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Tests of the Null of Cointegration Using
Integrated and Modified OLS Residuals®

Cheol-Keun Cho'

Abstract This study develops a KPSS (Kwiatkowski et al.,|1992)-type cointe-
gration test utilizing residuals from integrated and modified ordinary least squares
(IMOLS) estimation. The test statistic, denoted by KPSS’” has a pivotal null
limit distribution under fixed-b assumption. The proposed test demonstrates rea-
sonable performance in terms of size and power when the Andrews’ AR(1) plug-
in data-dependent (DD) bandwidth is employed and fixed-b critical values are
used. Additionally, two modified IMOLS residuals are proposed to obtain al-
ternative data-dependent bandwidths. In the simulation experiment, these band-
widths deliver improved power properties for the proposed test.
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1. INTRODUCTION

This study addresses residual-based cointegration test with the presence of
a cointegrating relationship taken as the null hypothesisE] A fixed-b inferential
method is developed within the integrated and modified OLS (Vogelsang and
Wagner, [2014) framework. A KPSS (Kwiatkowski et al.l, [1992)-type statistic
is used as the test statistic, and its pivotal fixed-b limit distribution (Kiefer and
Vogelsang, [2005) is employed to obtain fixed-b critical values for hypothesis
testing.

To construct the test statistic, a kernel nonparametric heteroskedasticity and
autocorrelation consistent (HAC) estimator is required to estimate the long-run
variance (LRV). However, it is well-known that statistical inference using test
statistics scaled by a HAC estimator often suffers from size distortions, partic-
ularly when the persistence of the underlying time series is high. See Miiller
(2014}, Miiller| (2005)), |Caner and Kilian| (2001), and |Gabriel (2003). The choice
of bandwidth required for constructing a HAC estimator is central to this prob-
lem. The simulation results in the present paper indicate that the proposed test
suffers from greater size distortions as the ratio (b = M/T) of bandwidth (M)
to the sample size (T') becomes smaller. Conversely, the power of the test de-
creases as b increases. A data-dependent (DD) bandwidth scheme, such as the
AR(1) plug-in method proposed by |/Andrews|(1991), is commonly used in prac-
tice to select an appropriate bandwidth. However, in the context of cointegration
tests, this data-driven bandwidth often delivers low power (see|Xiao and Phillips
(2002), |Chot and Ahn| (1995), and |Gabriel (2003))). The DD scheme, when ap-
plied to residuals from the existing methods—such as OLS or Fully Modified
OLS (FMOLS) residuals—delivers too large a bandwidth of order O, (T'), with
M /T not shrinking to zero. Consequently, the test is not consistent, as consis-
tency requires M /T — 0 as T — oo. For a detailed analysis, see Xiao and Phillips
(2002). An important finding in this study is that the DD bandwidth calculated
with IMOLS residuals is O), (Tl/ 3) under non-cointegration, yielding a band-
width ratio (b = M /T) that shrinks to zero as T increases. This unique property
can lead to reasonable power for the test. The rest of the paper is organized as
follows: Section 2 presents the model, assumptions, and a brief review of the
IMOLS estimation. Section 3 develops the asymptotic theory and investigates
the limit behavior of the DD bandwidth calculated with the IMOLS residual.
Section 4 investigates the performance of the KPSS*? test via Monte Carlo sim-

IMany existing cointegration tests take the presence of cointegrating relationship as the null
hypothesis. See|Shin|(1994), Harris and Inder| (1994), and | Xiao and Phillips| (2002).
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ulations. Some modified IMOLS residuals that can be used to obtain alternative
DD bandwidths are proposed. Section 5 concludes the study. The proofs and
additional results are available in the Appendix.

2. MODEL SETUP AND ASSUMPTIONS

Consider the following model:

Vi =[]0 +xB+u, (1)

Xt = X1+ Vs

fort=1,...,T, where f; = (1,1, ...,ﬂ’*l)/ is a p x 1 deterministic regressor vector
and x; is a k x 1 stochastic regressor vector. Both y; and x; are I(1) processes,
and x; has no driftE]

Assumption 1 (Hy: Cointegration). Let 1, = (u;, v{)/ and assume that a func-
tional central limit theorem holds:

[rT]
T7-1/2 ; n = B(r) = @:Eg) = Ql/2W(r), re[0,1],

where W (r) = (wy, (r),w,(r)) is a (k+ 1) x 1 vector of standard Brownian mo-

tion with
T
Q Q
Q: hm var T71/2 = |: uu uv:| 7
e ( ( t:Zl nt 'QVM -vi

oo

where Q is a p.d. and equals )’ E (n, n,_ j) if 1, is assumed to be stationary.

Jj=—o0

Under Assumption 1, y, and x; are cointegrated up to the deterministic trend
f;. As in Vogelsang and Wagner (2014), the following Cholesky form of Q!/2 is
used:

!
where G,fv =Q — QWQ;} Q,, and A, = Q,,, (Q;vl/ 2) . In addition, define

Zuu z"uv
=k (ntn[,) - |:Zvu Z"vv:| ’

2Theorem 3 in the Appendix provides additional results for the case where x; has a drift,
extending the results in Hansen (1992b).
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When there is no cointegrating relationship (i.e., with u, being an I(1) series), u,
can be represented by the sum of its differences (say {& }), and becomes a
spurious regression.

Assumption 2 (H;: Non-cointegration). Let 1, = (st,v;)/ and assume that a
functional central limit theorem holds for {1} :

rT]
1/zint < r?) =Q'2W(r), reo,1],

v I"

where W (r) = (we(r),w’,(r))" is standard Brownian motion with
~ . ~1/2 o} Qe
Q = lim | var / Znt = 8 > 0.
VE QVV

IMOLS estimator (Vogelsang and Wagner, 2014). By summing both sides of
(T) and adding the original regressors x;, the following integrated and modified
regression can be obtained:

SV =8"8+SYB+xy+S" 2)

with §} = ’j:ly ; and Sf , 87, and S} defined in an analogous manner. The
IMOLS estimator of 8 = (&', 8/,7)’ is given by

(5/B }A/ (Sx/Sx 1Si/Sy’

where we let §* = (S7:5X) with 8/ = (S],...87), §* = (§%,...8%), and X =
(xl, .. .XT)/.

Note that, unlike FMOLS or Dynamic OLS (DOLS, Phillips and Loretan
(1991)) estimators, IMOLS estimator does not require the choice of any tuning
parameter, such as the bandwidth (FMOLS) or the number of leads and lags
(DOLS).

Define

T='12¢;0 0 0
Ay = 0 Tﬁllk 0],
0 0 I



CHEOL-KEUN CHO 59

where 75 is a diagonal matrix with diagonal elements 1, 7, 72,..., TP~ ! satisfy-
ing

["T] r
'Y —>/ F(s)ds, r € [0,1]
=1 0

as T grows, with f(s) = (1,s,s%,...,s"~1). Under the null of cointegration, Vo-
gelsang and Wagner (2014) show

58 T'27:(5 - )
Am| B-B |=| TE-B)
7— Q' Qu (7—9,,' Q) 3)

-1
4 G IT! </g(s)g(s)’ds> /g(s)wu.v(s)ds,
where IT = diag(lp,Qigz,Ql/z) and g(r) = ([fy f(s)'ds, [y wu(s) ds,wy(r))".
3. IMOLS-BASED COINTEGRATION TESTS

Denote the residuals in (2) by §;’ and consider its difference
NS =58t = Sty =~ (8 8) —xi(B — B) — Ax7 =t — A,
where S¥ = sy SI's — B —x7. With 6, = (&, B'Y, 6y = (&8',',0), and
0. = (6,713/7 €2y )/’
A:S? = U — (f[/,x;)(é\] - 91) - Ax;?: U — (ft’,x;,Ax;)(a— 90)
=u — (f],x], Ax;)(§— 6.) — AXQ Q.
The proposed KPSS-type test statistic is given by
~\2 ~ N2

T2y, < s AS?) T2y, (S? - S’f)

KPSSFb — L )
G2, G2,

)

where 62, is a HAC estimator constructed using A§”:

Z Zk(llMﬂ) NSNS

121

The Bartlett kerneP|k(z) = (1 — |z[)1(|z| < 1) is considered in this paper, but
other kernels may be used.

