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Identities in Damage Estimation When the
Number of Bidders Is Affected by Collusion*
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Abstract In typical practices of estimating cartel damages, an outcome vari-
able such as winning bid price is regressed on a cartel dummy variable and mul-
tiple control variables. When the number of bidders in a bid is influenced by
collusion, two approaches can be employed. One approach is to exclude the
bidder number variable in the regression analysis. The other approach is to use
predicted numbers of bidders for the collusive bids obtained, based on the ob-
served relationship in the non-collusive bids. We show that these two approaches
are equivalent in estimating the effects of collusion.
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1. INTRODUCTION

Damage estimation in bid-rigging is actively pursued in courts to determine
the extent of a buyer’s damages, typically measured by the degree of price in-
crease resulting from collusion. The magnitude of the price increase is defined
as the difference between the price paid in the actual world where collusion oc-
curred and the ‘but-for price’, also known as the ‘hypothetical competitive price,’
in the hypothetical situation (“but-for world”) where collusion did not take place.

With collusion having taken place, the actual prices paid by buyers are ob-
served, but the but-for prices are not. Estimating the but-for prices requires con-
trolling for other factors that affect competitive prices. This is typically achieved
through multiple regression analyses to find the relationship between the factors
influencing competitive prices and the resulting competitive prices in scenarios
without bid-rigging.

One important variable affecting but-for prices is the number of bidders, as
posited by game theory, which suggests Nash equilibrium prices in auctions are
influenced by the bidder number. An increase in the number of participants in a
bid fosters competition, which drives bid prices lower. Consequently, the coef-
ficient on the bidder number is typically estimated to be negative in regressions
(see, Hungria-Gunnelin, 2013).

However, collusion can influence the number of bidders, and controlling for
the actual observed bidder number may lead to biased damage estimation. This
bias arises because the goal is to measure the ‘total’ effect of collusion while
regressions that control for the bidder number capture only a ‘partial’ effect. For
instance, if a cartel’s impact on the bidding price is solely through the reduction
of partitipants, the measured partial effect might be minimal, while the total
effect of collusion could be substantial.

Other than the often controversial two-stage least squares method, two viable
approaches are available to address this issue. The first approach is to simply ex-
clude the bidder number from the control variables, thereby not controlling for
the number of bidders. The second approach retains the bidder number variable
but substitutes the predicted but-for bidder numbers for the actual ones in collu-
sive bids. The predicted bidder numbers are derived from an auxiliary regression
that relates the number of bidders to exogenous control variables using data for
non-collusive or benchmark bids.

The purpose of this paper is to establish the equivalence between these two
approaches for estimating damages. The equivalence holds for both the ‘dummy
variable’ method and the ‘forecasting’ method, both of which are widely used
in damage estimation (McCrary and Rubinfeld, 2014; Davis and Garcés, 2010).
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The former measures the collusion effect by the coefficient on a collusion dummy
variable, while the latter compares the actual price to the predicted but-for price.
Note that this study focuses on estimating damage with collusion given as an
external event, rather than on detecting collusion itself.

In the subsequent sections, we elaborate on the equivalence of the two ap-
proaches. Section 2 presents the main arguments and examples for the equiva-
lence. Concluding remarks are provided in Section 3. Mathematical proofs and
example Stata code are included in the appendix.

2. IDENTITIES IN DAMAGE ESTIMATION

Let yi denote the outcome variable such as the winning bid price and the suc-
cessful bidding rate, di the collusion dummy variable, xi the exogenous control
variables unaffected by collusion that explain yi, and ni the number of partici-
pants. The bidder number ni is determined exogenously for non-collusive bids
but can be affected by collusion for the bids with di = 1. Let π̂ be the ordinary
least squares (OLS) estimator from the regression of ni on xi using the non-
collusive bids, and let n̂i = xiπ̂ , the predicted bidder number based on π̂ . Let
n̄i = (1− di)ni + din̂i, which is the actual ni for di = 0 and the predicted n̂i for
di = 1. The comparisons in this paper involve the regressions of

(f1) yi on xi using the observations with di = 0,
(f2) yi on xi and ni using the observations with di = 0,
(d1) yi on di and xi using all observations, and
(d2) yi on di, xi, and n̄i using all observations.

Regressions (f1) and (f2) pertain to the forecasting approach, while regressions
(d1) and (d2) are for the dummy variable method.

