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Abstract This study develops a KPSS (Kwiatkowski et al., 1992)-type cointe-
gration test utilizing residuals from integrated and modified ordinary least squares
(IMOLS) estimation. The test statistic, denoted by KPSSFb has a pivotal null
limit distribution under fixed-b assumption. The proposed test demonstrates rea-
sonable performance in terms of size and power when the Andrews’ AR(1) plug-
in data-dependent (DD) bandwidth is employed and fixed-b critical values are
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ternative data-dependent bandwidths. In the simulation experiment, these band-
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1. INTRODUCTION

This study addresses residual-based cointegration test with the presence of
a cointegrating relationship taken as the null hypothesis.1 A fixed-b inferential
method is developed within the integrated and modified OLS (Vogelsang and
Wagner, 2014) framework. A KPSS (Kwiatkowski et al., 1992)-type statistic
is used as the test statistic, and its pivotal fixed-b limit distribution (Kiefer and
Vogelsang, 2005) is employed to obtain fixed-b critical values for hypothesis
testing.

To construct the test statistic, a kernel nonparametric heteroskedasticity and
autocorrelation consistent (HAC) estimator is required to estimate the long-run
variance (LRV). However, it is well-known that statistical inference using test
statistics scaled by a HAC estimator often suffers from size distortions, partic-
ularly when the persistence of the underlying time series is high. See Müller
(2014), Müller (2005), Caner and Kilian (2001), and Gabriel (2003). The choice
of bandwidth required for constructing a HAC estimator is central to this prob-
lem. The simulation results in the present paper indicate that the proposed test
suffers from greater size distortions as the ratio (b ≡ M/T ) of bandwidth (M)
to the sample size (T ) becomes smaller. Conversely, the power of the test de-
creases as b increases. A data-dependent (DD) bandwidth scheme, such as the
AR(1) plug-in method proposed by Andrews (1991), is commonly used in prac-
tice to select an appropriate bandwidth. However, in the context of cointegration
tests, this data-driven bandwidth often delivers low power (see Xiao and Phillips
(2002), Choi and Ahn (1995), and Gabriel (2003)). The DD scheme, when ap-
plied to residuals from the existing methods—such as OLS or Fully Modified
OLS (FMOLS) residuals—delivers too large a bandwidth of order Op (T ) , with
M/T not shrinking to zero. Consequently, the test is not consistent, as consis-
tency requires M/T → 0 as T →∞. For a detailed analysis, see Xiao and Phillips
(2002). An important finding in this study is that the DD bandwidth calculated
with IMOLS residuals is Op

(
T 1/3

)
under non-cointegration, yielding a band-

width ratio (b ≡ M/T ) that shrinks to zero as T increases. This unique property
can lead to reasonable power for the test. The rest of the paper is organized as
follows: Section 2 presents the model, assumptions, and a brief review of the
IMOLS estimation. Section 3 develops the asymptotic theory and investigates
the limit behavior of the DD bandwidth calculated with the IMOLS residual.
Section 4 investigates the performance of the KPSSFb test via Monte Carlo sim-

1Many existing cointegration tests take the presence of cointegrating relationship as the null
hypothesis. See Shin (1994), Harris and Inder (1994), and Xiao and Phillips (2002).
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ulations. Some modified IMOLS residuals that can be used to obtain alternative
DD bandwidths are proposed. Section 5 concludes the study. The proofs and
additional results are available in the Appendix.

2. MODEL SETUP AND ASSUMPTIONS

Consider the following model:

yt = f ′t δ + x′tβ +ut , (1)

xt = xt−1 + vt ,

for t = 1, ...,T, where ft =
(
1, t, ..., t p−1

)′ is a p×1 deterministic regressor vector
and xt is a k× 1 stochastic regressor vector. Both yt and xt are I(1) processes,
and xt has no drift.2

Assumption 1 (H0: Cointegration). Let ηt = (ut ,v′t)
′ and assume that a func-

tional central limit theorem holds:

T−1/2
[rT ]

∑
t=1

ηt ⇒ B(r) =
(

Bu(r)
Bv(r)

)
= Ω

1/2W (r), r ∈ [0,1],

where W (r) = (wuv(r),w′
v(r))

′ is a (k+1)×1 vector of standard Brownian mo-
tion with

Ω = lim
T→∞

(
var

(
T−1/2

T

∑
t=1

ηt

))
:=
[

Ωuu Ωuv

Ωvu Ωvv

]
,

where Ω is a p.d. and equals ∑
∞
j=−∞ E

(
ηtη

′
t− j

)
if ηt is assumed to be stationary.

Under Assumption 1, yt and xt are cointegrated up to the deterministic trend
ft . As in Vogelsang and Wagner (2014), the following Cholesky form of Ω1/2 is
used:

Ω
1/2 =

[
σuv λuv

0 Ω
1/2
vv

]
,

where σ2
uv = Ωuu −ΩuvΩ−1

vv Ωvu and λuv = Ωuv

(
Ω

−1/2
vv

)′
. In addition, define

Σ = E
(
ηtη

′
t
)
=

[
Σuu Σuv

Σvu Σvv

]
.

2Theorem 3 in the Appendix provides additional results for the case where xt has a drift,
extending the results in Hansen (1992b).
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When there is no cointegrating relationship (i.e., with ut being an I(1) series), ut

can be represented by the sum of its differences (say {εt}), and (1) becomes a
spurious regression.

Assumption 2 (H1: Non-cointegration). Let η̃t = (εt ,v′t)
′ and assume that a

functional central limit theorem holds for {η̃t} :

T−1/2
[rT ]

∑
t=1

η̃t ⇒
(

Bε(r)
Bv(r)

)
= Ω̃

1/2W̃ (r), r ∈ [0,1],

where W̃ (r) = (wε(r),w′
v(r))

′ is standard Brownian motion with

Ω̃ = lim

(
var

(
T−1/2

T

∑
t=1

η̃t

))
=

[
σ2

ε Ωεv

Ωvε Ωvv

]
> 0.

IMOLS estimator (Vogelsang and Wagner, 2014). By summing both sides of
(1) and adding the original regressors xt , the following integrated and modified
regression can be obtained:

Sy
t = S f ′

t δ +Sx′
t β + x′tγ +Su

t (2)

with Sy
t = ∑

t
j=1 y j and S f

t , Sx
t , and Su

t defined in an analogous manner. The
IMOLS estimator of θ = (δ ′,β ′,γ ′)′ is given by

θ̂ = (δ̂ ′, β̂ ′, γ̂ ′)′ = (Sx̃′Sx̃)−1Sx̃′Sy,

where we let Sx̃ = (S f ...Sx...X) with S f = (S f
1 , . . .S

f
T )

′, Sx = (Sx
1, . . .S

x
T )

′, and X =
(x1, . . .xT )

′.

Note that, unlike FMOLS or Dynamic OLS (DOLS, Phillips and Loretan
(1991)) estimators, IMOLS estimator does not require the choice of any tuning
parameter, such as the bandwidth (FMOLS) or the number of leads and lags
(DOLS).

Define

AIM =

T−1/2τ
−1
F 0 0

0 T−1Ik 0
0 0 Ik

 ,
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where τF is a diagonal matrix with diagonal elements 1, T, T 2, ...,T p−1 satisfy-
ing

T−1
τ
−1
F

[rT ]

∑
t=1

ft →
∫ r

0
f (s)ds, r ∈ [0,1]

as T grows, with f (s) = (1,s,s2, ...,sp−1). Under the null of cointegration, Vo-
gelsang and Wagner (2014) show

A−1
IM

 δ̂ −δ

β̂ −β

γ̂ −Ω−1
vv Ωvu

=

T 1/2τF(δ̂ −δ )

T (β̂ −β )
(γ̂ −Ω−1

vv Ωvu)


d→ σuvΠ

−1
(∫

g(s)g(s)′ds
)−1 ∫

g(s)wu·v(s)ds,

(3)

where Π = diag(Ip,Ω
1/2
vv ,Ω

1/2
vv ), and g(r) = (

∫ r
0 f (s)′ds,

∫ r
0 wv(s)′ds,wv(r)′)′.

3. IMOLS-BASED COINTEGRATION TESTS

Denote the residuals in (2) by S̃u
t and consider its difference

△S̃u
t = S̃u

t − S̃u
t−1 = ut − f ′t (δ̂ −δ )− x′t(β̂ −β )−△x′t γ̂ = ût −△x′t γ̂,

where S̃u
t = Sy

t − S f ′
t δ̂ − Sx′

t β̂ − x′t γ̂ . With θ1 = (δ ′, β ′)′, θ0 = (δ ′,β ′,0)′, and
θ∗ = (δ ′,β ′,Ω′

vuΩ−1
vv )

′,

△S̃u
t = ut − ( f ′t ,x

′
t)(θ̂1 −θ1)−△x′t γ̂ = ut − ( f ′t ,x

′
t ,△x′t)(θ̂ −θ0)

= ut − ( f ′t ,x
′
t ,△x′t)(θ̂ −θ∗)−△x′tΩ

−1
vv Ωvu.

The proposed KPSS-type test statistic is given by

KPSSFb =
T−2

∑
T
t=2

(
∑

t
j=2△S̃u

j

)2

σ̃2
uv

=
T−2

∑
T
t=2

(
S̃u

t − S̃u
1

)2

σ̃2
uv

,

where σ̃2
uv is a HAC estimator constructed using △S̃u

t :

σ̃
2
uv =

1
T

T

∑
i=2

T

∑
j=2

k
(
|i− j|

M

)
△S̃u

i △S̃u
j .

The Bartlett kernel3 k(z) = (1−|z|)1(|z| ≤ 1) is considered in this paper, but
other kernels may be used.