3Thus, 0' . is a Newey-West estimator (Newey and West, [1987).
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Theorem 1. Under Assumption 1 (Hy), it holds that as T— oo,

(a) T~/ (S’[‘ 7] §’f) = I/ZZ[rT AS* = 6,,P(r), r € [0,1], where

= [ dwinls) 50 [ | 1g<s>g<s>’ds} N [ 601~ Gs))awats):

(b) under small-b asymptotics, &2, % 62, (1+dydy), where dy denotes the

last k components of (fy g(s)g(s) ds)™" [3 (G(1) = G(s5)) dwu(s) with
G(s) = Jo 8(u)du

(c) under small-b asymptotics,
P(r )zdr

KPSSFb 4 o

4

Under Assumption 2 (Hy),

(d) T3/? Z[rT AS” = Gsﬁ(r), where
-1

()= [ wels)ds —glr) [ | 1g<s>g<s>’ds] [ 5 [ welwauas

(b') under small-b asymptotics, 62,= 0, (MT);
(c') under small-b asymptotics, KPSSFb 0, (%) which implies KPSSF? —
oo as T — oo.

Proof. Proofs for parts (a) and () are provided in Vogelsang and Wagner (2014).
See Lemma 2 and Theorem 3, respectively. For parts (c¢) through (¢’), see the
Appendix.

Remark 1. Theorem 1 shows that the KPSS'” test is consistent against the
alternative hypothesis of non-cointegration under the traditional small-b asymp-
totic framework. However, the limit in part (c¢) does not capture the impact of
bandwidth. Fixed-b limit distributions are derived under the assumption that
the bandwidth (M) is proportional to the sample size (T) (i.e., M = bT with
b € (0,1]). Typically, fixed-b limits depend on the bandwidth ratio (b) and the
kernel being used. The next Corollary provides the fixed-b limits for KPSS"?.

Corollary 1. Assume M = bT for a fixed value of b € (0,1]. Then, under As-
sumption 1 (Hyp), as T — oo,

) P(u)*du fo P(u)*du
// ‘“' aP(ap(sy PGP

KPSSF? & (5)
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where ﬁ(r) is defined in Theorem 1 . Under Assumption 2 (Hy), as T — oo,
Jo H (u)du _ Jo H(w)du
1 /1 — N = >
| () aran) P(b.H)
0 Jo

where H(r) is defined in Theorem 1.

KPSSFb 4 , (6)

Proof. Theorem 1 (parts (a) and (a’)) and the continuous mapping theorem im-
mediately yield the desired result.

Remark 2. The fixed-b percentiles for the random variable in (3) can be simu-
lated by using independent and identically distributed (IID) N (0, 1) pseudo ran-
dom numbers. Researchers can pick a fixed-b critical value for a given specific
value of b=M/T.

In the simulation study (Section 4), the AR(1) plug-in data-dependent band-
width rule proposed by |Andrews| (1991) will be used. Below the Imits of the

AR(1) coefficient calculated using {A:ST;’} are derived under Hy and H;, respec-
tively. This result can explain the empirical findings reported in Section 4.

Consider the AR(1) plug-in data-dependent rule (Andrews, 1991) with the
Bartlett kernel:

. 492
with G(1) = ——0 %
(1-9)*(1+9)

where 5 is the estimated coefficient in the AR(1) regression with Ag,”, t =
3,....T:

wl—

M = 1.1447 (a(1)T)

Yl ASE Agﬁl
NN
Yis (Aszufl)

¢ pu—
Define
_ : 1 I Euu Zuv
27777 = pllmfzntnt - (Z;v Zvv and

. 1 y 1 Yy 1
Z 1 = 11m b / g u,u u,v
nn-1=p T ZTMH (Zw_l Ew_l) )

where 1, = (u;,v})’. Theorem 2 provides the limits of (E under the null and
alternative hypotheses, respectively.

4An equivalent expression of P(b,ﬁ) is available in|Cho and Vogelsang| (2017).
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Theorem 2. Under Hy, as T— oo,

Zu,ufl - Z"u,vfl 7/80 - ')/Solzv,ufl + y.(;olzv.,vfl }/80
Z‘4uu - 2Zuv}'80 + %OIZWYSO

y 1
(17 —YSQ)Zn,n—1< ¥ >

e

where Y denotes the weak limit of the IMOLS estimator Y under Hy. Under Hj,
as T— oo,

s

,yr,/zv,v—l YT’
K

where Yy denotes the weak limit of ; under Hy. Here, Yy and ;" are given by
(see the proof for Lemma 1 in the Appendix)

s

®)

W =00 Q0+ 0,00 2dy, and v =0, d,
where dy denotes the last k components of (fol 2(s)g(s) ds)™! fol (G(1)—=G(s))

dwyy(s), and d~y denotes the last k components of (fol g(s)g(s) ds)™! (fol g(s) [y
Oewe (u) duds).

Proof. See the Appendix.

Theorem 2 demonstrates that under Hy, the limit of (3 depends on the autoco-
variances of 1, = (uy, v;)'. However, under Hj, the limit of a primarily depends
on the persistence of Ax; = v;, with no dependence on the persistence of utE]
Given this result, it follows that &(1) in (7) has a nondegenerate limit, and the
DD bandwidthis O, (Tl/ 3 ) ﬁ Therefore, the DD bandwidth may not be too large
under H{, and the power of the test is not necessarily low. This property is unique
because other residuals, such as the OLS residuals, lead to a bandwidth of O, (T')
under H;, as documented in [Xiao and Phillips| (2002). Furthermore, Theorem 2
explains why the power of the KPSST? test may be substantially affected by the
persistence in Ax;.

SWith k = 1, the limit of (f)\ under H is reduced to the first order autocorrelation of Ax; (equals
0 in the simulation setting). Therefore, for an alternative DGP, the resulting DD bandwidth tends
to be large when 0 is large, leading to reduced power compared to the case where 6 is small.

OThis is because 7 = O, (1) under Hy (cointegration) and 7 = O,(T) under H; (non cointe-
gration) as presented in Lemma 1 (a). Hence the terms involving ¥ dominate other terms in both
the denominator and numerator of a , under H;.
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4. SIMULATION STUDY

4.1. DGP SPECIFICATIONS

To evaluate the performance of the test in finite samples, the following data
generation process is considered.

Vo= 1+x1+2x +u = 14+ (1, 2)x +uy,

where u; = qu; | + &, Ax; = v; = (vis,vy)', and v; = diag(0,0)v, 1 + (En, 52,)’

witlﬂ]

& 1 p 5
& | ~NID|p 1 0
& 501

The key parameter is . If o = 1, the regression is a spurious regression with no
cointegrating relationship. If |a| < 1, then there exists a cointegrating relation-
ship. The parameters o and 6 primarily control the persistence of the regression
error term, u;, and v, = Ax,, respectively. The strength of the endogeneity is
controlled by p.

