ

(
y∗t − x′tβSt

σSt

)
f (St |S∗t−1,εt), (46)

which implies that equation (21) holds.

B. APPENDIX: DERIVATION OF EQUATION (23)

First, note that equation (18) can be rewritten as

ηt = ψηt−1 +ρεt +
√

1−ρ2ω
∗
t , ωt ∼ i.i.d.N(0,1), (47)

where ηt = S∗t −α . Then, as

f (S∗t+ j|S∗t+ j−1,εt+ j)=
1√

1−ρ2
φ

(
S∗t+ j −α(1−ψ)−ψS∗t+ j−1 −ρεt+ j√

(1−ρ2)

)
, j = 0,1,

(48)
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where εt =
yt−x′t βSt

σSt
, equation (23) can be derived as follows:

f (S∗t+1|S∗t ,εt+1) f (S∗t |S∗t−1,εt) (49)

∝ exp
[
−1

2

(
(ηt+1 −ψηt −ρεt+1)

2

1−ρ2 +
(ηt −ψηt−1 −ρεt)

2

1−ρ2

)]

∝ exp

−ρ2ε2
t +2ρψηt−1εt − (1+ψ2)

(
1

1+ψ2 (ψηt+1 −ρψεt+1 +ψηt−1 +ρεt)
)2

2(1−ρ2)


× exp

− 1

2 1−ρ2

1+ψ2

(
ηt −

1
1+ψ2 (ψηt+1 −ρψεt+1 +ψηt−1 +ρεt)

)2


∝ g(εt(St))
1√
V

φ

(
S∗t −µt

V

)
,

where φ(.) is the p.d.f. of the standard normal distribution and

µt =α+
1

1+ψ2 (ψ(S∗t+1−α)−ρψεt+1+ψ(S∗t−1−α)+ρεt); and V =
1−ρ2

1+ψ2 ,

(50)
and

g(εt(St)) = exp{−
ρ2ε2

t +2ρψ(S∗t−1 −α)εt − (1+ψ2)(µt −α)2

2(1−ρ2)
}, (51)

which is a function of St as εt =
yt−x′t βSt

σSt
.
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