3Thus, σ̃2
uv is a Newey-West estimator (Newey and West, 1987).
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Theorem 1. Under Assumption 1 (H0), it holds that as T→ ∞,

(a) T−1/2
(

S̃u
[rT ]− S̃u

1

)
= T−1/2

∑
[rT ]
t=2 △S̃u

t ⇒ σuvP̃(r), r ∈ [0,1], where

P̃(r)≡
∫ r

0
dwuv(s)−g(r)′

[∫ 1

0
g(s)g(s)′ ds

]−1 ∫ 1

0
(G(1)−G(s))dwuv(s);

(b) under small-b asymptotics, σ̃2
uv

d→ σ2
uv
(
1+d′

γdγ

)
, where dγ denotes the

last k components of (
∫ 1

0 g(s)g(s)′ ds)−1 ∫ 1
0 (G(1)−G(s))dwuv(s) with

G(s) =
∫ s

0 g(u)du;
(c) under small-b asymptotics,

KPSSFb d→
∫ 1

0 P̃(r)2dr
1+d′

γdγ

. (4)

Under Assumption 2 (H1),

(a′) T−3/2
∑
[rT ]
t=2 △S̃u

t ⇒ σεH̃(r), where

H̃(r)≡
∫ r

0
wε(s)ds−g(r)′

[∫ 1

0
g(s)g(s)′ ds

]−1 ∫ 1

0
g(s)

∫ s

0
wε(u)duds;

(b′) under small-b asymptotics, σ̃2
uv = Op (MT ) ;

(c′) under small-b asymptotics, KPSSFb =Op
( T

M

)
, which implies KPSSFb →

∞ as T → ∞.

Proof. Proofs for parts (a) and (b) are provided in Vogelsang and Wagner (2014).
See Lemma 2 and Theorem 3, respectively. For parts (c) through (c′), see the
Appendix.

Remark 1. Theorem 1 shows that the KPSSFb test is consistent against the
alternative hypothesis of non-cointegration under the traditional small-b asymp-
totic framework. However, the limit in part (c) does not capture the impact of
bandwidth. Fixed-b limit distributions are derived under the assumption that
the bandwidth (M) is proportional to the sample size (T ) (i.e., M = bT with
b ∈ (0,1]). Typically, fixed-b limits depend on the bandwidth ratio (b) and the
kernel being used. The next Corollary provides the fixed-b limits for KPSSFb.

Corollary 1. Assume M = bT for a fixed value of b ∈ (0,1]. Then, under As-
sumption 1 (H0), as T → ∞,

KPSSFb d→
∫ 1

0 P̃(u)2du∫ 1

0

∫ 1

0
k
(
|r−s|

b

)
dP̃(r)dP̃(s)

≡
∫ 1

0 P̃(u)2du

P(b, P̃)
, (5)
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where P̃(r) is defined in Theorem 1.4 Under Assumption 2 (H1), as T → ∞,

KPSSFb d→
∫ 1

0 H̃(u)2du∫ 1

0

∫ 1

0
k
(
|r−s|

b

)
dH̃(r)dH̃(s)

≡
∫ 1

0 H̃(u)2du

P(b, H̃)
, (6)

where H̃(r) is defined in Theorem 1.

Proof. Theorem 1 (parts (a) and (a′)) and the continuous mapping theorem im-
mediately yield the desired result.

Remark 2. The fixed-b percentiles for the random variable in (5) can be simu-
lated by using independent and identically distributed (IID) N(0,1) pseudo ran-
dom numbers. Researchers can pick a fixed-b critical value for a given specific
value of b = M/T .

In the simulation study (Section 4), the AR(1) plug-in data-dependent band-
width rule proposed by Andrews (1991) will be used. Below the lmits of the
AR(1) coefficient calculated using

{
△S̃u

t

}
are derived under H0 and H1, respec-

tively. This result can explain the empirical findings reported in Section 4.
Consider the AR(1) plug-in data-dependent rule (Andrews, 1991) with the

Bartlett kernel:

M = 1.1447(α̂(1)T )
1
3 with α̂(1) =

4φ̂ 2

(1− φ̂)2(1+ φ̂)2
, (7)

where φ̂ is the estimated coefficient in the AR(1) regression with △S̃u
t , t =

3, ...,T :

φ̂ =
∑

T
t=3△S̃u

t △ S̃u
t−1

∑
T
t=3

(
△S̃u

t−1

)2 .

Define

Σηη ≡ p lim
1
T ∑ηtη

′
t =

(
Σuu Σuv

Σ′
uv Σvv

)
and

Ση ,η−1 ≡ p lim
1
T ∑ηtη

′
t−1 =

(
Σu,u−1 Σu,v−1
Σv,u−1 Σv,v−1

)
,

where ηt = (ut ,v′t)
′. Theorem 2 provides the limits of φ̂ under the null and

alternative hypotheses, respectively.

4An equivalent expression of P(b, P̃) is available in Cho and Vogelsang (2017).
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Theorem 2. Under H0, as T→ ∞,

φ̂
d→

Σu,u−1 −Σu,v−1γ∞
0 − γ∞′

0 Σv,u−1 + γ∞′
0 Σv,v−1γ∞

0
Σuu −2Σuvγ∞

0 + γ∞′
0 Σvvγ∞

0

=

(1, − γ∞′
0 )Ση ,η−1

(
1

−γ∞
0

)
(1, − γ∞′

0 )Σηη

(
1

−γ∞
0

) ,

where γ∞
0 denotes the weak limit of the IMOLS estimator γ̂ under H0. Under H1,

as T→ ∞,

φ̂
d→ γ∞′

1 Σv,v−1γ∞
1

γ∞′
1 Σvvγ∞

1
, (8)

where γ∞
1 denotes the weak limit of γ̂

T under H1. Here, γ∞
0 and γ∞

1 are given by
(see the proof for Lemma 1 in the Appendix)

γ
∞
0 ≡ Ω

−1
vv Ωvu +σuvΩ

−1/2
vv dγ and γ

∞
1 ≡ Ω

−1/2
vv d̃γ ,

where dγ denotes the last k components of (
∫ 1

0 g(s)g(s)′ ds)−1 ∫ 1
0 (G(1)−G(s))

dwuv(s), and d̃γ denotes the last k components of (
∫ 1

0 g(s)g(s)′ds)−1(
∫ 1

0 g(s)
∫ s

0
σεwε (u)duds).

Proof. See the Appendix.

Theorem 2 demonstrates that under H0, the limit of φ̂ depends on the autoco-
variances of ηt = (ut ,v′t)

′. However, under H1, the limit of φ̂ primarily depends
on the persistence of △xt ≡ vt , with no dependence on the persistence of ut .5

Given this result, it follows that α̂(1) in (7) has a nondegenerate limit, and the
DD bandwidth is Op

(
T 1/3

)
.6 Therefore, the DD bandwidth may not be too large

under H1, and the power of the test is not necessarily low. This property is unique
because other residuals, such as the OLS residuals, lead to a bandwidth of Op(T )
under H1, as documented in Xiao and Phillips (2002). Furthermore, Theorem 2
explains why the power of the KPSSFb test may be substantially affected by the
persistence in △xt .

5With k = 1, the limit of φ̂ under H1 is reduced to the first order autocorrelation of △xt (equals
θ in the simulation setting). Therefore, for an alternative DGP, the resulting DD bandwidth tends
to be large when θ is large, leading to reduced power compared to the case where θ is small.

6This is because γ̂ = Op(1) under H0 (cointegration) and γ̂ = Op(T ) under H1 (non cointe-
gration) as presented in Lemma 1 (a). Hence the terms involving γ̂ dominate other terms in both
the denominator and numerator of φ̂ , under H1.
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4. SIMULATION STUDY

4.1. DGP SPECIFICATIONS

To evaluate the performance of the test in finite samples, the following data
generation process is considered.

yt = 1+ x1t +2x2t +ut = 1+(1, 2)xt +ut ,

where ut = αut−1+ ε̃t ,△xt = vt = (v1t ,v2t)
′, and vt = diag(θ ,θ)vt−1+(ξ̃1t , ξ̃2t)

′

with7  ε̃t

ξ̃1t

ξ̃2t

∼ NID

1 ρ
ρ

2
ρ 1 0
ρ

2 0 1

 .

The key parameter is α . If α = 1, the regression is a spurious regression with no
cointegrating relationship. If |α| < 1, then there exists a cointegrating relation-
ship. The parameters α and θ primarily control the persistence of the regression
error term, ut , and vt = △xt , respectively. The strength of the endogeneity is
controlled by ρ .

For comparisons, the results for FMOLS-based KPSS (S+2 ; Harris and Inder,
1994) and CUSUM (CS; Xiao and Phillips, 2002) tests are reported. A variety
of bandwidth rules are considered: conventional non-data-dependent rules, the
fixed-b rule (M = bT ), and the AR(1) plug-in data-dependent (DD) rule of An-
drews (1991). In this section, the results with conventional non-data-dependent
rules are reported for M1 = [4(T/100)1/4] and M2 = [2T 1/3]. The number of
simulation replications is 5,000. The 95% critical values for the case of ft = 1
and k = 2 are 0.2210 for S+2 and 1.0413 for CS. The traditional critical value for
KPSSFb associated with the limit in (4) is 0.049, and fixed-b critical values for
KPSSFb are presented in Table 2 for the selected values of b.