For comparisons, the results for FMOLS-based KPSS (S2+ ; Harris and Inder,
1994) and CUSUM (CS; Xiao and Phillips, 2002) tests are reported. A variety
of bandwidth rules are considered: conventional non-data-dependent rules, the
fixed-b rule (M = bT), and the AR(1) plug-in data-dependent (DD) rule of |An-
drews|(1991)). In this section, the results with conventional non-data-dependent
rules are reported for M1 = [4(T/100)"/%] and M2 = [2T"/3]. The number of
simulation replications is 5,000. The 95% critical values for the case of f; =1
and k = 2 are 0.2210 for S5 and 1.0413 for CS. The traditional critical value for
KPSSF? associated with the limit in @) is 0.049, and fixed-b critical values for
K PSSP are presented in Table 2| for the selected values of b.

2 2

7For nonzero values of p, it is required that — 7 <p< 7 =0.8944 to ensure the covariance
matrix
1 p §
V=|p 1 0
)

is positive definite since the eigenvalues of this matrix are 1 and 1+ 4 p.
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DGP1 DGP2 DGP3 DGP4 DGP5 DGP6 DGP7

p 0 0.5 0.5 0 0.8 0.8 0.8

o 0.5 0.5 0.9 0.8 0.9 0.9 0.9

0 0.5 0.5 0.5 0.8 0.2 0.5 0.8
DGPIA DGP3A DGP4A DGP5SA DGP6A DGP7A

p 0 0.5 0 0.8 0.8 0.8

a 1 1 1 1 1 1

0 0.5 0.5 0.8 0.2 0.5 0.8

Table 1: DGP SPECIFICATIONS FOR MONTE CARLO SIMULATIONS. There ex-
ists a cointegrating relationship in DGP1 through DGP7, while there is no cointegration
in DGP1A through DGP7A. The parameter 6 controls the persistence of Ax;, and the
strength of the endogeneity is controlled by p.

b 95% percentile
0.02 0.0499
0.04 0.0516
0.06 0.0541
0.08 0.0577

0.1 0.0627
0.2 0.1147
0.3 0.1850
0.4 0.2491
0.5 0.3001

1 0.5081

Table 2: FIXED-b CRITICAL VALUES (NOMINAL SIZE OF 5%, INTERCEPT
ONLY AND k = 2). The critical values were simulated using IID standard normal
pseudo random numbers with 7' = 1,000 and 50, 000 replications.

4.2. EMPIRICAL SIZE AND POWER

Tables (3| and 4| provide the simulation results for the CS, S5 and KPSS'®
tests. For the FMOLS-based tests (CS and S;’ ), the bandwidth M2 delivers mild
size distortion and reasonable power. The Andrews’ DD bandwidth also provides
a good size property. However, its power is very low. This result corroborates
a well-known property of the DD bandwidth that is documented in |Xiao and
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Phillips (2002): The DD bandwidth is O,(T') under H;, which renders the test
inconsistent.

FM-CUSUM (CS)  FM-KPSS (S)) IM-KPSS(KPSSF?)
(pa,6) T | DD M1 M2 DD M1 M2 DD 0027 0.08T 01T 02T

100 | .031 .057 .024 .044 .073 .033 .142 416 124 121 135

DGP1 200 | .043 .067 .030 .055 .082 .040 .082 .170 .058  .060 .077
(0,.5,.5) 500 | .048 .077 .040 .056 .081 .046 .072 .076 044 .039 .040
1000 | .054 .080 .046 .056 .075 .048 .065 .056 .040 .034 .033

100 | .024 .050 .017 .040 .065 .029 .142 408 124 124 128

DGP2 200 | .037 .062 .024 .051 .072 .036 .087 .177 063 .065 .073
(.5,.5,.5) 500 | .047 .075 .039 .055 .081 .047 .075 .075 .047  .044 .037
1000 | .049 .078 .041 .056 .075 .048 .068 .058 042 .034 .031

100 | .025 .337 .069 .046 410 .119 .177 771 194 138 .06l

DGP3 200 | .021 434 .100 .039 483 .138 .170 .565 113 .077  .036
(.5,.9,.5) 500 | .034 .538 .129 .047 514 .144 .157 282 .061  .044 .032
1000 | .037 .536 .124 .050 473 .128 .138 .143 .046  .037 .031

100 | .012 .129 .027 .025 .158 .047 .062 .788 100 .062  .067

DGP4 200 | .021 .186 .042 .039 .197 .068 .052 534 051 .032  .050
(0,.8,.8) 500 | .038 .223 .062 .049 209 .074 .068 .198 042 .032  .035
1000 | .045 225 .065 .057 .195 .073 .069 .100 .041  .033  .032

100 | .035 488 .104 .040 575 .159 .327 518 249 215 112

DGP5 200 | .019 596 .128 .031 .654 .169 .176  .209 123 126 .082
(.8,.9,.2) 500 | .019 .691 .126 .027 .682 .144 .042 .035 056 .069 .068
1000 | .014 .673 .107 .024 .634 .115 .015 .013 .040 .045 .046

100 | .023 428 .079 .042 522 .137 .172  .658 167 132 .074

DGP6 200 | .017 .555 .108 .033 .620 .152 .112 295 077 .070 .046
(.8,.9,.5) 500 | .018 .667 .116 .029 .660 .141 .044 .053 .040 .041 .039
1000 | .016 .657 .105 .027 .621 .118 .023 .021 033 .034 .029

100 | .040 .076 .006 .036 .116 .024 .053 .862 132 071 .055

DGP7 200 | .004 .157 .024 .011 .194 .047 .057 .648 072 .044 .036
(.8,.9,.8) 500 |.011 .315 .060 .022 .306 .078 .069 .234 .049  .035 .034
1000 | .021 .542 .102 .036 .491 .115 .063 .099 .041  .036 .029

Table 3: EMPIRICAL SIZE, & # 1. For the FMOLS-based tests (CS and S;’), the non
data-dependent bandwidths M1 = [4(7T /100)'/4],M2 = [2T'/3] and the data-dependent
(DD) bandwidth are used. The DD bandwidth is calculated using the OLS residuals in
. The 95% critical values are 0.2210 for S; and 1.0413 for CS. For the KPSSF? test,
DD bandwidth is calculated using the IMOLS residuals, and the fixed-b critical value
corresponding to the specific value of b= DD/T is used in each replication. The number
of simulation replications are 5,000.
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| FM-CUSUM (CS)  EM-KPSS (S;) IM-KPSS (KPSSF?)
(p.a,6) T | DD M1 M2 DD M1 M2 DD 0.02T 0.08T 01T 02T

100 | .133 577 187 .136 .675 .289 .228  .820 277 195 .062
DGP1A 200 | .155 .813 .370 .142 .863 .493 .308 .711 224 152 .027
(0,1,.5) 500 |.176 .978 722 .148 985 .792 511 .625 208 134 012
1000 | .188 .998 .900 .144 999 930 .626 .610 212 136 .011

100 | .114 555 171 117 .659 276 .232  .826 279 197 .058
DGP3A 200 | .136 .830 .373 .128 .869 .488 .319 .716 229 153 .024
(.5,1,.,5) 500 |.154 977 .730 .131 983 806 .517 .630 221 149 013
1000 | .166 998 903 .131 .999 .932 .626 .605 214 133 015

100 | .121 483 .130 .135 .586 .236 .068 .921 227 136 .048
DGP4A 200 | .149 .776 333 .152 833 455 .087 .852 183 1107 .024
(0,1,.8) 500 |.181 975 .702 .170 .982 .783 .237 .718 185 117 .013
1000 | .193 998 .898 .169 .998 927 401 .648 201 127 011

100 | .102 580 .189 .106 .678 .285 .435 .751 352 264 .080
DGP5A 200 | .116 .830 .388 .117 .874 .500 .530 .673 267 190 .034
(.8,1,.2) 500 |.133 980 .742 .113 988 .809 .660 .628 239 162 .017
1000 | .144 999 905 .119 998 929 .687 .604 220 .142 .015

100 | .063 .546 .170 .098 .647 .266 .234  .832 287 197 .061
DGP6A 200 | .080 .817 .373 .112 .868 .489 317 714 334 150 .023
(.8,1,.,5) 500 |.088 .980 .737 .114 987 .805 .527 .638 225 147 014
1000 | .103 998 903 .118 .998 .929 .631 .608 214 137 014

Table 4: EMPIRICAL POWER, & = 1. For the FMOLS-based tests (CS and S; ),
the non data-dependent bandwidths M1 = [4(T /100)'/4], M2 = [2T'/3] and the data-
dependent (DD) bandwidth are used. The DD bandwidth is calculated using the OLS
residuals in . The 95% critical values are 0.2210 for S; and 1.0413 for CS. For the
KPSS? test, DD bandwidth is calculated using the IMOLS residuals, and the fixed-b
critical value corresponding to the specific value of b = DD/T is used in each replica-
tion. The number of simulation replications are 5, 000.

