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1. INTRODUCTION

The accurate prediction of time series is a fundamental challenge in various
fields, especially in economics and finance. With the growing complexity and
volume of data, traditional statistical methods often struggle to capture the intri-
cate patterns and dependencies present in time series, especially when faced with
non-linearity, non-stationarity, and volatility with high-frequencies. This has led
to the increased adoption of deep learning models, which have shown signifi-
cant promise in capturing complex temporal dynamics and improving predictive
performance.

However, despite their successes, deep learning models are often criticized
for their “black-box” nature, which obscures the ability to quantify the uncer-
tainty inherent in their predictions. In many application, such as time series fore-
casting, understanding and quantifying the uncertainty—both the inherent vari-
ability in the data, aleatoric uncertainty and the uncertainty due to the model’s
limitations, epistemic uncertainty (Abraham and Ledolter, 2009) - of predic-
tions is as important as the predictions themselves. To address this challenge,
we turn to generative models, which have gained prominence in recent years
for their ability to model complex data distributions and generate new, realistic
data points. Among these, Variational Autoencoders (VAEs) have emerged as
a powerful tool for learning low-dimensional representations (latent factors) of
high-frequency data. VAEs combine the flexibility of deep learning with the rig-
orous probabilistic framework of Bayesian inference, making them well-suited
for tasks where uncertainty quantification is essential. By modelling the un-
derlying distribution of the data, VAEs allow for the construction of prediction
intervals that reflect the true variability in predictions, offering a more compre-
hensive understanding of the confidence we can place in model outputs.

In this study, we apply VAEs to construct prediction intervals for daily ex-
change rate forecasting, presenting a significant advancement over traditional
point forecasts by directly addressing prediction uncertainty. Exchange rates
are inherently complex and nonlinear, necessitating models that can represent a
range of possible future outcomes rather than a single forecast. Distinct from
prior applications of VAEs in fields like image and text generation, which em-
phasize precise reconstructions, our approach leverages the VAE to generate a set
of approximately reconstructed series, each representing a plausible trajectory of
future exchange rates.

By training a VAE on the exchange rates of ten major currencies, we ex-
tract essential latent factors that capture potential core patterns in the historical
data. These latent factors are then used to produce multiple reconstructed se-



SOOHYON KIM 35

ries, which serve as diverse inputs for subsequent prediction modeling. The
reconstructed series are fed into a Multi-Layer Perceptron (MLP) model, trained
specifically for short-term exchange rate forecasting. The MLP processes each
VAE-generated reconstruction, providing a range of point forecasts across the
ensemble of inputs. This range allows us to calculate prediction intervals that
quantify the forecast uncertainty, reflecting both data variability and model-
based uncertainty.

This combined use of VAE and MLP introduces a novel framework for ex-
change rate forecasting by moving beyond point predictions to construct robust
prediction intervals. From an econometric perspective, this approach offers an
advancement in uncertainty quantification by simulating a range of latent repre-
sentations that approximate the stochastic nature of exchange rates. In contrast
to traditional econometric models, which typically rely on bootstrapping or sta-
tistical assumptions for interval estimation, our method directly incorporates the
VAE’s generative nature to capture a broader scope of potential outcomes, even
under highly variable market conditions. Consequently, this framework enriches
econometric analysis by enabling a probabilistic view of future exchange rates.

Positioning this study within the broader landscape of deep learning re-
search, our approach underscores the potential of generative models like VAE
to move beyond point predictions and facilitate uncertainty quantification across
a variety of macroeconomic and financial forecasting tasks. To our knowledge,
this is among the first studies to apply VAEs specifically for the purpose of
constructing prediction intervals in financial time series forecasting, offering a
unique contribution to the literature on deep learning applications in economet-
rics. The remainder of this paper is structured as follows: Section 2 reviews
relevant literature on time series prediction and uncertainty quantification. Sec-
tion 3 details the methodology, including the architecture of the VAE and MLP
models, and presents experimental results, demonstrating the effectiveness of our
approach in exchange rate forecasting and interval construction. Finally, Section
4 discusses the implications of our findings and concludes with suggestions for
future research.