7For nonzero values of ρ, it is required that − 2√
5
< ρ < 2√

5
≒ 0.8944 to ensure the covariance

matrix

V =

1 ρ
ρ

2
ρ 1 0
ρ

2 0 1


is positive definite since the eigenvalues of this matrix are 1 and 1±

√
5

2 ρ.
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DGP1 DGP2 DGP3 DGP4 DGP5 DGP6 DGP7
ρ 0 0.5 0.5 0 0.8 0.8 0.8
α 0.5 0.5 0.9 0.8 0.9 0.9 0.9
θ 0.5 0.5 0.5 0.8 0.2 0.5 0.8

DGP1A DGP3A DGP4A DGP5A DGP6A DGP7A
ρ 0 0.5 0 0.8 0.8 0.8
α 1 1 1 1 1 1
θ 0.5 0.5 0.8 0.2 0.5 0.8

Table 1: DGP SPECIFICATIONS FOR MONTE CARLO SIMULATIONS. There ex-
ists a cointegrating relationship in DGP1 through DGP7, while there is no cointegration
in DGP1A through DGP7A. The parameter θ controls the persistence of △xt , and the
strength of the endogeneity is controlled by ρ .

b 95% percentile

0.02 0.0499
0.04 0.0516
0.06 0.0541
0.08 0.0577
0.1 0.0627
0.2 0.1147
0.3 0.1850
0.4 0.2491
0.5 0.3001
1 0.5081

Table 2: FIXED-b CRITICAL VALUES (NOMINAL SIZE OF 5%, INTERCEPT
ONLY AND k = 2). The critical values were simulated using IID standard normal
pseudo random numbers with T = 1,000 and 50,000 replications.

4.2. EMPIRICAL SIZE AND POWER

Tables 3 and 4 provide the simulation results for the CS, S+2 and KPSSFb

tests. For the FMOLS-based tests (CS and S+2 ), the bandwidth M2 delivers mild
size distortion and reasonable power. The Andrews’ DD bandwidth also provides
a good size property. However, its power is very low. This result corroborates
a well-known property of the DD bandwidth that is documented in Xiao and
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Phillips (2002): The DD bandwidth is Op(T ) under H1, which renders the test
inconsistent.

FM-CUSUM (CS) FM-KPSS (S+2 ) IM-KPSS(KPSSFb)

(ρ,α,θ) T DD M1 M2 DD M1 M2 DD 0.02T 0.08T 0.1T 0.2T

DGP1
(0, .5, .5)

100 .031 .057 .024 .044 .073 .033 .142 .416 .124 .121 .135
200 .043 .067 .030 .055 .082 .040 .082 .170 .058 .060 .077
500 .048 .077 .040 .056 .081 .046 .072 .076 .044 .039 .040
1000 .054 .080 .046 .056 .075 .048 .065 .056 .040 .034 .033

DGP2
(.5, .5, .5)

100 .024 .050 .017 .040 .065 .029 .142 .408 .124 .124 .128
200 .037 .062 .024 .051 .072 .036 .087 .177 .063 .065 .073
500 .047 .075 .039 .055 .081 .047 .075 .075 .047 .044 .037
1000 .049 .078 .041 .056 .075 .048 .068 .058 .042 .034 .031

DGP3
(.5, .9, .5)

100 .025 .337 .069 .046 .410 .119 .177 .771 .194 .138 .061
200 .021 .434 .100 .039 .483 .138 .170 .565 .113 .077 .036
500 .034 .538 .129 .047 .514 .144 .157 .282 .061 .044 .032
1000 .037 .536 .124 .050 .473 .128 .138 .143 .046 .037 .031

DGP4
(0, .8, .8)

100 .012 .129 .027 .025 .158 .047 .062 .788 .100 .062 .067
200 .021 .186 .042 .039 .197 .068 .052 .534 .051 .032 .050
500 .038 .223 .062 .049 .209 .074 .068 .198 .042 .032 .035
1000 .045 .225 .065 .057 .195 .073 .069 .100 .041 .033 .032

DGP5
(.8, .9, .2)

100 .035 .488 .104 .040 .575 .159 .327 .518 .249 .215 .112
200 .019 .596 .128 .031 .654 .169 .176 .209 .123 .126 .082
500 .019 .691 .126 .027 .682 .144 .042 .035 .056 .069 .068
1000 .014 .673 .107 .024 .634 .115 .015 .013 .040 .045 .046

DGP6
(.8, .9, .5)

100 .023 .428 .079 .042 .522 .137 .172 .658 .167 .132 .074
200 .017 .555 .108 .033 .620 .152 .112 .295 .077 .070 .046
500 .018 .667 .116 .029 .660 .141 .044 .053 .040 .041 .039
1000 .016 .657 .105 .027 .621 .118 .023 .021 .033 .034 .029

DGP7
(.8, .9, .8)

100 .040 .076 .006 .036 .116 .024 .053 .862 .132 .071 .055
200 .004 .157 .024 .011 .194 .047 .057 .648 .072 .044 .036
500 .011 .315 .060 .022 .306 .078 .069 .234 .049 .035 .034
1000 .021 .542 .102 .036 .491 .115 .063 .099 .041 .036 .029

Table 3: EMPIRICAL SIZE, α ̸= 1. For the FMOLS-based tests (CS and S+2 ), the non
data-dependent bandwidths M1 = [4(T/100)1/4],M2 = [2T 1/3] and the data-dependent
(DD) bandwidth are used. The DD bandwidth is calculated using the OLS residuals in
(1). The 95% critical values are 0.2210 for S+2 and 1.0413 for CS. For the KPSSFb test,
DD bandwidth is calculated using the IMOLS residuals, and the fixed-b critical value
corresponding to the specific value of b=DD/T is used in each replication. The number
of simulation replications are 5,000.
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FM-CUSUM (CS) FM-KPSS (S+2 ) IM-KPSS (KPSSFb)

(ρ,α,θ) T DD M1 M2 DD M1 M2 DD 0.02T 0.08T 0.1T 0.2T

DGP1A
(0,1, .5)

100 .133 .577 .187 .136 .675 .289 .228 .820 .277 .195 .062
200 .155 .813 .370 .142 .863 .493 .308 .711 .224 .152 .027
500 .176 .978 .722 .148 .985 .792 .511 .625 .208 .134 .012
1000 .188 .998 .900 .144 .999 .930 .626 .610 .212 .136 .011

DGP3A
(.5,1, .5)

100 .114 .555 .171 .117 .659 .276 .232 .826 .279 .197 .058
200 .136 .830 .373 .128 .869 .488 .319 .716 .229 .153 .024
500 .154 .977 .730 .131 .983 .806 .517 .630 .221 .149 .013
1000 .166 .998 .903 .131 .999 .932 .626 .605 .214 .133 .015

DGP4A
(0,1, .8)

100 .121 .483 .130 .135 .586 .236 .068 .921 .227 .136 .048
200 .149 .776 .333 .152 .833 .455 .087 .852 .183 .107 .024
500 .181 .975 .702 .170 .982 .783 .237 .718 .185 .117 .013
1000 .193 .998 .898 .169 .998 .927 .401 .648 .201 .127 .011

DGP5A
(.8,1, .2)

100 .102 .580 .189 .106 .678 .285 .435 .751 .352 .264 .080
200 .116 .830 .388 .117 .874 .500 .530 .673 .267 .190 .034
500 .133 .980 .742 .113 .988 .809 .660 .628 .239 .162 .017
1000 .144 .999 .905 .119 .998 .929 .687 .604 .220 .142 .015

DGP6A
(.8,1, .5)

100 .063 .546 .170 .098 .647 .266 .234 .832 .287 .197 .061
200 .080 .817 .373 .112 .868 .489 .317 .714 .334 .150 .023
500 .088 .980 .737 .114 .987 .805 .527 .638 .225 .147 .014
1000 .103 .998 .903 .118 .998 .929 .631 .608 .214 .137 .014

Table 4: EMPIRICAL POWER, α = 1. For the FMOLS-based tests (CS and S+2 ),
the non data-dependent bandwidths M1 = [4(T/100)1/4],M2 = [2T 1/3] and the data-
dependent (DD) bandwidth are used. The DD bandwidth is calculated using the OLS
residuals in (1). The 95% critical values are 0.2210 for S+2 and 1.0413 for CS. For the
KPSSFb test, DD bandwidth is calculated using the IMOLS residuals, and the fixed-b
critical value corresponding to the specific value of b = DD/T is used in each replica-
tion. The number of simulation replications are 5,000.

The KPSSFb test is conducted using fixed-b critical value corresponding to
specific values of b. With the fixed-b rule (M = bT ), fixed-b inference exhibits
good size properties (see Table 3 and the solid lines in Figure 18). As shown in
Table 3, using large values of b helps mitigates size distortion. However, the test
power deteriorates as b increases (Table 4), and a large bandwidth can lead to
very low power, which may be smaller than empirical size. Figure 1 illustrates
this point. In Figure 1, for b = 0.2, the distribution of the test statistic under H1
(dashed line) is located left to the distribution under H0 (solid line). A similar

8The solid lines in Figure 1 are the finite sample distributions of the statistic under DGP1 for
b ∈ {0.02, 0.08, 0.2} with T = 500. The fixed-b critical values are marked on the horizontal axis
by c1 (0.0499), c2 (0.0577), and c3 (0.1147) for b = 0.02, 0.08, and 0.2, respectively.
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Figure 1: KERNEL DENSITY OF KPSSFb, DGP1 AND DGP1A, T = 500. The
solid lines are the kernel density of the test statistic for b = 0.02,0.08, and 0.2 under
DGP1. The dashed lines are the kernel density of the test statistic for b = 0.02,0.08, and
0.2 under DGP1A.

pattern may be presumably found in the distributions of the fixed-b limits given
in (5) and (6).