The KPSS? test is conducted using fixed-b critical value corresponding to
specific values of b. With the fixed-b rule (M = bT), fixed-b inference exhibits
good size properties (see Table |3|and the solid lines in Figure . As shown in
Table[3| using large values of b helps mitigates size distortion. However, the test
power deteriorates as b increases (Table ), and a large bandwidth can lead to
very low power, which may be smaller than empirical size. Figure 1 illustrates
this point. In Figure 1, for » = 0.2, the distribution of the test statistic under H;
(dashed line) is located left to the distribution under Hy (solid line). A similar

8The solid lines in Figure are the finite sample distributions of the statistic under DGP1 for
b € {0.02,0.08, 0.2} with T = 500. The fixed-b critical values are marked on the horizontal axis
by c1 (0.0499), ¢2 (0.0577), and ¢3 (0.1147) for b = 0.02, 0.08, and 0.2, respectively.
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Kernel Density of IMOLS-KPSS-Fb (normal kemel)
95% cv = 0.04988(c1), 0.05768(c2), 0.11466(c3) respectively for b=0.02, 0.08, and 0.2
T T

b=0.02, DGP1 (null)

— =008, DGP1 (null)

— b=0.2, DGP1 (null)

=0.02, DGP1A (alterative)

== = b=0.08, DGP1A (alternative)

== = b=0.2, DGP1A (alternative)

Figure 1: KERNEL DENSITY OF KPSSF”, DGP1 AND DGP1A, T =500. The
solid lines are the kernel density of the test statistic for » = 0.02,0.08, and 0.2 under
DGP1. The dashed lines are the kernel density of the test statistic for » = 0.02,0.08, and
0.2 under DGP1A.

pattern may be presumably found in the distributions of the fixed-b limits given
in (5) and (6).

As shown in Table the KPSS’? test controls the size reasonably well when
the DD bandwidth is employed. Notably, simulation results reveal an interest-
ing characteristic of the IMOLS residual: the DD bandwidth does not yield low
power for the KPSS™? test, unlike for the FMOLS-based tests. Theorem 2 indi-
cates that the magnitude of the DD bandwidth can account for this outcome: the
DD bandwidth calculated with AS¥ is 0, (Tl/ 3) under H, rather than O, (T') H
Consequently, the value of b given by the DD scheme shrinks to zero as the sam-
ple size grows, thereby ensuring substantial test power. However, as shown in
(8) the limit of the AR(1) coefficient estimate heavily depends on the first order
autocorrelation of Ax; under H;. This implies that test power may be crucially
affected by the temporal dependence of Ax,. The empirical power reported in
Table [ also makes this point. For DGP7A, which only differs in the value of 6
from DGP5A and 6A, the rejection rate is only 24.9% (for T=500). For DGP5SA
and DGP6A, the rejection rates are 52.7% and 66.0%, respectively.

9See|Xiao and Phillips|(2002).
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4.3. MODIFIED RESIDUALS

In this subsection some modified residuals (AS"™ and AS;”D are examined
whether they can improve the power of the test. Recall that AS" = i, — Ax]Y.
Consider the following two modified residuals:

AS™M =i, —T~¢ AX7with ¢ € (0,1/2), and
AS™” =i, — Ty, with ¢ €]0,1/2)

where {v{ } is a sequence of IID pseudo random numbers with zero mean and unit
variance. Denote the coefficient estimate in the AR(1) regression with {AS;’” }
and {AS™} by ™ (c) and ¢™ (c), respectively, and the corresponding An-
drews’ DD bandwidths by DD™ (c) and DD (c). Note that with ¢ = 0, AS"
is identical to AS" As c increases, both AS™ and AS™ come close to i,
and @™ (c) and 6’"2 (¢) is mainly determined by the temporal dependence in i,
which may lead to smaller size distortions for null DGPs with & being close to
1, but lower the test power under H;. Hence there is a trade-off between size and
power: the higher c, less size distortion but lower power.
By applying Lemma 1 in the Appendix, one can show that for 0 < ¢ < %

| T
T Yo—3 Ustl—1 +0, (1) ﬂ)zu.,ufl

= corr (us,u;,—1) under Hy,
%Z,T 21M{2+0P(1) Lo

" (c) =

and

ﬁ?ZITT’T_ZCAxle; 1?4_0]7( ) d szvv 1Y°°

— under H;.
75— ZL?Z[T le 2Ny Axi7+0,(1) B EY

" (c) =

Thus, under null DGPs, (/b\ml (c¢) only reflects the persistence in u, in the limit.
For the concerned case, where « is large, it can be expected that plugging in
¢’"1 ) in ( . ) may produce a larger bandwidth than using ¢ Using large band-
widths can lead to better size accuracy in the fixed-b inference as demonstrated in
Table Under Hj, the limit of (]3"“ (c¢) stays the same as that of (]3 . Next, denote
I, =E (viv" ), and 5, = var (v}) and note that X} ,_1 = 0 by construction.
It can be shown that

Z"u.ufl 1

N a | 3= =corr(u,u—y) for0<c<s

0" (c) = { Zﬁ‘;u,l 7 f 0 2 under Hy,
St 5 ore=
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and .
$m2 (c) 4, L) z,‘lv’vflﬁo =0for0<c< 1 under H;.
NG 2

Note that the limit of (?)\mz(c) is given by zero under Hj, regardless of the
value of 6. Hence the limit of 0(1) is zero, and DD (¢) =0, (Tl/ 3). Therefore,
it can be expected that the test power may be further improved, and the power
may be less sensitive to the persistence in Ax;.

Table [3] reports the simulation results when employing the two modified
residuals to obtain data driven bandwidths. As predicted by the above analysis,
DD™ (c) leads to less size distortion but lower power, compared to the original
DD bandwidth. Unreported simulation results indicate that the power decreases
with ¢ and varies depending on the value of 8. Notably, the DD (c) delivers
substantially improved power, with a significant reduction in the dependence of
test power on 6, compared to both the original DD and DD™ (c). In particular,
Table |5| demonstrates that the DD™ (¢) bandwidth with ¢ = 0.05 delivers less
size distortion and more balanced test performance for the KPSS™? test if the
sample size is greater than 200.

Table [6] presents empirical size for additional null DGPs with greater persis-
tence in the regression error (@ = 0.95) along with the empirical power (o = 1).
The test power of CS is much higher, compared to KPSS*?. For the persistent
null DGPs, FMOLS-based tests experience severe size distortions, where the
over-rejection problem do not improve with the sample size. The KPSS'? test
may also suffer from the size distortion, but the size accuracy improves with the
sample size. The degree of over-rejection with KPSSF” depends on the DGP
parameter values of p and 8 as well as on the choice of data-dependent band-
width rule. Overall, for the DGPs with p = 0.5, the FMOLS-based CS test with
M?2 bandwidth delivers more balanced performance between size and power al-
though the test is subject to size distortion. The KPSS*” test may display rejec-
tion rates close to 5% when the DD (c) bandwidth is used with a large value of
c (i.e. ¢ =0.2). However, this size improvement comes at the cost of substantial
power loss. When the degree of endogeneity is relatively strong (p = 0.8), the
KPSSF? test with DD™(0) and DD™2(0.05) exhibits a substantially improved
size accuracy[o] The power is lower than the CS test, but the size-power trade-
off does not seem too costly.