2. LITERATURE REVIEW

In the realm of econometrics, time series forecasting is one of critical areas
of study, particularly due to its applications in economic modeling and decision-
making. Various approaches have been developed to enhance the accuracy of
predictions and to assess the uncertainties associated with these forecasts. One
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of the foundational approaches to time series forecasting is the Autoregressive
Integrated Moving Average (ARIMA) model, which has been extensively stud-
ied for its flexibility in handling univariate time series data (Hamilton, 1994; En-
ders, 2014). In addition to traditional models like ARIMA, modern techniques
such as fuzzy time series models, including K-means clustering have been re-
ported to show promising results in enhancing prediction performance (Zhang et
al., 2022).

In addition to traditional econometric models, machine learning approaches
have gained traction in time series forecasting due to their ability to capture
complex patterns in data. Techniques such as recurrent neural networks (RNNs)
and deep learning models have been reported to perform well in certain multi-
step ahead forecasting tasks. These models can learn from extensive datasets
and adapt to changing patterns, which can make them effective in dynamic en-
vironments like financial markets. However, a significant challenge remains in
quantifying the uncertainty associated with these predictions. (Flunkert et al.,
2020)

The construction of confidence bands and prediction intervals in time series
analysis is a critical area of research where accurate forecasting and assessing
uncertainty is essential for the prediction model performance. Brockwell and
Davis (2002) discuss the theoretical underpinnings of time series models and
the importance of uncertainty quantification in forecasts. They emphasize that
confidence bands are crucial for understanding the reliability of predictions, par-
ticularly in the context of autoregressive models. Abraham and Ledolter (2009)
elaborates on statistical techniques for constructing prediction intervals, high-
lighting the role of statistical inference in forecasting. This work underscores
the necessity of robust methods for interval estimation, particularly when deal-
ing with non-stationary time series data. Recent advancements in the construc-
tion of prediction intervals have been made by Karmakar et al. (2021), who ex-
plore long-term prediction intervals with many covariates. Their work highlights
the challenges of constructing simultaneous prediction intervals for multivari-
ate time series, particularly in applications such as electricity price forecasting.
Many works in statistics on bootstrap prediction intervals for autoregressive time
series further illustrates the effectiveness of resampling techniques in interval es-
timation. The bootstrap method is particularly advantageous as it does not rely
on strict parametric assumptions about the underlying data distribution, making
it suitable for a wide range of time series applications. (Davison and Hinkley,
2013; Franco et al., 2001; Hwang and Shin, 2010; Novoa and Mendez, 2009)
Their findings indicate that bootstrap methods can provide more reliable predic-
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tion intervals compared to traditional methods, particularly in the presence of
model uncertainty. Deep learning models can capture complex relationships and
nonlinearities that traditional approaches may not be able to address. In par-
ticular, neural networks have been shown to provide more robust and reliable
predictions by quantifying uncertainty in the predictions. (Blundell et al., 2015;
Gal and Ghahramani, 2016; Kendall and Gal, 2017; Louizos and Welling, 2017)

In this study, we pick exchange rates among millions of time series for pre-
diction and constructing prediction intervals since exchange rate prediction is
a crucial area of research with significant implications for econometrics and fi-
nancial economics. Traditional approaches to exchange rate prediction include
time series analysis, regression models, and some structural models. In spite of
such variability, these models often fail to capture the complex relationships and
nonlinearities that exist in currency markets, leading to poor performance in pre-
dicting exchange rates. Recently, deep learning models, such as neural networks
and convolutional neural networks, have shown promising results in predicting
exchange rates (Fischer and Krauss, 2018; Galeshchuk and Mukherjee, 2017).

3. METHODOLOGY

In the realm of time series forecasting, particularly in econometric and finan-
cial applications, accurate predictions are essential. However, equally important
is the ability to quantify the uncertainty associated with these predictions. Un-
certainty in predictions arises from two primary sources: aleatoric uncertainty
and epistemic uncertainty. Aleatoric uncertainty, also known as data uncertainty,
is inherent in the variability and noise present in the data itself. This type of un-
certainty is irreducible; no matter how sophisticated the model or how extensive
the data, there will always be an element of randomness or unpredictability in the
outcome. Prediction intervals are essential in addressing aleatoric uncertainty, as
they provide a range within which future observations are expected to fall. On
the other hand, epistemic uncertainty, also referred to as model uncertainty, is
the uncertainty related to the model’s knowledge of the data. This type of un-
certainty is reducible and can be diminished with more data, better models, or
enhanced training techniques.