As shown in Table 3, the KPSSFb test controls the size reasonably well when
the DD bandwidth is employed. Notably, simulation results reveal an interest-
ing characteristic of the IMOLS residual: the DD bandwidth does not yield low
power for the KPSSFb test, unlike for the FMOLS-based tests. Theorem 2 indi-
cates that the magnitude of the DD bandwidth can account for this outcome: the
DD bandwidth calculated with △S̃u

t is Op
(
T 1/3

)
under H1, rather than Op (T ) .9

Consequently, the value of b given by the DD scheme shrinks to zero as the sam-
ple size grows, thereby ensuring substantial test power. However, as shown in
(8) the limit of the AR(1) coefficient estimate heavily depends on the first order
autocorrelation of △xt under H1. This implies that test power may be crucially
affected by the temporal dependence of △xt . The empirical power reported in
Table 4 also makes this point. For DGP7A, which only differs in the value of θ

from DGP5A and 6A, the rejection rate is only 24.9% (for T=500). For DGP5A
and DGP6A, the rejection rates are 52.7% and 66.0%, respectively.

9See Xiao and Phillips (2002).
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4.3. MODIFIED RESIDUALS

In this subsection some modified residuals (△S̆m1
t and △S̆m2

t ) are examined
whether they can improve the power of the test. Recall that △S̃u

t = ût −△x′t γ̂.
Consider the following two modified residuals:

△S̆m1
t = ût −T−c △ x′γ̂ with c ∈ (0,1/2), and

△S̆m2
t = ût −T−cvs′

t γ̂, with c ∈ [0,1/2)

where {vs
t} is a sequence of IID pseudo random numbers with zero mean and unit

variance. Denote the coefficient estimate in the AR(1) regression with
{
△S̆m1

t
}

and
{
△S̆m2

t
}

by φ̂ m1 (c) and φ̂ m2 (c), respectively, and the corresponding An-
drews’ DD bandwidths by DDm1 (c) and DDm2 (c). Note that with c = 0, △S̆m1

t
is identical to △S̃u

t . As c increases, both △S̆m1
t and △S̆m2

t come close to ût ,
and φ̂ m1 (c) and φ̂ m2 (c) is mainly determined by the temporal dependence in ût ,
which may lead to smaller size distortions for null DGPs with α being close to
1, but lower the test power under H1. Hence there is a trade-off between size and
power: the higher c, less size distortion but lower power.

By applying Lemma 1 in the Appendix, one can show that for 0 < c < 1
2 ,

φ̂
m1(c) =

1
T ∑

T
t=3 utut−1 +op (1)

1
T ∑

T−1
t=2 u2

t +op (1)
p→ Σu,u−1

Σuu
= corr (ut ,ut−1) under H0,

and

φ̂
m1(c) =

1
T 3−2c γ̂ ′ ∑T

t=3 T−2c△xt △ x′t−1γ̂ +op (1)
1

T 3−2c γ̂ ′ ∑T−1
t=2 T−2c△xt △ x′t γ̂ +op (1)

d→ γ∞′
1 Σv,v−1γ∞

1
γ∞′

1 Σvvγ∞
1

under H1.

Thus, under null DGPs, φ̂ m1(c) only reflects the persistence in ut in the limit.
For the concerned case, where α is large, it can be expected that plugging in
φ̂ m1(c) in (7) may produce a larger bandwidth than using φ̂ . Using large band-
widths can lead to better size accuracy in the fixed-b inference as demonstrated in
Table 1. Under H1, the limit of φ̂ m1(c) stays the same as that of φ̂ . Next, denote
Σs

v,v−1 = E
(
vs

t v
s′
t−1

)
, and Σs

vv = var(vs
t ) and note that Σs

v,v−1 = 0 by construction.
It can be shown that

φ̂
m2(c) d→

{
Σu,u−1

Σuu
= corr (ut ,ut−1) for 0 < c < 1

2
Σu,u−1

Σuu+γ∞′
0 γ∞

0
for c = 0

under H0,
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and

φ̂
m2(c) d→

γ∞′
1 Σs

v,v−1γ∞
1

γ∞′
1 Σs

vvγ∞
1

= 0 for 0 ≤ c <
1
2

under H1.

Note that the limit of φ̂ m2(c) is given by zero under H1, regardless of the
value of θ . Hence the limit of α̂(1) is zero, and DDm2 (c)= op

(
T 1/3

)
. Therefore,

it can be expected that the test power may be further improved, and the power
may be less sensitive to the persistence in △xt .

Table 5 reports the simulation results when employing the two modified
residuals to obtain data driven bandwidths. As predicted by the above analysis,
DDm1 (c) leads to less size distortion but lower power, compared to the original
DD bandwidth. Unreported simulation results indicate that the power decreases
with c and varies depending on the value of θ . Notably, the DDm2 (c) delivers
substantially improved power, with a significant reduction in the dependence of
test power on θ , compared to both the original DD and DDm1 (c). In particular,
Table 5 demonstrates that the DDm2 (c) bandwidth with c = 0.05 delivers less
size distortion and more balanced test performance for the KPSSFb test if the
sample size is greater than 200.

Table 6 presents empirical size for additional null DGPs with greater persis-
tence in the regression error (α = 0.95) along with the empirical power (α = 1).
The test power of CS is much higher, compared to KPSSFb. For the persistent
null DGPs, FMOLS-based tests experience severe size distortions, where the
over-rejection problem do not improve with the sample size. The KPSSFb test
may also suffer from the size distortion, but the size accuracy improves with the
sample size. The degree of over-rejection with KPSSFb depends on the DGP
parameter values of ρ and θ as well as on the choice of data-dependent band-
width rule. Overall, for the DGPs with ρ = 0.5, the FMOLS-based CS test with
M2 bandwidth delivers more balanced performance between size and power al-
though the test is subject to size distortion. The KPSSFb test may display rejec-
tion rates close to 5% when the DDm2(c) bandwidth is used with a large value of
c (i.e. c =0.2). However, this size improvement comes at the cost of substantial
power loss. When the degree of endogeneity is relatively strong (ρ = 0.8), the
KPSSFb test with DDm2(0) and DDm2(0.05) exhibits a substantially improved
size accuracy.10 The power is lower than the CS test, but the size-power trade-
off does not seem too costly.

10Table 6 shows that the performance of the KPSSFb test under persistent null DGPs (α =
0.95) gets worse for ρ = 0.5, i.e. more over-rejections. Note that the IMOLS residuals △S̃u

t
equals ût minus △x′t γ̂. Hence the poor size performance may be because the persistence in the
IMOLS residuals and the modified residuals gets higher as ρ gets smaller.
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DD DDm1(0.05) DDm2(0)

(ρ,α,θ) DGP \T 1000 100 200 500 1000 100 200 500 1000

(0, .5, .5) DGP1 .065 .141 .082 .071 .064 .154 .092 .077 .071
(0,1, .5) DGP1A .626 .186 .257 .460 .594 .352 .505 .768 .858
(.5, .5, .5) DGP2 .068 .139 .086 .074 .068 .171 .112 .090 .078
(.5, .9, .5) DGP3 .138 .145 .133 .125 .110 .279 .302 .286 .243
(.5,1, .5) DGP3A .626 .192 .262 .469 .595 .354 .516 .763 .858
(0, .8, .8) DGP4 .069 .056 .050 .067 .069 .077 .069 .083 .081
(0,1, .8) DGP4A .401 .057 .064 .187 .342 .132 .248 .552 .770
(.8, .9, .2) DGP5 .015 .267 .143 .035 .013 .370 .206 .050 .016
(.8,1, .2) DGP5A .687 .372 .464 .623 .675 .480 .612 .750 .782
(.8, .9, .5) DGP6 .023 .135 .087 .038 .019 .310 .209 .074 .030
(.8,1, .5) DGP6A .631 .195 .261 .478 .595 .386 .526 .764 .859
(.8, .9, .8) DGP7 .063 .039 .036 .053 .047 .127 .164 .140 .112
(.8,1, .8) DGP7A .405 .061 .066 .193 .348 .178 .294 .568 .765

DDm2(0.05) DDm2(0.2)

(ρ,α,θ) DGP \T 100 200 500 1000 100 200 500 1000

(0, .5, .5) DGP1 .145 .085 .074 .068 .137 .079 .072 .064
(0,1, .5) DGP1A .263 .388 .645 .770 .115 .144 .308 .468
(.5, .5, .5) DGP2 .156 .099 .082 .072 .137 .086 .075 .068
(.5, .9, .5) DGP3 .211 .216 .201 .173 .107 .092 .098 .082
(.5,1, .5) DGP3A .270 .398 .647 .772 .118 .152 .320 .473
(0, .8, .8) DGP4 .065 .058 .074 .074 .045 .045 .067 .068
(0,1, .8) DGP4A .086 .149 .386 .612 .052 .032 .094 .207
(.8, .9, .2) DGP5 .313 .163 .038 .014 .216 .108 .028 .012
(.8,1, .2) DGP5A .411 .525 .694 .743 .236 .286 .471 .573
(.8, .9, .5) DGP6 .228 .147 .052 .023 .127 .074 .037 .019
(.8,1, .5) DGP6A .300 .415 .652 .771 .148 .176 .341 .481
(.8, .9, .8) DGP7 .090 .111 .101 .080 .051 .043 .060 .052
(.8,1, .8) DGP7A .119 .203 .433 .618 .053 .056 .148 .257

Table 5: EMPIRICAL REJECTION RATES, KPSSFb WITH DDm1(c) AND
DDm2(c). This table reports the empirical size (α < 1) and power (α = 1) for the
KPSSFb test. The sample sizes are 100,200,500, and 1000. The DD, DDm1(·), and
DDm2(·) bandwidths are calculated using the IMOLS residuals and the modified IMOLS
residuals (See Section 4.3). The number of simulation replications are 5,000.
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CS KPSSFb