10Table E] shows that the performance of the KPSSF” test under persistent null DGPs (o =
0.95) gets worse for p = 0.5, i.e. more over-rejections. Note that the IMOLS residuals Agj‘
equals #; minus Ax}7. Hence the poor size performance may be because the persistence in the
IMOLS residuals and the modified residuals gets higher as p gets smaller.
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| DD DD™ (0.05) DD™(0)
(p,a,6) DGP\T | 1000 100 200 500 1000 100 200 500 1000
(0,.5,.,5)  DGPI | .065 .141 .082 .071 .064 .154 .092 .077 .071
(0,1,.5) DGPIA | .626 .186 257 .460 .594 352 .505 .768 .858
(.5,.5,.5) DGP2 | .068 .139 .086 .074 .068 .171 .112 .090 .078
(.5,.9,.5) DGP3 | .138 .145 .133 .125 .110 279 .302 .286 .243
(.5,1,.,5) DGP3A | 626 .192 262 469 .595 .354 516 .763 .858
(0,.8,.8) DGP4 | 069 .056 .050 .067 .069 .077 .069 .083 .081
(0,1,.8) DGP4A | 401 .057 .064 .187 342 .132 248 552 .770
(.8,.9,.2) DGP5 | .015 .267 .143 .035 .013 .370 .206 .050 .016
(.8,1,.2) DGP5A | .687 372 464 .623 675 480 .612 .750 .782
(.8,.9,.5) DGP6 | .023 .135 .087 .038 .019 .310 209 .074 .030
(.8,1,.5) DGP6A | .631 .195 261 478 .595 386 .526 .764 .859
(.8,.9,.8) DGP7 | .063 .039 .036 .053 .047 .127 .164 .140 .112
(.8,1,.8) DGP7A | 405 .061 .066 .193 .348 .178 .294 .568 .765
| DD™(0.05) DD™(0.2)
(p,a,6) DGP\T | 100 200 500 1000 100 200 500 1000
(0,.5,.5)  DGPI 145 085 .074 .068 .137 .079 .072 .064
(0,1,.5) DGPIA 263 388 .645 770 .115 .144 308 .468
(.5,.5,.5) DGP2 156 .099 .082 .072 .137 .086 .075 .068
(.5,.9,.5) DGP3 211 216 201 .173 .107 .092 .098 .082
(.5,1,.5) DGP3A 270 398 647 772 118 .152 320 473
(0,.8,.8) DGP4 065 .058 .074 .074 .045 .045 .067 .068
(0,1,.8) DGP4A 086 .149 386 .612 .052 .032 .094 .207
(.8,.9,.2) DGP5 313 163 .038 .014 216 .108 .028 .012
(.8,1,.2) DGP5A A1l 525 694 743 236 286 471 573
(.8,.9,.5) DGP6 228 147 052 .023 .127 .074 .037 .019
(.8,1,.5) DGP6A 300 415 652 771 148 176 341 481
(.8,.9,.8) DGP7 090 111 .101 .080 .051 .043 .060 .052
(.8,1,.8) DGP7A 119 203 433 618 .053 .056 .148 257

Table 5: EMPIRICAL REJECTION RATES, KPSSF’ wiTH DD™(c) AND

DD™(c).

This table reports the empirical size (@ < 1) and power (& = 1) for the

KPSSF? test. The sample sizes are 100,200,500, and 1000. The DD, DD™(-), and
DD (-) bandwidths are calculated using the IMOLS residuals and the modified IMOLS
residuals (See Section 4.3). The number of simulation replications are 5,000.



CHEOL-KEUN CHO 71

| s KPSS’®
| om2 DD DD™(0)  DD™(0.05) DD™(0.2)
(p,a,0)\T | 500 1000 500 1000 500 1000 500 1000 500 1000

(.5,.95,.2) | 296 300 443 404 548 520 .506 411 199 .168
(.5,1,.2) 731 905 653  .681 751 784 .689 750 .457 575
(.5,.95,.5) | 287 295 275 245 490 466 360 202 .130 .080
(.5,1,.5) 730 903 517 .626 763 .858 .647 772 320 .473
(.5,.95,.8) | 262 275 .106 .113 281 .280 .180 .183 .063 .072
(.5,1,.8) 715 899 249 405 558 773 403 .625 .108 212
(.8,.95,.2) | 386 364 .137 .038 .187 .054 .137 .038 .071 .020
(.8,1,.2) 742 905 660 .687 750 782 .694 743 471 573
(.8,.95,.5) | 369 351 .100 .033 213 .071 .140 .045 .061 .021
(.8,1,.5) 37 903 527 .631 764 .859 .652 771 341 481
(.8,.95,.8) | 310 314 .075 .045 444 333 124 .068 .053 .036
(.8,1,.8) J17 895 249 405 568 765 433 .618 .148 257

Table 6: EMPIRICAL SIZE AND POWER, o = 0.95 AND 1. This table reports the
empirical size (@ = 0.95) and power (& = 1) for the CS and KPSS*? test. The sample
sizes are 500 and 1000. The non data-dependent bandwidth M2 for the CS test is given
by [27'/3]. For the KPSS'" test, DD, DD™!(-), and DD"?(-) bandwidths are calculated
using the IMOLS residuals and the two modified IMOLS residuals, respectively (See
Section 4.3), and the inference is conducted with fixed-b critical values. The number of
simulation replications are 5,000.

5. CONCLUSION

This study focuses on IMOLS residual-based cointegration tests. The pro-
posed KPSSF? test, constructed using the IMOLS residual Agf’, is shown to be
consistent under the traditional small-b asymptotic framework. Additionally, its
fixed-b null limit distribution is pivotal, enabling fixed-b inference. Simulation
results indicate that the KPSS™? test works reasonably well with a fixed value
of b being used, if b is not large. However, the power of the test with a large
value of b (e.g. b =0.2) is very low. In contrast, using the Andrews’ AR(1)
plug-in data-driven bandwidth and fixed-b critical values, the KPSS"? test per-
forms reasonably well, in terms of both size and power. A key finding is that
the DD bandwidth scheme, when applied to IMOLS residual A:S:;‘, results in a
bandwidth that can produce a consistent test, whereas FMOLS-based tests are no
longer consistent with the DD scheme. However, it is shown that the DD band-
width and test power are overly sensitive to the degree of temporal dependence
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in Ax; : the test power may be low (high) for the DGPs with a large (small) value
of 0. To address this issue, two modified residuals are proposed to obtain alterna-
tive data-driven bandwidths. Simulation results demonstrate that the bandwidth
based on the modified residual AS/™ can improve test power, and the power is
less affected by the persistence in Ax;.

From a practitioner’s perspective, the FMOLS-based tests (CS and S;’ ) with
a relatively large non data-dependent bandwidth such as M2 may be a reason-
able choice as long as the persistence in the regression error is not high (Table[3).
However, one should note that the data-dependent bandwidth should be avoided
due to the low power (Table @ In Table|5| the KPSSF? test with the DD or mod-
ified DD bandwidths exhibit better size property compared to the FMOLS-based
tests, as long as the sample size is not small (T > 200). However, the power
is much lower than those of the FMOLS-based tests. A reasonable bandwidth
choice for the KPSSF? test may be the DD (c¢) bandwidth with ¢ = 0.05, which
which the test shows moderate size distortion and more balanced test perfor-
mance, if the sample size is not small .