In this study, we address both aleatoric and epistemic uncertainties in the
context of predicting daily exchange rates and constructing prediction intervals.
We employ a VAE, a generative model that captures the underlying structure of
the data by learning a latent representation of the exchange rates. The VAE is
particularly effective in managing epistemic uncertainty, as it enables the model
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to generalize across different scenarios, even in regions where traditional time
series model might struggle to specify a clear data structure. The VAE’s ability
to generate multiple sets of latent factors from the learned distribution is central
to our methodology. By sampling from these latent factors, we reconstruct thou-
sands of exchange rate series, each representing different possible realizations
of the underlying data. This approach inherently captures aleatoric uncertainty
by reflecting the variability due to noise, which is especially critical for high-
frequency data.

To further quantify uncertainty in our predictions, we construct prediction in-
tervals by utilizing a MLP initially trained on observed exchange rates. To form
these intervals, we input a series of reconstructed exchange rate data generated
by the VAE into the trained MLP, yielding a distribution of predicted values. The
mean of these predictions is used as the final point forecast, while the variabil-
ity across predictions provides the basis for the prediction intervals, capturing
aleatoric uncertainty in the forecasts. While this approach does not employ tra-
ditional bootstrapping, the use of multiple VAE-generated reconstructions serves
a similar purpose by simulating a variety of plausible future series, allowing us to
capture the inherent data variability. This strategy enables the construction of ro-
bust prediction intervals, offering a structured insight into the level of confidence
associated with the model’s forecasts.

3.1. METHOD OF PREDICTION AND PREDICTION INTERVALS
BUILDING

In this section, we propose a methodological framework for predicting daily
exchange rates and constructing prediction intervals by combining a VAE and a
MLP. The VAE is used to extract latent factors from the daily exchange rates of
ten major currencies—Euro (EUR), British Pound (GBP), Korean Won (KRW),
Japanese Yen (JPY), Mexican Peso (MXN), Canadian Dollar (CAD), Australian
Dollar (AUD), Chinese Yuan (CNY), Brazilian Real (BRL), and Indian Rupee
(INR)—as well as the US Dollar Index (USD). These 11 series represent major
global currency interactions and are sufficient to capture the primary structural
and dynamic components that drive fluctuations in exchange rates. Including
additional variables could introduce noise without significantly enhancing pre-
dictive performance, as these currencies already encompass diverse economic
contexts and trading relationships central to global currency markets.

Once trained, the VAE generates a thousand distinct reconstructions of the
KRW exchange rate series by sampling from the latent space. Each reconstruc-
tion represents a potential realization of the exchange rate, capturing variabil-
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ity within the series. These reconstructions serve as inputs to an MLP model,
which is then trained to produce short-term predictions. By utilizing multiple
VAE-generated scenarios, we construct prediction intervals that reflect uncer-
tainty in future exchange rates, offering a robust framework to better understand
and quantify the inherent variability within exchange rate predictions. To con-
struct prediction intervals, we train an MLP model on the observed KRW series
and then use it to predict exchange rates based on the VAE-generated recon-
structions. Each reconstruction is passed through the trained MLP to produce
an individual forecast, yielding a distribution of predicted values for each future
time step. The final point prediction is taken as the mean of these predictions,
while the prediction interval bounds are calculated based on the variability across
the distribution, capturing the uncertainty inherent in the data. This combination
of VAE and MLP provides a flexible method for creating prediction intervals,
quantifying the aleatoric uncertainty within the exchange rate forecasts.

3.2. DATA PREPROCESSING

The data preprocessing begins with collecting daily historical exchange rate
data for ten major currencies (EUR, GBP, KRW, JPY, MXN, CAD, AUD, CNY,
BRL and INR) and the US Dollar Index (DXY) from the FRED database main-
tained by the Federal Reserve Bank of St. Louis. The dataset spans from January
2006. when the US Dollar Index was first published, to July 2024. To prepare
the data for analysis, we compute the log differences of the exchange rates and
the US Dollar Index, transforming them into day-on-day (DoD) series. This
transformation captures the relative changes in the exchange rates on a daily ba-
sis. Finally, we apply min-max scaling to normalize the data, ensuring that it is
standardized within a rage suitable for the VAE model.