M2 DD DDm2(0) DDm2(0.05) DDm2(0.2)

(ρ,α,θ) \T 500 1000 500 1000 500 1000 500 1000 500 1000

(.5, .95, .2) .296 .300 .443 .404 .548 .520 .506 .411 .199 .168
(.5,1, .2) .731 .905 .653 .681 .751 .784 .689 .750 .457 .575
(.5, .95, .5) .287 .295 .275 .245 .490 .466 .360 .202 .130 .080
(.5,1, .5) .730 .903 .517 .626 .763 .858 .647 .772 .320 .473
(.5, .95, .8) .262 .275 .106 .113 .281 .280 .180 .183 .063 .072
(.5,1, .8) .715 .899 .249 .405 .558 .773 .403 .625 .108 .212
(.8, .95, .2) .386 .364 .137 .038 .187 .054 .137 .038 .071 .020
(.8,1, .2) .742 .905 .660 .687 .750 .782 .694 .743 .471 .573
(.8, .95, .5) .369 .351 .100 .033 .213 .071 .140 .045 .061 .021
(.8,1, .5) .737 .903 .527 .631 .764 .859 .652 .771 .341 .481
(.8, .95, .8) .310 .314 .075 .045 .444 .333 .124 .068 .053 .036
(.8,1, .8) .717 .895 .249 .405 .568 .765 .433 .618 .148 .257

Table 6: EMPIRICAL SIZE AND POWER, α = 0.95 AND 1. This table reports the
empirical size (α = 0.95) and power (α = 1) for the CS and KPSSFb test. The sample
sizes are 500 and 1000. The non data-dependent bandwidth M2 for the CS test is given
by [2T 1/3]. For the KPSSFb test, DD, DDm1(·), and DDm2(·) bandwidths are calculated
using the IMOLS residuals and the two modified IMOLS residuals, respectively (See
Section 4.3), and the inference is conducted with fixed-b critical values. The number of
simulation replications are 5,000.

5. CONCLUSION

This study focuses on IMOLS residual-based cointegration tests. The pro-
posed KPSSFb test, constructed using the IMOLS residual △S̃u

t , is shown to be
consistent under the traditional small-b asymptotic framework. Additionally, its
fixed-b null limit distribution is pivotal, enabling fixed-b inference. Simulation
results indicate that the KPSSFb test works reasonably well with a fixed value
of b being used, if b is not large. However, the power of the test with a large
value of b (e.g. b = 0.2) is very low. In contrast, using the Andrews’ AR(1)
plug-in data-driven bandwidth and fixed-b critical values, the KPSSFb test per-
forms reasonably well, in terms of both size and power. A key finding is that
the DD bandwidth scheme, when applied to IMOLS residual △S̃u

t , results in a
bandwidth that can produce a consistent test, whereas FMOLS-based tests are no
longer consistent with the DD scheme. However, it is shown that the DD band-
width and test power are overly sensitive to the degree of temporal dependence
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in △xt : the test power may be low (high) for the DGPs with a large (small) value
of θ . To address this issue, two modified residuals are proposed to obtain alterna-
tive data-driven bandwidths. Simulation results demonstrate that the bandwidth
based on the modified residual △S̆m2

t can improve test power, and the power is
less affected by the persistence in △xt .

From a practitioner’s perspective, the FMOLS-based tests (CS and S+2 ) with
a relatively large non data-dependent bandwidth such as M2 may be a reason-
able choice as long as the persistence in the regression error is not high (Table 3).
However, one should note that the data-dependent bandwidth should be avoided
due to the low power (Table 4). In Table 5, the KPSSFb test with the DD or mod-
ified DD bandwidths exhibit better size property compared to the FMOLS-based
tests, as long as the sample size is not small (T ≥ 200). However, the power
is much lower than those of the FMOLS-based tests. A reasonable bandwidth
choice for the KPSSFb test may be the DDm2 (c) bandwidth with c = 0.05, which
which the test shows moderate size distortion and more balanced test perfor-
mance, if the sample size is not small .

When the persistence of the regression error is high, for example α = 0.95,
the FMOLS-based tests also suffer from severe size distortions and over-rejection
is not alleviated even in large samples (Table 6). The simulation results show that
the performance of the KPSSFb test may depend on the degree of endogeneity
(ρ): (1) when ρ is not large (i.e. ρ =0.5), the KPSSFb test shows smaller size
distortion in the simulation if the modified bandwidth DDm2 (c) is applied with a
relatively large value of c such as 0.2 (Table 6). But it should be noted that this
bandwidth choice leads to low power; (2) when ρ is large (ρ =0.8), the KPSSFb

test shows more balanced performance compared to the CS test, particularly if
the DDm2 (c) bandwidth is used with c = 0.05.11
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A. MATHEMATICAL PROOFS

Proof of Theorem 1. (a) See Vogelsang and Wagner (2014, Lemma 2).
(b) See Vogelsang and Wagner (2014, Theorem 3).
(c) Parts (a) and (b) immediately yield the desired result.
(a′) To derive the limit of the IMOLS estimator θ̂ = (δ̂ ′, β̂ ′, γ̂ ′)′ under the

alternative of non-cointegration, denote θ0 = (δ ′,β ′,0)′ and note that

θ̂ = (Sx̃′Sx̃)−1, Sx̃′Sy = (Sx̃′Sx̃)−1Sx̃′(S f ′
δ +Sx′

β +X ′ ·0+Su).

Then it can be shown

T−1A−1
IM(θ̂ −θ0) = T−1A−1

IM(Sx̃′Sx̃)−1Sx̃′Su = (T−2AIMSx̃′Sx̃AIM)−1T−3AIMSx̃′Su

d→ σεΠ
−1
(∫ 1

0
g(s)g(s)′ds

)−1 ∫ 1

0
g(s)

∫ s

0
wε(u)duds.

Next, consider the residuals S̃u
t = −Sx̃′

t (θ̂ −θ0)+Su
t with Sx̃′

t = (S f ′
t ,Sx′

t ,x
′
t).

Then for the differenced residuals △S̃u
t =−x̃′t(θ̂ −θ0)+ut with x̃′t =( f ′t ,x

′
t ,△x′t) ,

it can be shown that

T−3/2
[rT ]

∑
t=2

△S̃u
t = T−3/2

[rT ]

∑
t=2

ut −T−3/2
[rT ]

∑
t=2

x̃′t(θ̂ −θ0)

= T−3/2
[rT ]

∑
t=2

ut −T−1/2
[rT ]

∑
t=2

x̃′tAIM

[
T−1A−1

IM(θ̂ −θ0)
]

⇒ σε

∫ r

0
wε(s)ds−σεg(r)′

(∫ 1

0
g(s)g(s)′ ds

)−1 ∫ 1

0
g(s)

∫ s

0
wε(u)duds

≡ σεH̃(r).
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(b′) Consider the HAC estimator σ̃2
uv = ∑

M
h=−M k

( h
M

) 1
T ∑t △S̃u

t △S̃u
t+h with

2 ≤ t, t +h ≤ T. Substituting △S̃u
t =−x̃′t(θ̂ −θ0)+ut yields

σ̃
2
uv =

M

∑
h=−M

k
(

h
M

)(
1
T ∑

t
utut+h −

1
T ∑

t
ut x̃′t+h(θ̂ −θ0) (9)

− 1
T ∑

t
ut+hx̃′t(θ̂ −θ0)+

1
T ∑

t
(θ̂ −θ0)

′x̃t x̃′t+h(θ̂ −θ0)

)
.

To prove that 1
MT σ̃2

uv is Op (1) , consider the first term in (9):

1
MT

M

∑
h=−M

k
(

h
M

)
1
T ∑

t
utut+h =

1
M

M

∑
h=−M

k
(

h
M

)
1
T ∑

t

ut

T 1/2

ut+h

T 1/2 . (10)

By the same arguments in Phillips (1988, page 432) or Xiao and Phillips (2002,
page 59), the expression in (10) converges in distribution to 2πK (0)

∫ 1
0 σ2

ε wε(r)2

dr. The second term in (9) can be shown to converge as

1
MT

M

∑
h=−M

k
(

h
M

)
1
T ∑

t
ut x̃′t+h(θ̂ −θ0)

=
1
M

M

∑
h=−M

k
(

h
M

)
1
T ∑

t
ut x̃′t+hAIM

1
T

A−1
IM(θ̂ −θ0)

=
1
M

M

∑
h=−M

k
(

h
M

)(
1
T ∑

t

ut√
T

f ′t+hτ
−1
F ,

1
T ∑

t

ut√
T

x′t+h√
T
, ∑

t

ut√
T

△x′t+h√
T

)
× 1

T
A−1

IM(θ̂ −θ0)

d→
(

2πK (0)
∫ 1

0
σεwε(r) f (r)′dr, 2πK(0)

∫ 1

0
σεwε(r)Bv(r)′dr,

2πK(0)
∫ 1

0
σεwε(r)dBv(r)′+Ω

′
εv

)
×Π

−1
(∫ 1

0
g1(s)g1(s)′ds

)−1 ∫ 1

0
g(s)

∫ s

0
σεwε(u)duds.
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Finally, the last term in (9) equals

1
MT

M

∑
h=−M

k
(

h
M

)
1
T ∑

t
(θ̂ −θ0)

′x̃t x̃′t+h(θ̂ −θ0) (11)

=
1
M

M

∑
h=−M

k
(

h
M

)
1
T ∑

t
(θ̂ −θ0)

′ 1
T

A−1
IM(

√
T AIM x̃t x̃′t+hAIM

√
T )

1
T

A−1
IM(θ̂ −θ0)

= (θ̂ −θ0)
′ 1
T

A−1
IM

[
1
M

M

∑
h=−M

k
(

h
M

)
1
T ∑

t

√
T AIM x̃t x̃′t+hAIM

√
T

]
1
T

A−1
IM(θ̂ −θ0).