When the persistence of the regression error is high, for example o = 0.95,
the FMOLS-based tests also suffer from severe size distortions and over-rejection
is not alleviated even in large samples (Table[6). The simulation results show that
the performance of the KPSS™ test may depend on the degree of endogeneity
(p): (1) when p is not large (i.e. p =0.5), the KPSS™? test shows smaller size
distortion in the simulation if the modified bandwidth DD™2 (c) is applied with a
relatively large value of ¢ such as 0.2 (Table [6). But it should be noted that this
bandwidth choice leads to low power; (2) when p is large (p =0.8), the KPSS* b
test shows more balanced performance compared to the CS test, particularly if
the DD (c) bandwidth is used with ¢ = 0.05
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A. MATHEMATICAL PROOFS

Proof of Theorem 1. (a) See Vogelsang and Wagner (2014, Lemma 2).
(b) See Vogelsang and Wagner (2014, Theorem 3).
(c) Parts (a) and (b) immediately yield the desired result.

(') To derive the limit of the IMOLS estimator 6 = (3’ , E’ ,7)" under the
alternative of non-cointegration, denote 6y = (8’, 8’,0)" and note that

6 = (575", §YS = (SYSY) 'SV (S'8 + SYB+ X' -0+ SY).
Then it can be shown
T~ A;h (0 — 60) = T~ AL (57S%) sV 8" = (T2 A S S* An) ' T3 Ay 8
1 -1 1 s
4 G IT™! </ g(s)g(s)’ds) / g (s)/ we (u)duds.
0 0 0
Next, consider the residuals S* = —SV (5: 60) + S with S7 = (/' 87 . x)).

Then for the differenced residuals AS* = —%/(6 — 6y) +u; with X = (f/,x,, Axl)
it can be shown that

Ty [rT] 7]
T32Y ASE =Ty u, —T7%?Y (06— 6)
t=2 t=2 t=2

[rT] [rT] N
—T32Y =T Y F A [T’lA,’A}(Q - 90)]
=2 =2

/0] g(s) /Oswg(u)duds

-1

= O¢ /Ong(S>ds —oeg(r) (/0] g(s)g(s)'ds)

= G:H(r).
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(b') Consider the HAC estimator 62, = Yol _, k(L) Ly, AS‘ASY , with
2 <t,t+h <T. Substituting AS* = —35;(5— 6o) + u; yields

— M h 1 1 ISR

O-MV = lz;Mk M ? ;M;u[+h — ? ;M;Xt+h(6 — 90) (9)
1 ~ l « ~ _ ~
—? Zut+h3€;(6 - 6()) + ? Z(Q - GO)IX[.SELHZ(G — 60)) .
t t

To prove that 1162, is O, (1), consider the first term in @):

1 X h\ 1 1 ¥ h\ 1 U Upip
— kl— )= - — kl— )= . 1
it X, i) 7 2o =3 X +(37) 7%

T1/2T1/2

By the same arguments in Phillips (1988, page 432) or Xiao and Phillips (2002,
page 59), the expression in (10) converges in distribution to 27K (0) fol 02we(r)?
dr. The second term in (9) can be shown to converge as

1 %k<h>lz (G- )
- by U Xy py 0
MT =, \M)T4&"""
: %k<h>12u5¢4 A=A (6 — 6p)
Yy Y 1A+ MM IM 0
Mhsz M t a
1 X h 1 Uz 1 u X u, Nx
_ L el 2 / —177 7lt+h7 U t+h>
i, I, ) (PRt T e TR
1 1

27K (0) /0 ] ogwg(r)dBv(r)’JrQ;v)

x T} (/Olgl(s)gl(s)’ds>_l /Olg(s) /OS Oewe (u)duds.
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Finally, the last term in (9)) equals

R A\ 1w~ _ .
T Y k(M)TZ(Q—QO)/xt%;JFh(@—GO) (1)
h=—M t
1 X AN 1 - 1 . I
= Y & 7 ?Z(e—eo) ?A,M(ﬁA,Mx,xHhA;M\/T)?A,M(G—90)
h=—M 4
. A 11 Y h\ 1 . 1o~
= (60— 060)' A | Y & M ?ZﬁAIMx;xHhA[M\/T A (60— ).
h=—M t

Here, the expression in the bracket of the last line equals
p
1 M h T ot F L AT, L AT,
— Z k{— | x| #57 V2% fl 07t $ 5, T V2T V2% Y, T2, 771204, |,
M, =y \M LT V2Axf ot LT AT 2, S T 2o T 20,
which converges in distribution to

27K (0) fy f(r)f(r)'dr  27K(0) fy £(r)By(r)'dr 27K (0) fy f(r)dB(r)’
27K (0) Jy By (1) f(r)dr  2mK(0) [y B,(r)B,(r)dr 27K(0) [y B,(r)dB,(r)+Q
27K (0) fy dB,(r)£(r) 2K(0) fi dB,(r)B,(r)'+Quy 0

Note that the last diagonal block in above expression is zero because

1 f k h ZTﬁl/zAfol/zAx’ :i h
M, =, \M)% ' thT M

M 1
k(=) =Y AxAx,,
1:Z—M <M) T; i xt+l

I

and this is nothing more than % times a HAC estimator of the long-run variance

of {Ax; = v} so that the limit is zero as T and M grow. Therefore, +1-62, =
O, (1) under H;.
(") Immediately from parts (a’) and (b'),
~ ~\ 2 ~\2
b T2y, (S;l —Sbf> T2y, ( s AS?)
Gy Gy
N2
21T -3/2
TR (17PELAS) T o, (T
a 63\) _OP(MT)_ P M

Hence KPSSF? diverges under H; because % shrinks to zero as T' grows in the
framework of the traditional asymptotics.
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Lemma 1. The stochastic orders of the terms appearing in the expression of (})\
are given as below.
(a) Y= 0, (1) under Assumption 1 (null of cointegration); and O, (T) under
Assumption 2 (alternative of non-cointegration).
(b) Y @2 = 0, (T) under Assumption 1; and O, (T*) under Assumption 2.
(¢) Y u Ax}7= O, (T) under Assumption 1; and O, (T?) under Assump-
tion 2.
(d) YL, (f1x)(6;— 6,) Axy= 0,(1) under Assumption 1; and O,(T?) un-
der Assumption 2.
(e) YY) Axy Axj¥ = 0, (T) under Assumption 1; and O, (T?) under As-
sumption 2.
(f) Z,T:1 w1 =0 (T) under Assumption 1; and 0, (Tz) under Assumption
2.
(8) Yiyu (f_yx_)) (6, —6)) = O, (1) under Assumption 1; and O, (T?)
under Assumption 2.
(h) XL, (f &) (6 — 6y )uy—y = Oy (1) under Assumption 1; and O, (T?) un-
der Assumption 2.
(i) (6 — 61) L < xt ) (fl4 x;,l)(a —61) = 0,(1) under Assumption 1;

t
and O,(T?) under Assumption 2.
() L u AX,_ Y= 0,(T) under Assumption 1; and O,(T?) under Assump-
tion 2.
k) YT, (f x) (6, — 6)) AxX,_1¥ = 0,(1) under Assumption 1; and O, (T?)
under Assumption 2.
(1) Y- AXYu—1 = Op(T) under Assumption 1; and O, (T*) under Assump-
tion 2.
(m) YL Dx (f_y x_y) (61— 61) = 0,(1) under Assumption 1; and O, (72)
under Assumption 2.
(n) YL Ax; Ax]_ ¥ = 0, (T) under Assumption 1; and O, (T*) under
Assumption 2.