x′i =
∆ log(xi)−min(∆ log(X))

max(∆ log(X))−min(∆ log(X))
(1)

where ∆ log(xi) represents the log difference of the original exchange rate value
at time i, and x′i represents the normalized value after applying log differencing
and min-max scaling. In this process, ∆ log(xi) = log(xi)− log(xi−1) is the day-
on-day log difference of the exchange rate, min(∆ log(X)) is the minimum value
within the log-differenced series, and max(∆ log(X)) is the maximum value.
This normalization is crucial to scale the data into a consistent range, typically
between 0 and 1, which enhances the stability and effectiveness of the VAE dur-
ing training.
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mean std min 25% 50% 75% max n

EUR 1.2321 0.1348 0.9616 1.1149 1.2125 1.3366 1.6010 4620
GBP 1.5002 0.2319 1.0703 1.2984 1.4929 1.6184 2.1104 4620
AUD 0.8069 0.1235 0.5755 0.7128 0.7662 0.9071 1.1026 4620
CNY 6.76 0.47 6.04 6.37 6.76 6.98 8.06 4620
JPY 108.76 17.77 75.72 98.61 109.09 117.22 161.73 4620
CAD 1.1908 0.1379 0.9168 1.0474 1.2378 1.3174 1.4592 4620
MXN 15.73 3.64 9.91 12.73 15.32 19.07 25.13 4620
BRL 3.1855 1.3441 1.5375 2.0130 3.0778 4.1766 5.9204 4620
INR 61.15 13.35 38.48 47.00 63.47 72.02 83.75 4620
KRW 1140.57 115.84 903.20 1080.82 1131.49 1192.61 1570.10 4620
DXY 104.77 11.81 85.46 93.42 106.15 115.11 128.45 4620

Table 1: DESCRIPTIVE STATISTICS EXCHANGE RATES AND US DOLLAR IN-
DEX (JAN 2006 - JULY 2024). The table provides a comprehensive overview of the
descriptive statistics for the exchange rates of ten major currencies and the US Dollar
Index, covering the period from January 2006 to July 2024. The currencies included
are the Euro (EUR), British Pound (GBP), Korean Won (KRW), Japanese Yen (JPY),
Mexican Peso (MXN), Canadian Dollar (CAD), Australian Dollar (AUD), Chinese Yuan
(CNY), Brazilian Real (BRL), and Indian Rupee (INR).

3.3. VAE MODEL CONSTRUCTION

The VAE model is designed to capture the underlying structure of exchange
rates by mapping it into a distribution in a latent space and then reconstructing
the original series from this latent representation. The distribution in the latent
space is typically a Gaussian distribution and the encoder network outputs pa-
rameters (mean and log-variance) define this distribution. The VAE consists of
three main components: an encoder, a decoder, and a loss function that balances
reconstruction accuracy with regularization using Kullback-Leibler (KL) diver-
gence.

• Encoder: The encoder is a neural network designed to take normalized
and DoD-transformed exchange rate data as input. In this study, the in-
put dimension is 11, corresponding to the ten currency pairs plus the US
Dollar Index. The encoder outputs 2× d values, where d is the dimen-
sion of the latent variable z, set to 64 in this model. This dimension is
chosen based on the network’s structure, where the number of neurons is
halved in each successive layer to effectively compress information in the
latent space. Specifically, the layer before the latent layer contains 128
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neurons, with the reduction to 64 balancing dimensionality reduction and
model complexity. Of the 2×d output values, the first d values represent
the mean (µ) of the latent variables, while the remaining d values corre-
spond to the log-variance (log(σ2)), facilitating a probabilistic encoding
of the data in the latent space. This structure supports robust feature ex-
traction by capturing essential patterns in the exchange rate series while
maintaining computational efficiency.

• Decoder: The decoder is a neural network that reconstructs the exchange
rate series from the latent variables. The input dimension of the decoder
is d, and its output dimension is equal to the number of currency pairs
plus the US Dollar Index, effectively reversing the encoding process to
generate a reconstruction of the original series.

3.4. TRAINING THE VAE

The VAE is trained to minimize a loss function that combines a reconstruc-
tion loss, which measures the accuracy of the reconstructed exchange rates, and
a regularization term, which ensures that the latent space is well-behaved by
enforcing a Gaussian distribution on the latent variables.

Ltotal = Lrecon +βLKL

where:

• Lrecon is the reconstruction loss, typically measured using Mean Squared
Error (MSE), which quantifies the difference between the original and re-
constructed data.