Here, the expression in the bracket of the last line equals

1
M

M

∑
h=−M

k
(

h
M

)
×

( 1
T ∑t τ

−1
F ft f ′t+hτ

−1
F

1
T ∑t τ

−1
F ft T−1/2x′t+h ∑t τ

−1
F ft T−1/2△x′t+h

1
T ∑t T−1/2xt f ′t+hτ

−1
F

1
T ∑t T−1/2xt T−1/2x′t+h ∑t T−1/2xt T−1/2△x′t+h

∑t T−1/2△xt f ′t+hτ
−1
F ∑t T−1/2△xt T−1/2x′t+h ∑t T−1/2△xt T−1/2△x′t+h

)
,

which converges in distribution to(
2πK(0)

∫ 1
0 f (r) f (r)′dr 2πK(0)

∫ 1
0 f (r)Bv(r)′dr 2πK(0)

∫ 1
0 f (r)dBv(r)′

2πK(0)
∫ 1

0 Bv(r) f (r)′dr 2πK(0)
∫ 1

0 Bv(r)Bv(r)′dr 2πK(0)
∫ 1

0 Bv(r)dBv(r)′+Ωvv

2πK(0)
∫ 1

0 dBv(r) f (r)′ 2πK(0)
∫ 1

0 dBv(r)Bv(r)′+Ωvv 0

)
.

Note that the last diagonal block in above expression is zero because

1
M

M

∑
h=−M

k
(

h
M

)
∑

t
T−1/2△xtT−1/2△x′t+h =

1
M

M

∑
h=−M

k
(

h
M

)
1
T ∑

t
△xt△x′t+h

and this is nothing more than 1
M times a HAC estimator of the long-run variance

of {△xt = vt} so that the limit is zero as T and M grow. Therefore, 1
MT σ̃2

uv =
Op (1) under H1.

(c′) Immediately from parts (a′) and (b′),

KPSSFb =
T−2

∑
T
t=2

(
Ŝu

t − Ŝu
1

)2

σ̃2
uv

=
T−2

∑
T
t=2

(
∑

t
j=2△S̃u

j

)2

σ̃2
uv

=
T 2T−1

∑
T
t=2

(
T−3/2

∑
t
j=2△S̃u

j

)2

σ̃2
uv

=
T 2Op(1)
Op (MT )

= Op

(
T
M

)
.

Hence KPSSFb diverges under H1 because M
T shrinks to zero as T grows in the

framework of the traditional asymptotics.
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Lemma 1. The stochastic orders of the terms appearing in the expression of φ̂

are given as below.
(a) γ̂ = Op (1) under Assumption 1 (null of cointegration); and Op (T ) under

Assumption 2 (alternative of non-cointegration).
(b) ∑

T
t=1 û2

t = Op (T ) under Assumption 1; and Op
(
T 2
)

under Assumption 2.
(c) ∑

T
t=1 ut △ x′t γ̂ = Op (T ) under Assumption 1; and Op

(
T 2
)

under Assump-
tion 2.

(d) ∑
T
t=1 ( f ′t x′t)(θ̂1 −θ1)△ x′t γ̂ = Op(1) under Assumption 1; and Op(T 2) un-

der Assumption 2.
(e) γ̂ ′ ∑T

t=1△xt △ x′t γ̂ = Op (T ) under Assumption 1; and Op
(
T 3
)

under As-
sumption 2.

(f) ∑
T
t=1 utut−1 =Op (T ) under Assumption 1; and Op

(
T 2
)

under Assumption
2.

(g) ∑
T
t=1 ut

(
f ′t−1 x′t−1

)
(θ̂1 − θ1) = Op (1) under Assumption 1; and Op

(
T 2
)

under Assumption 2.
(h) ∑

T
t=1 ( f ′t x′t)(θ̂1 −θ1)ut−1 = Op (1) under Assumption 1; and Op

(
T 2
)

un-
der Assumption 2.

(i) (θ̂1−θ1)
′
∑

T
t=1

(
ft
xt

)
( f ′t−1 x′t−1)(θ̂1−θ1) = Op(1) under Assumption 1;

and Op(T 2) under Assumption 2.
(j) ∑

T
t=1 ut △x′t−1γ̂ =Op(T ) under Assumption 1; and Op(T 2) under Assump-

tion 2.
(k) ∑

T
t=1 ( f ′t x′t)(θ̂1 −θ1)△ x′t−1γ̂ = Op (1) under Assumption 1; and Op

(
T 2
)

under Assumption 2.
(l) ∑

T
t=1△x′t γ̂ut−1 =Op(T ) under Assumption 1; and Op

(
T 2
)

under Assump-
tion 2.

(m) γ̂ ′ ∑T
t=1△xt

(
f ′t−1 x′t−1

)
(θ̂1−θ1)=Op(1) under Assumption 1; and Op

(
T 2
)

under Assumption 2.
(n) γ̂ ′ ∑T

t=1△xt △ x′t−1γ̂ = Op (T ) under Assumption 1; and Op
(
T 3
)

under
Assumption 2.

Proof of Lemma 1. Define AIM = diag(T−1/2τ
−1
F ,T−1Ik). Consider θ̂1 =(δ̂ ′, β̂ ′)′.

By the Frisch-Waugh-Lovell Theorem,

θ̂1 =
(
W ′ (I −PX)W

)−1W ′ (I −PX)Sy with W = (S f ... Sx),

and

A−1
IM(θ̂1 −θ1) =

(
AIM

(
W ′W −W ′PXW

)
AIM
)−1 ×AIM

(
W ′Su −W ′PX Su) .
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One can show that T−2AIMW ′WAIM, T−2AIMW ′PXWAIM, and T−2AIM(W ′Su

−W ′PX Su) are Op(1), from which it can be deduced that A−1
IM(θ̂1 −θ1) is Op (1)

under Assumption 1.
Next, suppose that Assumption 2 holds (non-cointegration). Note that

T−1A−1
IM(θ̂1 −θ1)

=
(
T−2AIM

(
W ′W −W ′PXW

)
AIM
)−1

T−3AIM
(
W ′Su −W ′PX Su) . (12)

The limit of the expression inside the inverse is given by

T−2AIM(W ′W −W ′PXW )AIM
d→ ΠΨ1Π,

where

Π =

(
Ip 0
0 Ω

1/2
vv

)
and

Ψ1 =
∫ 1

0
g1(r)g′1(r)dr−

∫ 1

0
g1(r)w′

v(r)dr
[∫ 1

0
wv(r)w′

v(r)dr
]−1 ∫ 1

0
wv(r)g′1(r)dr

with g1(r)≡ (
∫ r

0 f (s)′ds,
∫ r

0 wv(s)′ ds)′. The term outside the inverse in (12) also
converges since

T−3AIM(W ′Su −W ′PX Su)

d→ σεΠ

[∫ 1

0
g1(r)

(∫ r

0
wε(s)ds

)
dr

−
∫ 1

0
g1(s)w′

v(s)ds(
∫ 1

0
wv(s)w′

v(s)ds)−1
∫ 1

0
wv(r)

(∫ r

0
wε(s)ds

)
dr
]

≡ σεΠΨ2.

Therefore, T−1A−1
IM(θ̂1 −θ1)

d→ σεΠ
−1

Ψ
−1
1 Ψ2.

(a) Under Assumption 1, γ̂
d→ Ω−1

vv Ωvu +σuvΩ
−1/2
vv dγ ≡ γ∞

0 as shown in The-
orem 2 of VW (2014), where dγ is defined in part (b) of Theorem 1. Next, under
Assumption 2, by denoting θ = (δ ′,β ′,0′)′ , one can show

T−1A−1
IM(θ̂ −θ) =

(
T−2AIMSx̃′Sx̃AIM

)−1
T−3AIMSx̃′Su

d→
(
Π

′)−1
(∫ 1

0
g(s)g(s)′ds

)−1

Π
−1
(

Π

∫ 1

0
g(s)

∫ s

0
σεwε (u)duds

)
,
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from which it is deduced that T−1γ̂
d→ Ω

−1/2
vv d̃γ ≡ γ∞

1 , where d̃γ is the last k
components of (

∫ 1
0 g(s)g(s)′ ds)−1(

∫ 1
0 g(s)

∫ s
0 σεwε (u)duds).

(b) Suppose Assumption 1 holds. Recall that ût = ut − ( f ′t x′t)(θ̂1 −θ1) and

û2
t = u2

t +(θ̂1 −θ1)
′
(

ft
xt

)
×
(

f ′t x′t
)
(θ̂1 −θ1)−2(θ̂1 −θ1)

′
(

ftut

xtut

)
.

The sum over t of the second term, (θ̂1 −θ1)
′A−1

IMAIM ∑
T
t=1

(
ft
xt

)
( f ′t x′t)AIMA−1

IM

(θ̂1 −θ1) is Op (1) since

AIM

T

∑
t=1

(
ft
xt

)(
f ′t x′t

)
AIM

d→
∫ 1

0

(
f (r)

Bv (r)

)
( f (r)Bv(r))dr

and A−1
IM(θ̂1−θ1)=Op (1). The sum of the third term, 2(θ̂1−θ1)

′
∑

T
t=1

(
ftut

xtut

)
=

2(θ̂1 −θ1)
′A−1

IMAIM ∑
T
t=1

(
ftut

xtut

)
is also Op (1) because

AIM

T

∑
t=1

(
ftut

xtut

)
d→
( ∫ 1

0 f (r)dBu (r)∫ 1
0 Bv (r)dBu (r)+∑

∞
k=0 E (vtut+k)

)
.