Proof of Lemma 1. Define Ajy = diag(T '/t T~'I}). Consider 0, = (3’, B’)’.
By the Frisch-Waugh-Lovell Theorem,

0= (W (I—PO)W) "W (I—P)S with W = (8 8,
and

Z;A/}(é\l —61) = (A (W'W —W'PW) XIM)71 X Ay (W'S" —W'PgS").
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One can show that T72Z1MW/WZ1M, T72Z]MWIP)(WZIM, and TﬁZZ]M(WIS”
—W'PxS") are O,(1), from which it can be deduced that Z;A,;(gl —01)is 0,(1)
under Assumption 1.

Next, suppose that Assumption 2 holds (non-cointegration). Note that

T~ A (61— 6) (12)
= (T %A (W'W =W PW) Apg) ' T A (W'S* = W'PcSY).

The limit of the expression inside the inverse is given by

T 2A10(W'W — W' PyW)Apy, % TI 11,

_ (1, o
=10 qp

#i= [ a0 ar— [ a0 ][] [ noger

with g1(r) = (fy f(s)'ds, [ wu(s)" ds)’. The term outside the inverse in (12) also
converges since

where

and
—1

T A (W'S" —W'PyS")

ot [a) [ welsias)

_/01gl(s)w’v(s)ds(/olwv(s)w’v(s)ds)_1 /Olwv(r) </Ong(S)ds) dr]
= 0. [1¥9,.

Therefore, T*IZI_A},(/O} —6y) KN Ggﬁ_l‘l’fl‘l’z.

(a) Under Assumption 1, ?i Q1.+ GWQV_VI/ Zdy = ¥; as shown in The-
orem 2 of VW (2014), where dy is defined in part (b) of Theorem 1. Next, under
Assumption 2, by denoting 6 = (8', 8/,0')’, one can show

—~ ~ o~ -1 ~
T4} (6 0) = (T_ZAIMSX’S"AIM> T34, "

4 ()~ (/OIS(S)g(S)/ds> ! (H/Olg(s) /OS Cewe (u)duds) ,

-1
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from which it is deduced that T_I?i Q;vl/ 2d~y = v, where d~y is the last k

components of ( f) g(s)g(s) ds)~"(fy g(s) J§ Gewe (u) duds).
(b) Suppose Assumption 1 holds. Recall that u, = u, — (f/x,)(6; — 6;) and

i = uf + (6 - ><f> (/%) (81 — 1) 2(81 - )(ftul>

Xt Uy

The sum over ¢ of the second term, (8 — )’ A,MAIM Yo, (ﬁ ) (f x;)K,MK;A,}

(6, —6y) is 0, (1) since
S Ji y N7t d ! f(r)
A 3 (8) )2 [ (300 ) 1080

and A;,, (6, — 6;) = 0, (1). The sum of the third term, 2(8; — ;) ¥, <f’”') _

XUt

2(6, — 61)A,MA1M Y-, <ft ’) is also O, (1) because

Ay Z <£Z;) ( Jo By (1) d”gﬂg)fg%% (Vruz+k))'

So it holds that + Y7 &2 = + Y7 u? +0,(1).
Next, under Assumptlon 2, note that ¥, u? is O, (T?). Now by noting

T*IX,_A,],(@ —6;) = 0, (1), one can show both

1~ L ~ 2~ L/ fu
7 (0-0') 1<ﬁ> UG- and (01— ) <£u;)
are Op(1). Hence, Y_ @} = 0, (T?).

(¢) Given the result (a) of this Lemma, %ZZ:] Uy Axﬁ/\g XY, under As-
sumption 1. Under Assumption 2,

1 y ! S
T2 Zu,Axty_ ?Z’M,Ax;% 4 (/0 oewe (r)dB,(r) + ZE(£0V;<)> 7

k=0

(d) Under Assumption 1, Y7 (f! x)) (61 —6) Axty (91 -6, )’X;A,}ZIM Y-,
' x/)' /A x/7 can be shown to converge by using A, 91 —01)=0,(1), part (a)
t X t g IM P p
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of this Lemma, and by noting

T 1 1 o
Am Y (f! x;)/Ax;i/ f(r)dB’v(r),/ B,(r)dB,(r)+ Y E (vivj1y) -
=1 0 0 k=0

Under Assumption 2,

1 & ~
72 £131) (61— 6) Axy= (6 — 61) AT~ IAIMZ (ff x) & f

t=
can be shown to converge by noting T*IK,_A,}(@ —61) = 0, (1) and by applying
part (a) of this Lemma.
(e) With LXT_ Axy Ax B %, L7 YT Ax, AXT S 7S, % under As-
sumption 1, and 57 ¥ Ax, Axﬁ/i> Y'Yy under Assumption 2 by part

(a).
(f) Under Assumption 1, %ZITZI Uplly | LN Y u—1. Under Assumption 2,

SNTREES) SN
Uy 1 — — Uy (u[ —81) ul ut&
r* t=1 T? t=1 r* t= T2 t=1
1 & , 1 d [! 2
:ﬁZut—T()p(l)—) A B¢ (r)“dr.

Thus, ZZ‘:] Uy 1 — OP (Tz) .
@ Xl u (f_1x_1) (61— 61) = Zz v (f] x; )AIMAIM(GI 6;). Un-

der Assumptlon 1, it holds that A,M(Gl - 91) =0,(1),Y", u,ﬁflT_%TI,?l =
L T 2w v o, (1) and I 1”th I = ZtTlufx;_T_IZthlutvf:
0,(1). Therefore, ¥ u; (f/_y x]_;) ( ) O, (1). Suppose Assumption

2 holds. Write the expression as

— _— _ 771 o~
lut (ft/fl xz{fl)AlMT IA]M(el — 91)

=
~

1 T
sz ftlxtl —0)) =

t=1

But, T~1A,; (6, — 6;) = 0,(1),
T T . d .1
ZT‘lu,ﬂ_lT_irl;l = ZT‘fu,ft’r;l +o0,(1) —>/ Be (r) f(r)dr
=1 = 0

and T_ZZthl wx, | = %Zthl T_l/zu,T_]/zx; +0,(1) 4, fol B¢ (r) B, (r)dr.
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(h) Similar arguments in the proof of (g) can be applied.
(i) Similar arguments in the proof of (b) can be applied.
(j) Proof is analogous to (c). Under Assumption 1,

1L 1 4
? Zu, Ax;_l’yz ? Zu,v;_ﬂ/—) Zu,vfl'yg’.
=1 =1
Under Assumption 2,
TZZM[AXI 1'}/— Zutvt lT: ( Zu,v,-i- thvt 1)

] [
LN </0 B (r)dB,(r)+ Z E(S,v;+k) —i—Zg’v_l) 78

N[=<)

k=0

with Z¢ 1 = plim (+ X7, &v]_,) , which yields the desired result.
(k) Suppose Assumption 1 holds. Rewrite the expression as

1/2
(9191)A1MA1MZ<f’ 1= 1>y (Qlfgl)AIM (Zz 1 TF ftvz 1)}/

XtV Zt lT xtvt 1
d oo
Note that & Z, XV = 7 Zt > x,vt+ T Zthl ViV, — fol B, (r)dB., (r)+ Yo

E (vv}, ;) +Zy—1, which, being combined with X;A,}(gl —61) =0, (1) and part
(a) of this Lemma, yields the desired result. Under Assumption 2,

L@ —ea,a i(fw 1>y L6 _eyiia i<ﬁv§1)7
T2 1 1)31Mm IM[:1 XzV,_l 1 1)Am IM;:1 xtV;_l T’

which can be shown to be O, (1) by noting T‘lgﬁ}(al —61) =0, (1) and using
part (a) of this Lemma.