Let β̂f 1 be the estimated coefficient on xi from regression (f1); let β̂f 2 and
γ̂f 2 be the estimated coefficients on xi and ni from regression (f2). Let δ̂d1 and
β̂d1 be the estimated coefficients on di and xi from regression (d1); let δ̂d2, β̂d2,
and γ̂d2 be the estimated coefficients on di, xi, and n̄i from regression (d2). The
forecasting approach predicts the but-for prices for a collusive bid based on re-
gressions (f1) and (f2), i.e., xiβ̂f 1 for (f1) and xiβ̂f 2 + γ̂f 2n̂i for (f2). Regressions
(d1) and (d2) are associated with the dummy variable approach, where the price
overcharge is measured by the estimated coefficients δ̂d1 and δ̂d2 for (d1) and
(d2), respectively. Beware that regression (d2) is not a conventional two-stage
least squares regression because the predicted bidder number replaces the actual
bidder number only for the collusive bids. We have the following identities.
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Theorem 1. (i) β̂f 1 = β̂f 2 + π̂ γ̂f 2 so that xiβ̂f 1 = xiβ̂f 2 + γ̂f 2n̂i, i.e., the damage
estimators using the forecasting approach based on the two regressions (f1) and
(f2) are identical when ni is replaced with n̂i for prediction. (ii) δ̂d1 = δ̂d2, i.e.,
the damage estimators using the dummy-variable approach based on the two
regressions (d1) and (d2) are identical.

Theorem 1 demonstrates that excluding the bidder number variable is func-
tionally equivalent to including it and replacing the actual number with the pre-
dicted number for bids identified as collusive.

lny (1) (2) (3)

collusion 0.0653∗∗∗ 0.0653∗∗∗ 0.0927∗∗∗

(0.0153) (0.0129) (0.0148)
lnbase 0.0077∗ 0.0028 0.0047

(0.0039) (0.0034) (0.0035)
method=2 0.0501 0.0409 0.0551

(0.0462) (0.0391) (0.0412)
method=3 0.0405 0.0415∗ 0.0602∗∗

(0.0253) (0.0214) (0.0229)
lnlb 0.1615 -0.1907 -0.0431

(0.3531) (0.3044) (0.3180)
nolb 0.7235 -0.8509 -0.2120

(1.5508) (1.3378) (1.3977)
lncost 0.0628 0.0795∗∗ 0.0672∗

(0.0431) (0.0365) (0.0385)
n̄ -0.0485∗∗∗

(0.0082)
n -0.0363∗∗∗

(0.0076)
Intercept 3.3016∗∗ 4.9901∗∗∗ 4.3307∗∗∗

(1.5471) (1.3387) (1.3973)

nobs 93 93 93
R-squared 0.5045 0.6500 0.6100
Adj R-sq 0.4637 0.6167 0.5729

Table 1: EXAMPLE OF DUMMY-VARIABLE REGRESSION ANALYSIS. ∗∗∗p <
0.01, ∗∗p < 0.05, and ∗p < 0.1 using the ordinary standard errors.
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We illustrate the identities in Theorem 1 with a hypothetical example con-
sisting of 93 observations of auctions: 28 for collusive biddings and 65 for non-
collusive biddings. The dependent variable, denoted lny, is the logarithm of the
successfull bid rate, and the collusion dummy variable is denoted collusion.
The covariates (xi) include the logarithm of the base price (lnbase), dummy
variables for the winner-decision method (one of 1, 2, or 3), the logarithm of the
lower bound for the winning bidding rate (lnlb, replaced with zero if no lower
bound applies), a dummy indicator for no lower bound (nolb), and the logarithm
of a cost index (lncost).

To construct n̂i, ni is regressed on the covariates xi using the 65 noncollusive
observations. Then, n̂i is the predicted values based on this auxiliary regression.
The regressions (d1) and (d2) are conducted by regressing lny on collusion

and xi, and on collusion, xi, and n̄i = (1−di)ni +din̂i, respectively, using the
entire sample. The results of these two regression are presented in columns (1)
and (2) of Table 1, where the estimated coefficients of the collusion dummy
variable are identical, as demonstrated by Theorem 1(ii). Despite the identical
estimates, the reported standard errors for collusion differ between columns
(1) and (2), which is related to the generated regressors problem (Pagan, 1984)
inherent in the regression for column (2). Column (3) of Table 1 presents the
results from the regression including the actual ni as a control variable for com-
parison.