So it holds that 1
T ∑

T
t=1 û2

t =
1
T ∑

T
t=1 u2

t +op (1) .
Next, under Assumption 2, note that ∑

T
t=1 u2

t is Op
(
T 2
)
. Now by noting

T−1A−1
IM(θ̂1 −θ1) = Op (1), one can show both

1
T 2 (θ̂1 −θ1)

′
T

∑
t=1

(
ft
xt

)
( f ′t x′t)(θ̂1 −θ1) and

2
T 2 (θ̂1 −θ1)

′
T

∑
t=1

(
ftut

xtut

)
are Op(1). Hence, ∑

T
t=1 û2

t = Op
(
T 2
)
.

(c) Given the result (a) of this Lemma, 1
T ∑

T
t=1 ut △ x′t γ̂

d→ Σuvγ∞
0 under As-

sumption 1. Under Assumption 2,

1
T 2

T

∑
t=1

ut △ x′t γ̂ =
1
T

T

∑
t=1

ut △ x′t
γ̂

T
d→

(∫ 1

0
σεwε (r)dB′

v(r)+
∞

∑
k=0

E
(
ε0v′k

))
γ

∞
1 .

(d) Under Assumption 1, ∑
T
t=1( f ′t x′t)(θ̂1−θ1)△x′t γ̂ =(θ̂1−θ1)

′A−1
IMAIM ∑

T
t=1

( f ′t x′t)
′△x′t γ̂ can be shown to converge by using A−1

IM(θ̂1−θ1) = Op (1), part (a)
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of this Lemma, and by noting

AIM

T

∑
t=1

(
f ′t x′t

)′△ x′t
d→
∫ 1

0
f (r)dB′

v(r),
∫ 1

0
Bv(r)dB′

v(r)+
∞

∑
k=0

E
(
vtv′t+k

)
.

Under Assumption 2,

1
T 2

T

∑
t=1

(
f ′t x′t

)
(θ̂1 −θ1)△ x′t γ̂ = (θ̂1 −θ1)

′A−1
IMT−1A−1

IM

T

∑
t=1

( f ′t x′t)△ x′t
γ̂

T

can be shown to converge by noting T−1A−1
IM(θ̂1 −θ1) = Op (1) and by applying

part (a) of this Lemma.
(e) With 1

T ∑
T
t=1△xt △ x′t

p→ Σvv,
1
T γ̂ ′ ∑T

t=1△xt △ x′t γ̂
d→ γ∞′

0 Σvvγ∞
0 under As-

sumption 1, and 1
T 3 γ̂ ′ ∑T

t=1△xt △ x′t γ̂
d→ γ∞′

1 Σvvγ∞
1 under Assumption 2 by part

(a).
( f ) Under Assumption 1, 1

T ∑
T
t=1 utut−1

p→ Σu,u−1. Under Assumption 2,

1
T 2

T

∑
t=1

utut−1 =
1

T 2

T

∑
t=1

ut (ut − εt) =
1

T 2

T

∑
t=1

u2
t −

1
T 2

T

∑
t=1

utεt

=
1

T 2

T

∑
t=1

u2
t −

1
T

Op (1)
d→
∫ 1

0
Bε (r)

2 dr.

Thus, ∑
T
t=1 utut−1 = Op

(
T 2
)
.

(g) ∑
T
t=1 ut

(
f ′t−1 x′t−1

)
(θ̂1 −θ1) = ∑

T
t=1 ut

(
f ′t−1 x′t−1

)
AIMA−1

IM(θ̂1 −θ1). Un-

der Assumption 1, it holds that A−1
IM(θ̂1 − θ1) = Op (1) ,∑T

t=1 ut f ′t−1T− 1
2 τ

−1
F =

∑
T
t=1 T− 1

2 ut f ′t τ
−1
F +op (1) and ∑

T
t=1 utx′t−1T−1 =T−1

∑
T
t=1 utx′t −T−1

∑
T
t=1 ut vt =

Op(1). Therefore, ∑
T
t=1 ut

(
f ′t−1 x′t−1

)
(θ̂1 − θ1) = Op (1) . Suppose Assumption

2 holds. Write the expression as

1
T 2

T

∑
t=1

ut( f ′t−1 x′t−1)(θ̂1 −θ1) =
T

∑
t=1

T−1ut
(

f ′t−1 x′t−1
)

AIMT−1A−1
IM(θ̂1 −θ1).

But, T−1A−1
IM(θ̂1 −θ1) = Op(1),

T

∑
t=1

T−1ut f ′t−1T− 1
2 τ

−1
F =

1
T

T

∑
t=1

T− 1
2 ut f ′t τ

−1
F +op (1)

d→
∫ 1

0
Bε (r) f (r)dr

and T−2
∑

T
t=1 utx′t−1 =

1
T ∑

T
t=1 T−1/2utT−1/2x′t +op (1)

d→
∫ 1

0 Bε (r) B′
v (r)dr.
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(h) Similar arguments in the proof of (g) can be applied.
(i) Similar arguments in the proof of (b) can be applied.
( j) Proof is analogous to (c). Under Assumption 1,

1
T

T

∑
t=1

ut △ x′t−1γ̂ =
1
T

T

∑
t=1

utv′t−1γ̂
d→ Σu,v−1γ

∞
0 .

Under Assumption 2,

1
T 2

T

∑
t=1

ut △ x′t−1γ̂ =
1
T

T

∑
t=1

utv′t−1
γ̂

T
=

(
1
T

T

∑
t=2

utv′t +
1
T

T

∑
t=1

εtv′t−1

)
γ̂

T

d→

(∫ 1

0
Bε (r)dB′

v(r)+
∞

∑
k=0

E(εtv′t+k)+Σε,v−1

)
γ

∞
1

with Σε,v−1 = p lim
( 1

T ∑
T
t=1 εtv′t−1

)
, which yields the desired result.

(k) Suppose Assumption 1 holds. Rewrite the expression as

(θ̂1 −θ1)A
−1
IMAIM

T

∑
t=1

(
ftv′t−1
xtv′t−1

)
γ̂ = (θ̂1 −θ1)A

−1
IM

(
∑

T
t=1 T−1/2τ

−1
F ftv′t−1

∑
T
t=1 T−1xtv′t−1

)
γ̂.

Note that 1
T ∑

T
t=1 xtv′t−1 =

1
T ∑

T−1
t=2 xtv′t +

1
T ∑

T
t=1 vtv′t−1

d→
∫ 1

0 Bv (r)dB′
v (r)+∑

∞
k=0

E
(
vtv′t+k

)
+Σv,v−1, which, being combined with A−1

IM(θ̂1−θ1) = Op (1) and part
(a) of this Lemma, yields the desired result. Under Assumption 2,

1
T 2 (θ̂1 −θ1)A

−1
IMAIM

T

∑
t=1

(
ftv′t−1
xtv′t−1

)
γ̂ =

1
T
(θ̂1 −θ1)A

−1
IMAIM

T

∑
t=1

(
ftv′t−1
xtv′t−1

)
γ̂

T
,

which can be shown to be Op(1) by noting T−1A−1
IM(θ̂1−θ1) = Op (1) and using

part (a) of this Lemma.
(l) Under Assumption 1, 1

T ∑
T
t=1△x′t γ̂ut−1 = γ̂ ′ 1

T ∑
T
t=1△xtut−1 converges to

γ∞′
0 Σv,u−1. Under Assumption 2,

1
T 2

T

∑
t=1

△x′t γ̂ut−1 =
γ̂ ′

T
1
T

T

∑
t=1

vt (ut − εt)

d→ γ
∞′
1

(∫ 1

0
Bu(r)dBv(r)+

∞

∑
k=0

E (utvt+k)−Σvε

)
,

yielding ∑
T
t=1△x′t γ̂ut−1 = Op

(
T 2
)
.
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(m) Proof is analogous to (d).
(n) Under Assumption 1, 1

T γ̂ ′ ∑T
t=1△xt △ x′t−1γ̂ converges to γ∞′

0 Σv,v−1γ∞
0 .

Under Assumption 2, 1
T 2 γ̂ ′ ∑T

t=1△xt △ x′t−1γ̂ converges to γ∞′
1 Σv,v−1γ∞

1

Proof of Theorem 2. Rewrite φ̂ by using △S̃u
t = ut − ( f ′t x′t)

(
θ̂1 −θ1

)
−△x′t γ̂ =

ût −△x′t γ̂ as

φ̂ =
∑

T
t=3△S̃u

t △ S̃u
t−1

∑
T
t=3

(
△S̃u

t−1

)2 =
∑

T
t=3
(
ΞB1

t +ΞB2
t
)

∑
T−1
t=2

(
ΞA1

t +ΞA2
t
) ,

where ΞA1
t = û2

t ,

Ξ
A2
t =−

[
2
(

ut −
(

f ′t x′t
)
(θ̂1 −θ1)

)
−△x′t γ̂

]
×△x′t γ̂,

Ξ
B1
t =

[
utut−1 −ut

(
f ′t−1 x′t−1

)
(θ̂1 −θ1)−

(
f ′t x′t

)
(θ̂1 −θ1)ut−1

+(θ̂1 −θ1)
′ ( f ′t x′t

)′
( f ′t−1 x′t−1)(θ̂1 −θ1)

]
, and

Ξ
B2
t =

[
−ut △ x′t−1γ̂ +

(
f ′t x′t

)
(θ̂1 −θ1)△ x′t−1γ̂ −△x′t γ̂ut−1

+△ x′t γ̂( f ′t−1 x′t−1)(θ̂1 −θ1)+ γ̂
′△ xt △ x′t−1γ̂

]
.