(1) Under Assumption 1, £ Y7 Axjqu,—1 = }7% Y. | Axqu,_y converges to
%5 Eyu—1. Under Assumption 2,

T

1 & 1
ng x;?’ut 1—3;TZV1(W—81)

t=1

4 ( [ im0+ ¥ B - sz) ’

k=0

yielding Y| Axyu,—1 = 0, (T?).
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(m) Proof is analogous to (d).
(n) Under Assumption 1, %?Zle Ax; AN X7 converges to 1,1
Under Assumption 2, 757 ¥/ Ax; Ax]_ ¥ converges to ¥ Ly 1 ¥}

Proof of Theorem 2. Rewrite ¢ by using ASY = u; — (f/ x) <§1 - 91) —Axy=
U, — X}y as
L ASIASE Xl (&' +E7)

62 ~ N2 NT-1(=Al | =A2\’
Yis (AS?A) = (54 E)

=2 =~ [2 (1~ (/) (81— 01)) — Axy7] x A7,

=B — [utut,l —u (f X)) (81— 01) — (£ ) (61— 01)u,

+(81 =8 (ff x0) (fy %-1)(B — 6)], and

B2 = {_”t Axi 7+ (f %)) (51 —61) Ax; ¥ — AxiYu
+ AxY(fi x;—l)(é\l —61)+7 Ax Ax;—lﬂ :

First, under the null of cointegration, by the results in Lemma 1 in the Ap-
pendix, the denominator and numerator of ¢, if divided by 7, jointly converge in
distribution to

— Leen) d - 0 -~
? Z (51;41 + 5'?2) = Yy — 2Zuvyo +% /EV"YO ’
t=2
and
1&gt oy d ! !
? Z (lt + & ) — Eu,ufl *Eu,vfly(‘;o + YSQ Zvv"*lyao o YSQ Zv’uilv
t=3

respectively. Thus, by the continuous mapping principle,

Zu,ufl - z"u,vfl ’}/80 + }’50/2\/,\171 }’50 - ’}/60/212,1471

-~ d
o —
Zuu - 2214\/7’50 + YSOIZVV’YSQ
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Next, under the alternative of non-cointegration, again by using Lemma 1,
one can show the denominator and numerator of ¢ if divided by T3, jointly
converge in distribution to

(B 4= 1 & opl | iy d
i Z Al L Ea2) 4 ys Ly and = Y (B +EP) S T,
t=3
respectively, which yields
6 ,yoo 21 V— l,yoo
HEH

B. THE KPSS"2 TEST WITH TRENDING STOCHASTIC REGRESSORS,
WITH DETRENDING

In the main paper, the /(1) regressors have been assumed to contain no drift
(i.e., no deterministic linear trend). This assumption is relaxed in this section.
Consider the model

Ve = ft/5+x;ﬁ +u, X = ax+5x[+)€?,

with Ax? = v; and f; = (1,¢) and maintain Assumption 1. Without a drift (5, =
0), it holds that

T_l/zAIMS)FrT]:T_l/zAIM Zyj x, | = e,

from which (3) in the main paper can be derived. However, with a nonzero drift
in x;, this result would not hold because the linear trend in x; would dominate the
other stochastic components.

Now consider a normalizing matrix

0 Tl 0

T'21p TV27D. T' 21D’
b
0 0 I

1/2 1:1 0 0 _1
AP = —r'p, 715 0 | with (A%I) =
-Df 0 I

where D, = <0 : 5x> and DY = <5x : 0>.
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Theorem 3. With the linear trends in stochastic regressors, under Assumption
1, it holds that, as T— oo, T~'2AR S} 0 = Tg(r),r € [0,1],

L T'27:DI'Q 10,
(ADy) (6—6,)+ 0

4 G T ( /O 1 g(s)’g(s)ds) B /0 ' o5 (5)ds

[rT]
1/22AS“ = 6,P(r), rel0,1],

=
and KPSST" weakly converges to the limit in (l) 5) with f(r) = (1,r)".

Proof of Theorem 3.
v T‘”zmﬁ
~ t=
Tﬁl/zAﬁJS)[CrT]:Til/zA[DM Zt[r:TI]X[ = -7 3/2D Zt f+T 3/22[rT]
_x[rT] I/ZDerT]f +T 1/2 [ ]
-1 712 1ﬁ
— | 732 (%) 5+ [1TIT 3/2ax+T 3/2 gwmrml))(s + T3/2x 1]
—[rTIT 28+ T o+ [P TIT 28+ T 1220
-1 712: 1f,
= | /7T 3/2ax+T 3/2 [VT]x?
-1 1/2,0
T 'o+T Xi7)
Jo f(s)ds L 0 0 o f(s)ds
= P fwis)ds [ = [0 @2 0 | [ TWi(s)ds | =TTg(r)
Q' Wi (r) o 0 o))\ W0

Note that premultiplication by AD, eliminates the nonzero drift (linear trend) in

the second and third segment of A ,MS[ 7]+ Next, rewrite the IMOLS estimator as

CTARMCEES
- (T’zAﬁle'SfAﬁﬁ,)_] (T*ZA?MSY’S“) — (A2 (0,0.2,0,1

. B T'24:DF'Q Q.
- (T’ZA%SX'SXA?A}) (T’ZA?MS"’S”> - 0 ,
Q10
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and with a further rearrangement,

T'2:DF'Q-1Q,,

(A~ (6 —6.) + 0
0
q - 0
— ( 2AD Sx/SxA ) <T—2Aﬁlsxlsu> _ 0
QlQ,,

Now, it is straightforward to prove the second result by noting that the limit

of the right hand side is o, IT" (fol g(s)'g(s )ds)_1 fol g(s)wuy(s)ds, as shown
by Vogelsang and Wagner (2014). This limit is identical to the null limiting
distribution of A ,M(G 0.) in the case of o, = 0.
_Thereafter, consider the scaled partial sum of AS“ =u — AX)Q, 1Qm —
X(6—86.,), where Ax, = 8/ + AxY, and ¥, = (f,x,, AX)).

/ [rT]
—-1/2 AS”
L
1 2[rT} 1/2 1 1 2[”] )
=T / Zut—T7 / (X{VT]_'X&)Q;V Qvu_T7 / Z‘%;(G_e*)
=2 =2
7 1/2Zu 1/2(rT]5;—5;+x([),’T])Q§VIQW (13)

_T12 Z (3t 000) A (AR) ™ (8-6.) +0, (1),
=2

However, one can rewrite the second summation as

[rT] o
Y (fl 3, Ox) Ay (AD) ' (8- 6,)
=2

7] L T'20:DF'Q-1Q,,
=Y (5, 00) Ay | (AD)) ™ (B 6.) + 0

=2 0

7] T'27:DI'Q 1 Q,,
=Y (X, x0) Ay 0

=2 0
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T'2t:DE'Q1Q,, DE'al 10,
By noting that AP/, 0 = 0 , one can show
0 0
(7] T'2t:DF'Q Q.
Y (floxi, Ax) Ay 0
t=2 0
[rT]
=Y 80,0, = ([rT]5,— &) Q,,' Q..
=2

Hence, the §,-terms in (13)) are canceled out, yielding

[rT] _ [rT]
T2V AS =T 2y u— 17200,
=2 =2

Ir7] L T'27:DE'Q 1,
—T7 V2N (flx, Ax) AR [ (AD)) ™ (6—6.)+ 0
=2 0

+o,(1).

This is an analogous expression to that in Vogelsang and Wagner (2014, p.759).
Apply the first two results in this Theorem to get 7~ 1/2 Z,[;TZ} ASY = 6,,P(r),
r € [0,1]. Upon this result, the limit of KPSS"” can be immediately derived.
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