• LKL is the Kullback-Leibler divergence, which penalizes the deviation of
the latent variables’ distribution from a standard Gaussian distribution.

• β is a hyperparameter that controls the trade-off between the reconstruc-
tion accuracy and the regularization of the latent space. We set β = 0.5,
however, setting β to a different value, such as 1, would not result in a
meaningful difference.

3.5. EXTRACTING LATENT FACTORS AND RECONSTRUCTION

Once the VAE model is trained, it is used to extract latent factors z from
the normalized exchange rate data. The normalization process involves first tak-
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ing the log difference of the original series to stabilize variance and then ap-
plying min-max scaling to ensure that the data lies within a range suitable for
model training. The latent factors z capture the underlying dynamics of the ex-
change rate data. To generate multiple scenarios for prediction, we sample from
the Gaussian distributions defined by the encoder’s outputs (mean µ and log-
variance log(σ2)) and use these samples to reconstruct a thousand different se-
ries of exchange rates through the decoder. Figure 2 shows mean of normalized
and DoD transformed latent factors of Korean Won compared to DoD trans-
formed original series. We specify the process of VAE train and extraction of the
latent factors below in the pseudo code.

Figure 1: LOG-DIFFERENCED (DAY-ON-DAY) LATENT FACTORS AND ORIG-
INAL KRW EXCHANGE RATES. This figure compares DoD transformed latent fac-
tors and the original series of Korean won exchange rates agaisnt US dollar.

Figure 2: LOG-DIFFERENCED (DAY-ON-DAY) LATENT FACTORS OF EX-
CHANGE RATES OF TEN CURRENCIES. This figure exhibits DoD transformed la-
tent factors of exchange rates of ten currencies against US dollar in recent periods. The
currencies included are the Euro (EUR), British Pound (GBP), Korean Won (KRW),
Japanese Yen (JPY), Mexican Peso (MXN), Canadian Dollar (CAD), Australian Dollar
(AUD), Chinese Yuan (CNY), Brazilian Real (BRL), and Indian Rupee (INR).
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Pseudo Code for training VAE and Extrating Latent Factors

Initialize parameters for the VAE model:
- input_dim: dimension of the input data (number of currencies +
USD Index)

- latent_dim: dimension of the latent space
- intermediate_dims: dimensions of the intermediate hidden layers

Define the Encoder:
- Input: Exchange rate data (X) of ten currencies
- Layer 1: Dense layer with 512 neurons and ReLU activation

function
- Layer 2: Dense layer with 256 neurons and ReLU activation

function
- Layer 3: Dense layer with 128 neurons and ReLU activation

function
- Output 1: Latent mean in latent dimension
- Output 2: Latent log-variance in latent dimension

Define the Sampling Function:
- Input: mean and log-variance
- Sample from standard normal distribution:
epsilon = random_normal(shape=latent dimension)

- Output: Sampled latent vector (z) = mean + exp(0.5* log-
variance) * epsilon

Define the Decoder:
- Input: Latent vector (z)
- Layer 1: Dense layer with 128 neurons and ReLU activation

function
- Layer 2: Dense layer with 256 neurons and ReLU activation

function
- Layer 3: Dense layer with 512 neurons and ReLU activation

function
- Output: Reconstructed exchange rate data (X’)

Define the VAE Model:
- Input: Exchange rate data (X)
- Encode: Pass X through the encoder to get mean and log-variance
- Sample: Pass mean and log-varariance through the sampling

function to get z
- Decode: Pass z through the decoder to get X’
- Output: Reconstructed exchange rate data (X’)

Define the VAE Loss Function:
- Reconstruction Loss: Compute the Mean Squared Error (MSE)
between X and X’

- KL Divergence Loss: Compute the Kullback-Leibler divergence
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between the learned distribution (mean, log-variance) and the
standard normal distribution

- Total Loss: total loss = Reconstruction Loss + beta

* KL Divergence Loss

Train the VAE Model:
- Initialize optimizer (e.g., Adam)
- For each epoch:
- Forward pass: Pass the input data X through the VAE model
- Compute loss: Calculate the total loss
- Backpropagation: Compute gradients and update the model

parameters using the optimizer

After training:
- Use the trained encoder to extract latent factors (z) from the

normalized exchange rate data
- Generate multiple sets of latent factors by sampling from the

learned latent distribution
- Use the decoder to reconstruct exchange rate series from the

sampled latent factors

Output:
- Latent factors (z)
- Reconstructed exchange rate series

3.6. MLP MODEL TRAINING AND PREDICTION

The observed KRW exchange rates are used to train the MLP model, while
the reconstructed series generated by the VAE serve as inputs during prediction.
This approach allows the MLP to generate future values of the KRW exchange
rate based on variations captured in the VAE’s latent representations, which re-
flect the inherent dynamics of the original data.