First, under the null of cointegration, by the results in Lemma 1 in the Ap-
pendix, the denominator and numerator of φ̂ , if divided by T, jointly converge in
distribution to

1
T

T−1

∑
t=2

(
Ξ

A1
t +Ξ

A2
t
) d→ Σuu −2Σuvγ

∞
0 + γ

∞′
0 Σvvγ

∞
0 ,

and

1
T

T

∑
t=3

(
Ξ

B1
t +Ξ

B2
t
) d→ Σu,u−1 −Σu,v−1γ

∞
0 + γ

∞′
0 Σv,v−1γ

∞
0 − γ

∞′
0 Σv,u−1,

respectively. Thus, by the continuous mapping principle,

φ̂
d→

Σu,u−1 −Σu,v−1γ∞
0 + γ∞′

0 Σv,v−1γ∞
0 − γ∞′

0 Σv,u−1

Σuu −2Σuvγ∞
0 + γ∞′

0 Σvvγ∞
0

.
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Next, under the alternative of non-cointegration, again by using Lemma 1,
one can show the denominator and numerator of φ̂ , if divided by T 3, jointly
converge in distribution to

1
T 3

T

∑
t=2

(
Ξ

A1
t +Ξ

A2
t
) d→ γ

∞′
1 Σvvγ

∞
1 and

1
T 3

T

∑
t=3

(
Ξ

B1
t +Ξ

B2
t
) d→ γ

∞′
1 Σv,v−1γ

∞
1 ,

respectively, which yields

φ̂
d→ γ∞′

1 Σv,v−1γ∞
1

γ∞′
1 Σvvγ∞

1
.

B. THE KPSSFB TEST WITH TRENDING STOCHASTIC REGRESSORS,
WITH DETRENDING

In the main paper, the I(1) regressors have been assumed to contain no drift
(i.e., no deterministic linear trend). This assumption is relaxed in this section.
Consider the model

yt = f ′t δ + x′tβ +ut , xt = αx +δxt + x0
t ,

with △x0
t = vt and ft = (1, t)′ and maintain Assumption 1. Without a drift (δx =

0), it holds that

T−1/2AIMSx̃
[rT ] = T−1/2AIM

 ∑
[rT ]
t=1 ft

∑
[rT ]
t=1 xt

x[rT ]

⇒ Πg(r),

from which (3) in the main paper can be derived. However, with a nonzero drift
in xt , this result would not hold because the linear trend in xt would dominate the
other stochastic components.

Now consider a normalizing matrix

AD
IM =

(
T−1/2τ

−1
F 0 0

−T−1Dx T−1Ik 0
−DF

x 0 Ik

)
with

(
AD′

IM
)−1

=

(
T 1/2τF T 1/2τF D′

x T 1/2τF DF ′
x

0 T Ik 0
0 0 Ik

)
,

where Dx =

(
0

... δx

)
and DF

x =

(
δx

... 0
)

.
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Theorem 3. With the linear trends in stochastic regressors, under Assumption
1, it holds that, as T→ ∞, T−1/2AD

IMSx̃
[rT ] ⇒ Πg(r),r ∈ [0,1],

(
AD′

IM
)−1

(θ̂ −θ∗)+

T 1/2τFDF ′
x Ω−1

vv Ωvu

0
0


d→ σuvΠ

−1
(∫ 1

0
g(s)′g(s)ds

)−1 ∫ 1

0
g(s)wuv(s)ds,

T−1/2
[rT ]

∑
t=2

△S̃u
t ⇒ σuvP̃(r) , r ∈ [0,1] ,

and KPSSFb weakly converges to the limit in (5) with f (r) = (1,r)′.

Proof of Theorem 3.

T−1/2AD
IMSx̃

[rT ] = T−1/2AD
IM

∑
[rT ]
t=1 ft

∑
[rT ]
t=1 xt
x[rT ]

=

 T−1τ
−1
F ∑

[rT ]
t=1 ft

−T−3/2Dx ∑
[rT ]
t=1 ft +T−3/2

∑
[rT ]
t=1 xt

−T−1/2DF
x ∑

[rT ]
t=1 ft +T−1/2x[rT ]



=


T−1τ

−1
F ∑

[rT ]
t=1 ft

−T−3/2
(
[rT ]([rT ]+1)

2

)
δx +[rT ]T−3/2αx +T−3/2

(
[rT ]([rT ]+1)

2

)
δx +T−3/2

∑
[rT ]
t=1 x0

t

−[rT ]T−1/2δx +T−1αx +[rT ]T−1/2δx +T−1/2x0
[rT ]


=

 T−1τ
−1
F ∑

[rT ]
t=1 ft

[rT ]T−3/2αx +T−3/2
∑
[rT ]
t=1 x0

t
T−1αx +T−1/2x0

[rT ]


⇒


∫ r

0 f (s)ds
Ω

−1/2
vv

∫ r
0 Wv(s)ds

Ω
−1/2
vv Wv(r)

=

I2 0 0
0 Ω

−1/2
vv 0

0 0 Ω
−1/2
vv


 ∫ r

0 f (s)ds∫ r
0 Wv(s)ds

Wv(r)

= Πg(r).

Note that premultiplication by AD
IM eliminates the nonzero drift (linear trend) in

the second and third segment of AD
IMSx̃

[rT ]. Next, rewrite the IMOLS estimator as(
AD′

IM
)−1

(θ̂ −θ∗)

=
(

T−2AD
IMSx̃′Sx̃AD′

IM

)−1(
T−2AD

IMSx̃′Su
)
−
(
AD′

IM
)−1 (0,0,Ω′

vuΩ
−1
vv
)′

=
(

T−2AD
IMSx̃′Sx̃AD′

IM

)−1(
T−2AD

IMSx̃′Su
)
−

 T 1/2τFDF ′
x Ω−1

vv Ωvu

0
Ω−1

vv Ωvu

 ,
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and with a further rearrangement,

(AD′
IM)−1(θ̂ −θ∗)+

 T 1/2τFDF ′
x Ω−1

vv Ωvu

0
0


=
(

T−2AD
IMSx̃′Sx̃AD′

IM

)−1(
T−2AD

IMSx̃′Su
)
−

 0
0

Ω−1
vv Ωvu

 .

Now, it is straightforward to prove the second result by noting that the limit

of the right hand side is σuvΠ−1
(∫ 1

0 g(s)′g(s)ds
)−1 ∫ 1

0 g(s)wuv(s)ds, as shown
by Vogelsang and Wagner (2014). This limit is identical to the null limiting
distribution of A−1

IM(θ̂ −θ∗) in the case of δx = 0.
Thereafter, consider the scaled partial sum of △S̃u

t = ut −△x′tΩ
−1
vv Ωvu −

x̃′t(θ̂ −θ∗), where △x′t = δ ′
x +△x0′

t , and x̃′t = ( f ′t ,x
′
t ,△x′t).

T−1/2
[rT ]

∑
t=2

△S̃u
t

= T−1/2
[rT ]

∑
t=2

ut −T−1/2
(

x′[rT ]− x′1
)

Ω
−1
vv Ωvu −T−1/2

[rT ]

∑
t=2

x̃′t(θ̂ −θ∗)

= T−1/2
[rT ]

∑
t=2

ut −T−1/2
(
[rT ]δ ′

x −δ
′
x + x0′

[rT ]

)
Ω

−1
vv Ωvu (13)

−T−1/2
[rT ]

∑
t=2

(
f ′t ,x

′
t ,△x′t

)
AD′

IM
(
AD′

IM
)−1
(

θ̂ −θ∗

)
+op (1) .

However, one can rewrite the second summation as

[rT ]

∑
t=2

(
f ′t ,x

′
t ,△x′t

)
AD′

IM
(
AD′

IM
)−1

(θ̂ −θ∗)

=
[rT ]

∑
t=2

(
f ′t ,x

′
t ,△x′t

)
AD′

IM

(AD′
IM
)−1

(θ̂ −θ∗)+

 T 1/2τFDF ′
x Ω−1

vv Ωvu

0
0


−

[rT ]

∑
t=2

(
f ′t ,x

′
t ,△x′t

)
AD′

IM

 T 1/2τFDF ′
x Ω−1

vv Ωvu

0
0

 .
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By noting that AD′
IM

 T 1/2τFDF ′
x Ω−1

vv Ωvu

0
0

=

 DF ′
x Ω−1

vv Ωvu

0
0

 , one can show

[rT ]

∑
t=2

(
f ′t ,x

′
t ,△x′t

)
AD′

IM

T 1/2τFDF ′
x Ω−1

vv Ωvu

0
0


=

[rT ]

∑
t=2

δ
′
xΩ

−1
vv Ωvu =

(
[rT ]δ ′

x −δ
′
x
)

Ω
−1
vv Ωvu.

Hence, the δ ′
x-terms in (13) are canceled out, yielding

T−1/2
[rT ]

∑
t=2

△S̃u
t = T−1/2

[rT ]

∑
t=2

ut −T−1/2x0′
[rT ]Ω

−1
vv Ωvu

−T−1/2
[rT ]

∑
t=2

(
f ′t ,x

′
t ,△x′t

)
AD′

IM

(AD′
IM
)−1

(θ̂ −θ∗)+

T 1/2τFDF ′
x Ω−1

vv Ωvu

0
0


+op (1) .

This is an analogous expression to that in Vogelsang and Wagner (2014, p.759).
Apply the first two results in this Theorem to get T−1/2

∑
[rT ]
t=2 △S̃u

t ⇒ σuvP̃(r) ,
r ∈ [0,1]. Upon this result, the limit of KPSSFb can be immediately derived.
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