4.35 4.40 4.45 4.50 4.55

4.
35

4.
40

4.
45

4.
50

4.
55

lnyhat for (f1)

ln
yh

at
 fo

r 
(f

2)

4.35 4.40 4.45 4.50 4.55

4.
35

4.
40

4.
45

4.
50

4.
55

lnyhat for (f1)

ln
yh

at
 fo

r 
(3

)

(a) Comparison of (f1) and (f2) (b) Comparison of (f1) and (3)

Figure 1: COMPARISON OF PREDICTED VALUES FOR THE FORECASTING AP-
PROACH. Model (3) includes ni as an extra control.
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Next, Figure 1 illustrates the predicted values for collusive biddings using
the forecasting approach. Figure 1(a) compares the pairwise predicted values
obtained from (f1) and (f2), showing that the values are identical for the collusive
biddings, thus confirming Theorem 1(i). Figure 1(b) compares (f1) with a third
regression that includes the actual ni instead of n̄i, where the predicted values
differ. Stata code for Table 1 and Figure 1 is available in Appendix B.

In the remainder of this section, we discuss the effects of omitting some con-
trol variables and including additional controls in the regression for predicting
the number of bidders. If the set of regressors used to predict the number of
bidders are different from that in the outcome equation, then the equivalences in
Theorem 1 do not hold exactly, but they still hold asymptotically if the models
are correctly specified. On one hand, if xi = (xai,xbi), π̂ = (π̂ ′

a, π̂
′
b)

′, and π̂b
p−→ 0,

then Theorem 1 still holds with the exact identity replaced by asymptotic equiv-
alence when xbi is omitted from the bidder-number regression. Note that π̂b

p−→ 0
means that xbi is unimportant for determining ni, so its omission does not cause
bias. On the other hand, if extra variables wi are included in the bidder-number
regression, then again Theorem 1 holds asymptotically, though not exactly, if
wi is redundant in the determination of yi conditional on xi and (xi,ni) without
collusion. Proofs of these claims are provided in the appendix.

3. CONCLUDING REMARKS

This paper establishes an equivalence in cartel damage estimation between
two approaches: (i) a regression that omits the bidder number, and (ii) one that
replaces the bidder number with its predicted but-for value for collusive bids.
This equivalence holds for both dummy-variable and forecasting methods. If
the predictors of the bidder number differ from the covariates in the main out-
come equation, the equivalence does not hold exactly. Nonetheless, when the
models are correctly specified such that the excluded variables are irrelevant to
the bidder number and the additional variables are irrelevant to the outcome, the
discrepancy between (i) and (ii) is asymptotically negligible.

A. MATHEMATICAL PROOFS

In this appendix, y, X , N, N̄, and D are matrices of observations. Let PA =
A(A′A)−1A′ and MA = I −PA. We first have the following identity.

Lemma A.1. M[X ,N̄]D = MX D.
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Proof. Let X1, N̂1, and D1 denote the matrices of the relevant variables under bid
rigging; let X0, N0, and D0 denote those for the observations without agreement.
Note that N̄0 = N0, N̄1 = N̂1 = X1π̂ , π̂ = (X ′

0X0)
−1X ′

0N0, D1 = (1, . . . ,1)′, and
D0 = 0′. By decomposition,

P[X ,N̄]D = PX D+PMX N̄D. (1)

But X ′N̄ = X ′
1X1π̂ +X ′

0N0 = X ′
1X1π̂ +X ′

0X0π̂ = X ′X π̂ , so that

MX N̄ = N̄ −X(X ′X)−1X ′N̄ = N̄ −X π̂ =

(
0

MX0N0

)
. (2)

Thus, N̄′MX D= 0′D1+N′
0MX0D0 = 0, and hence PMX N̄D= 0. This and (1) imply

that P[X ,N̄]D = PX D, and thus that M[X ,N̄]D = MX D.

Lemma A.2. (i) β̂f 1 = β̂f 2 + π̂ γ̂f 2; (ii) δ̂d1 = δ̂d2; (iii) β̂d1 = β̂d2 + π̂ γ̂d2.

Proof of Lemma A.2. (i) Let X0, N0, and y0 be the matrices of xi, ni, and yi for
the non-collusive bids. The normal equations for regressions (f1) and (f2) imply
X ′

0X0β̂f 1 = X ′
0X0β̂f 2 +X ′

0N0γ̂f 2 because both sides equal X ′
0y0. The result follows

immediately. See also Wooldridge (2020) for simple regressions. (ii) By Lemma
A.1,

δ̂d2 = (D′M[X ,N̄]D)−1D′M[X ,N̄]y = (D′MX D)−1D′MX y = δ̂d1.

(iii) Let e = y−X β̂d2 − N̄γ̂d2 −Dδ̂d2. Then X ′e = 0 so that

X ′X β̂d2 = X ′(y−Dδ̂d2)−X ′N̄γ̂d2 = X ′(y−Dδ̂d1)−X ′N̄γ̂d2

= X ′X β̂d1 −X ′N̄γ̂d2,

where the second identity holds due to part (ii) and the third because of the
normal equations X ′y = X ′X β̂d1 +X ′Dδ̂d1 for (d1). But X ′N̄ = X ′X π̂ as shown
in the proof of Lemma A.1 so that X ′X β̂ = X ′X β̃ −X ′X π̂ γ̂ . The result follows
given that X ′X is invertible.