Data Splitting: The dataset consists of KRW exchange rates, transformed
into day-on-day differences and scaled for model compatibility. The data is di-
vided into training, validation, and test sets based on the following proportions:

• Training Set: 80% of the dataset, covering January 19, 2006, to October
16, 2020

• Validation Set: 10% of the dataset, covering October 19, 2020, to August
22, 2022

• Test Set: 10% of the dataset, covering August 23, 2022, to July 31, 2024
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Let Xtrain,Xval,Xtest represent the input matrices for the training, validation,
and test sets, respectively, and let ytrain,yval,ytest denote the corresponding target
vectors. This proportional division ensures a robust training process, with valida-
tion and test sets that support both model tuning and out-of-sample performance
evaluation, as shown in Figure 3.

MLP Architecture: The MLP model is structured as a feed forward neural
network with multiple hidden layers. The model architecture can be mathemati-
cally represented as follows:

h(1) = tanh(W(1)X+b(1)),

h(2) = tanh(W(2)h(1)+b(2)),

h(3) = tanh(W(3)h(2)+b(3)),

ŷ = W(4)h(3)+b(4),

where:

• X ∈ Rnlags×nvars is the input matrix, where nlags is the number of lagged
observations and nvars is the number of variables (in this case, exchange
rates).

• W(1),W(2),W(3),W(4) are weight matrices for each layer.

• b(1),b(2),b(3),b(4) are bias vectors for each layer.

• h(1),h(2),h(3) are the activations of the hidden layers, each using the tanh
activation function.

• ŷ is the predicted output of the model, representing the future value of
KRW exchange rates

Training Process: The MLP model is trained by minimizing the following
loss function:

L(W,b) =
1
N

N

∑
i=1

(yi − ŷi)
2 ,

where N is the number of training samples, yi is the actual target value, and ŷi

is the predicted target value. The training process employs backpropagation, a
method used to compute the gradients of the loss function with respect to the
model parameters. These gradients are then used by the Adam optimizer to
adjust the weights and biases of the network in order to minimize the loss. Back-
propagation works by propagating the error from the output layer back through
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the network, layer by layer, allowing the model to learn the appropriate adjust-
ments to make for improving its predictions. The MSE serves as the primary loss
function, while the MAE is used as an evaluation metric. Additionally, the train-
ing process incorporates early stopping and learning rate scheduling to prevent
overfitting and ensure optimal model performance.

The pseudo code of specific structure of the MLP model and how to train
and validate the model is as follows:

Pseudo Code for MLP Training

1. Initialize Parameters:
- Set input dimension to (number of input variables)
- Define batch_size (e.g., 256)
- Define the number of epochs (e.g., 50)
- Initialize the learning rate (e.g., 0.001)

2. Define the MLP Model Architecture:
- Create a sequential model
- Add a dense layer with 512 neurons with hyperbolic tangent
activation function and set input dimension

- Add a dense layer with 128 neurons and hyperbolic tangent
activation function

- Add a dense layer with 32 neurons and hyperbolic tangent
activation function

- Add an output dense layer with 1 neuron and a linear
activation function

3. Compile the Model:
- Use the Adam optimizer with the defined learning rate
- Set the loss function to Mean Squared Error (MSE)
- Set the evaluation metric to Mean Absolute Error (MAE)

4. Implement Callbacks:
- Implement early stopping to monitor validation loss with a

patience of 10 epochs, and restore the best weights
- Implement a learning rate scheduler to reduce the learning

rate by a factor of 0.1 if validation loss does not improve
after 5 epochs, with a minimum learning rate of 1e-6

5. Train the Model:
- Train the MLP model on the training data
- Use the validation data to monitor performance
- Train for the specified number of epochs, with early stopping

and learning rate scheduling enabled

6. Evaluate the Model:
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- Evaluate the trained model on the test data
- Output the test loss (MSE) and test mean absolute error (MAE)

3.7. CONSTRUCTING PREDICTION INTERVALS

To quantify the uncertainty in the predictions, we construct prediction in-
tervals based on the distribution of predictions obtained from the MLP model.
The process involves generating multiple reconstructions of the exchange rate
series using the VAE and training the MLP on these reconstructions to derive a
distribution of predicted values.

3.7.1. Generating Multiple Predictions

Let ŷ(k)t denote the prediction at time t obtained from the k-th MLP model
trained on the k-th reconstructed series. We generate K different reconstructions
using the VAE, leading to K predictions for each time point t. This can be ex-
pressed as:

ŷ(k)t = MLPk(z(k)),

where z(k) represents the latent factors from the k-th VAE reconstruction.

3.7.2. Calculating Mean and Standard Deviation

For each time point t, the mean prediction µt and the standard deviation σt

of the predictions are computed as:

µt =
1
K

K

∑
k=1

ŷ(k)t ,

σt =

√
1

K −1

K

∑
k=1

(
ŷ(k)t −µt

)2
.

3.7.3. Constructing Prediction Intervals

The prediction intervals are constructed based on the mean and standard de-
viation. For a confidence level α , the prediction interval PIt at time t can be
calculated as:

PIt =
[
µt − zα/2 ·σt ,µt + zα/2 ·σt

]
,

where zα/2 is the critical value from the standard normal distribution correspond-
ing to the desired confidence level.
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3.7.4. Pseudocode for Prediction Interval Construction

Input: Reconstructed exchange rate series from VAE, MLP model,
confidence level

Output: Prediction intervals for each time point t

1. Initialize K ← Number of reconstructed series
2. Initialize predictions ← Empty list to store MLP predictions

3. For each k in {1, 2, ..., K} do:
a. Train MLP on the k-th reconstructed series
b. Predict future exchange rates using the trained MLP
c. Store predictions in predictions[k]

4. For each time point t do:
a. Compute mean (predictions at time t)
b. Compute standard deviation (predictions at time t)
c. Compute prediction intervals

5. Return prediction intervals

3.8. RESULTS AND DISCUSSION

The proposed methodology effectively addresses the challenge of prediction
uncertainty in time series data through deep learning model such as MLP. By
leveraging the strengths of generative models, specifically the VAE for latent
factor extraction and the MLP for predicting exchange rates, we generate ac-
curate predictions accompanied by well-calibrated uncertainty measures. The
prediction intervals are constructed in two different ranges: 90% and 95%. 90%
(95%) prediction intervals are built by adding and subtracting by 1.65 (1.96)
times of a standard deviation of a thousand scenarios of predictions in each point
of prediction. The prediction intervals constructed using this approach provide a
comprehensive understanding of the potential range of future exchange rates as
shown in Figure 3. The VAE’s ability to generate multiple sets of latent factors
allows us to capture both the underlying structure of the data and the inherent
noise (aleatoric uncertainty). By training the MLP in these diverse reconstruc-
tions, we account for epistemic uncertainty, reflecting the model’s confidence in
its predictions. The resulting prediction intervals are not only indicative of the
expected values but also provide a probabilistic measure of the uncertainty in its
prediction, making it more robust and reliable.
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Model MSE MAE

VAE + MLP 0.004513 0.051676
ARIMA 0.007187 0.073190

Factor Model 0.008516 0.080993

Table 2: PREDICTION PERFORMANCE COMPARISON. The table provides per-
formance measures in MSE (Mean Squared Error) and MAE (Mean Absolute Error) of
time series models. The Dynamic Factor Model (DFM) and ARIMA model are used
as benchmarks to compare against the proposed VAE-MLP method for exchange rate
forecasting. The DFM captures common latent factors driving the dynamics of multiple
time series. Specifically, one latent factor was specified (K = 1) with a first-order autore-
gressive process (p= 1), representing the shared structure across 11 series, including the
Korean Won (KRW) exchange rate and the US Dollar Index. The ARIMA model was
fitted to the KRW exchange rate series individually, using an order of (1,1,1), which
combines an autoregressive term, a single differencing operation, and a moving aver-
age term. Both models were estimated using maximum likelihood methods, and their
forecasts were compared against those of the VAE-MLP approach in terms of prediction
accuracy and uncertainty quantification.