Proof of Theorem 1. (i) Lemma A.2(i) implies that xiβ̂f 1 = xiβ̂f 2 +xiπ̂ γ̂f 2 = xi ·
β̂f 2 + n̂iγ̂f 2 for di = 1. (ii) Obvious from Lemma A.2(ii).
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THE CASE THAT SOME CONTROL VARIABLES ARE OMITTED

We next consider the case that ni is regressed on a subset xai of xi, where
xi = (xai,xbi). Consider the two regressions (f1) and (f2). Let ñi = xaiπ̃a, where
π̃a is the OLS estimator from the regression of ni on xai using the non-collusive
bids. Then π̃a = π̂a +C0π̂b with C0 = (X ′

0aX0a)
−1X ′

0aX0b, where π̂ = (π̂ ′
a, π̂

′
b)

′,
and X0a and X0b are the matrices of xai and xbi for di = 0. Therefore,

ñi − n̂i = xaiπ̃a −xiπ̂ = xaiπ̃a −xaiπ̂a −xbiπ̂b =−(xbi −xaiC0)π̂b =−rbiπ̂b.

If π̂b
p−→ 0, then ñi − n̂i

p−→ 0 for each i, and thus

xiβ̂f 1 − (xiβ̂f 2 + γ̂f 2ñi) = γ̂f 2(n̂i − ñi)
p−→ 0

for each i. The arguments thus far establishes the asymptotic equivalence for the
forecasting approach.

For the dummy variable approach, let

n̈i = (1−di)ni +diñi = n̄i +di(ñi − n̂i) = n̄i −dirbiπ̂b,

and let N̈ be the corresponding full observation vector. We have X ′N̈ = X ′N̄ +
X ′

1Rb1π̂b, where Rb1 is the matrix of rbi for the collusive bids in the sample. Thus,
N̈′MX D = −π̂ ′

bR′
b1X1(X ′X)−1X ′

1D1 is negligible if π̂b
p−→ 0 (‘negligible’ in the

sense that it converges in probability to zero if divided by the sample size). The
asymptotic equivalence follows after some tedius but straightforward algebra.

THE CASE THAT EXTRA CONTROLS ARE INCLUDED

Now consider the case that ni is regressed on xi and some extra wi (using the
non-collusive bids). For the notations, let π̌ and ϕ̌ be the OLS estimators from
the regression of ni on xi and wi using the non-collusive bids. Let ňi = xiπ̌+wiϕ̌ .
Introduce the following two regressions for the forecasting approach: (f3) the re-
gression of yi on xi and wi using the observations with di = 0; (f4) the regression
of yi on xi, wi, and ni using the observations with di = 0. Let the coefficients on
wi be denoted as α and let us use the ‘f 3’ and ‘f 4’ subscripts to denote the esti-
mated coefficients for the corresponding regressions. Then Theorem 1 implies

xiβ̂f 3 + ziα̂f 3 = xiβ̂f 4 + ziα̂f 4 + γ̂f 4ňi.

Also, β̂f 1 = β̂f 3 +(X ′
0X0)

−1X ′
0W0α̂f 3 and(

β̂f 2
γ̂f 2

)
=

(
β̂f 4
γ̂f 4

)
+

(
X ′

0X0 X ′
0N0

N′
0X0 N′

0N0

)−1(X ′
0W0

N′
0W0

)
α̂f 4.
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When α̂f 3
p−→ 0 and α̂f 4

p−→ 0, we have β̂f 1 − β̂f 3
p−→ 0, β̂f 2 − β̂f 4

p−→ 0, and γ̂f 2 −
γ̂f 4

p−→ 0. All these results imply the claimed asymptotic equivalence.

B. STATA CODE

The Stata code for the example applications in Section 2 is provided as fol-
lows.

use data, clear

global X lnbase i.method lnlb nolb lncost

reg n ${X} if collusion==0

predict nhat

gen nbar = n

replace nbar = nhat if collusion==1

* Dummy variable method

reg lny collusion ${X}

reg lny collusion ${X} nbar

reg lny collusion ${X} n

* Forecasting approach

reg lny ${X} if collusion==0

predict lnyhat1

reg lny ${X} nbar if collusion==0

predict lnyhat2

reg lny ${X} n if collusion==0

predict lnyhat3

twoway scatter lnyhat2 lnyhat1 if collusion==1

twoway scatter lnyhat3 lnyhat1 if collusion==1
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