Figure 3: PREDICTION INTERVALS AND ORIGINAL SERIES OF USD/KRW.
This figure illustrates the predicted USD/KRW exchange rates (blue line) along with
the original series (red line). The shaded areas represent the prediction intervals: the
dark grey area corresponds to the 95% prediction intervals, while the light grey area
indicates the 90% prediction intervals. These intervals provide a probabilistic measure
of the uncertainty surrounding the predictions with wider intervals indicating greater
uncertainty.



50 PREDICTION INTERVALS IN EXCHANGE RATES FORECAST

Start: Load and Preprocess Data

Define and Train VAE Model

Extract Latent Factors (z mean, z log var)

Reconstruct Exchange Rates using Latent Factors

Define and Train MLP Model

Make Predictions with MLP Model

Generate Multiple Predictions by Sampling Latent Factors

Calculate Mean, Standard Deviation, and Construct Prediction Intervals

End: Evaluate Results and Interpret Uncertainty

Figure 4: FLOWCHART OF THE PROCESS FROM PREPROCESSING TO PREDIC-
TION INTERVAL CONSTRUCTION. This flowchart outlines the steps in constructing
prediction intervals for exchange rates using a VAE and a MLP. The process begins with
loading and preprocessing the data, followed by defining and training the VAE to extract
latent factors. These factors are used to reconstruct the exchange rates, which are then
used as inputs for the MLP model to make predictions. Multiple predictions are gener-
ated by sampling different latent factors, and the mean and standard deviation of these
predictions are calculated to construct prediction intervals, providing a range of possible
future exchange rates.
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4. CONCLUSION

In this study, we explored the use of generative models to predict daily fre-
quency data and construct prediction intervals, addressing the critical challeng-
ing of quantifying uncertainty in time series forecasting. Specifically, we em-
ployed a VAE to extract latent factors from the exchange rates of ten currencies
and the US Dollar Index. By leveraging the VAE’s generative capabilities, we
were able to reconstruct multiple sets of exchange rates series, which were then
used to train a MLP model. This approach allowed us to generate a distribution
of predicted values, from which we constructed prediction intervals, providing a
robust measure of uncertainty in the forecast exchange rates.

The results of out methodology demonstrate its effectiveness in addressing
both aleatoric and epistemic uncertainties. The VAE, as a relative model to gen-
erative artificial intelligence (AI), capture the inherent noise and variability in the
data, allowing the MLP model to generalize across different scenarios, even in
the presence of high-frequency fluctuations. The prediction intervals constructed
from the multiple reconstructions offered valuable insights into the range of pos-
sible future exchange rates. These intervals are often as crucial as the predictions
themselves in policy decision and financial market decision-making. We used
exchange rates but we can apply our methodology to any time series that we can
study.

However, this study is under its certain limitations. One of the primary chal-
lenges encountered was the complexity of training VAE and MLP models, par-
ticularly in handling high-dimensional financial data. The process of tuning hy-
perparameters, such as β in the VAE’s loss function, and setting the architecture
of the VAE and MLP was computationally intensive and required extensive ex-
perimentation. Moreover, the VAE’s reliance in the assumption that the latent
variables follow a Gaussian distribution may not always be appropriate for all
types of financial data, potentially limiting the model’s ability to capture more
complex, non-Gaussian relationships in the data. Another limitation is related
to the scope of the data used. While the study focused on ten major curren-
cies and the UD Dollar Index, the model’s performance and generalizability to
other currencies or financial instruments were not explored. Additionally, the
model’s ability to adapt to structural change in the market or to perform in peri-
ods of extreme volatility was not extensively tested. Future research can address
these limitations in several ways. First, exploring alternative generative models,
such as Generative Adversarial Networks (GANs), could provide a more flexible
framework for modeling the latent structure of financial data, potentially captur-
ing more complex patterns than the VAE. Furthermore, incorporating additional
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macroeconomic indicators or market variables into the model could enhance its
predictive power and robustness. Another promising direction for future research
is the application of this methodology to a broader range of financial instru-
ments and markets. Extending the model to forecast other asset classes, such
as commodities, equities, or interest rates, could provide further insights into
the generalizability and scalability of the approach. In addition, future research
could investigate strategies to align these prediction intervals more dynamically
with periods of extreme volatility. One potential direction could be to develop
hybrid models that incorporate real-time volatility measures or dynamic adjust-
ment mechanisms into the VAE-MLP framework, enhancing its responsiveness
to sudden market shifts.
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