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Distribution*
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Abstract While there has been increasing interest in the distribution of net
worth and disposable income, these variables include negative values, making it
impossible to use the distribution functions previously employed in estimating
gross income distributions, as these distribution functions cannot accommodate
negative values. In this study, we propose the Johnson’s SU distribution to esti-
mate the distribution of net worth and disposable income. The SU distribution
function is defined over the entire real number space and is one of the most flex-
ible parametric distribution functions for capturing a wide range of skewness
and kurtosis. Therefore, it is highly suitable for estimating the various shapes of
distributions for net worth and disposable income, which can include negative
values. We derive the Lorenz curve for the SU distribution in a closed-form ex-
pression. As an illustrative example, we apply both the univariate and bivariate
SU distributions to estimate the distributions and Lorenz curves of net worth and
disposable income using the survey data of Korea.
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1. INTRODUCTION

Measuring the distribution and inequality of income and wealth in a society
is always a significant concern, both in practical and policy contexts. Particu-
larly, understanding and quantifying economic inequality is a central theme in
socioeconomic disclosure. In this regard, the Lorenz curve stands as a major
analytical tool, providing a graphical representation of income and wealth dis-
tributions. While several continuous parametric distribution functions have been
proposed as methods for assessing the Lorenz curve and the Gini coefficient,
most of them are focused on gross income and, as a result, are defined only in
the positive or non-negative range. Examples include, among others, the log-
normal, Weibull, Gamma, Singh-Maddala (Singh and Maddala, 1976), Dagum
(Dagum, 1977), GB2 (McDonald, 1984), dPLN (Reed, 2003), and κG (Clementi
et al., 2007) distributions.

Recently, there has been an increasing interest in the distribution of net worth
and disposable income, in addition to gross income. In analyses and policies re-
lated to wealth or income inequality, net worth is more meaningful than total
assets, and disposable income is more relevant than gross income. Since net
worth and disposable income data inevitably include negative values, most para-
metric distribution functions traditionally used for modeling the distribution and
inequality of income (or assets) have the limitation of accommodating only pos-
itive values (Jäntti et al., 2015).

In this study, we propose the Johnson’s SU distribution to estimate the dis-
tribution of net worth and disposable income. The SU distribution function is
defined over the entire real number space and is one of the most flexible para-
metric distribution functions for capturing a wide range of skewness and kurto-
sis. Therefore, it is highly suitable for estimating the various shapes of distri-
butions for net worth or disposable income, which can include negative values.
We derive the Lorenz curve for the SU distribution function in a closed-form ex-
pression. As an illustrative example, we apply the SU distribution to estimate
the distribution and Lorenz curve of net worth and income using the dataset of
Survey of Household Finances and Living Conditions (SHFLC) in Korea.

2. JOHNSON’S SU DISTRIBUTION

The SU distribution first appeared in the pathbreaking article of Johnson
(1949a). The SU variable X is generated by the transformation to normality in
the following manner.
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sinh−1
(

X −m
s

)
= λ +θZ, −∞ < X < ∞, s > 0, θ > 0,

where Z is a standard normal variable. The symbol SU is for ‘unbounded system’
implying that the range of X is unbounded. The probability density function
(PDF) of SU is

f (x) =
1

θ
√
(x−m)2 + s2

φ

(
θ
−1

[
sinh−1

(
x−m

s

)
−λ

])
,

where φ(·) is the PDF of a standard normal variable. The cumulative distribution
function (CDF) of X is
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where Φ(·) is the CDF of a standard normal variable. Johnson (1949a) provides
the first four moments of X as follows.
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where ω = eθ 2
. The coefficients of skewness and kurtosis of X are respectively

µ3/σ3 and µ4/σ4.
Johnson (1949a) shows that the SU distribution is an extremely flexible distri-

bution function capable of capturing the widest range of combinations of skew-
ness and excess kurtosis. Due to this flexibility, the SU distribution finds appli-
cations in various fields. Notably, it has performed well in modeling univariate
and multivariate financial returns and estimating Value-at-Risk (Choi and Nam,
2008).

The Lorenz curve is a graphical representation of the distribution of wealth.
For the SU variable X and p = F(x), the Lorenz curve is as follows (see Ap-
pendix).
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The SU distribution can be easily extended to multivariate dimensions (John-
son, 1949b). When an N × 1 random vector Z follows a multivariate standard
normal distribution, the joint PDF of Z is expressed as:

φR(z) = (2π)−N/2|R|−1/2 exp
(
−1

2
z′R−1z

)
,

where R is the correlation coefficient matrix with an off-diagonal element ri j,
and |R| is the determinant of R. A multivariate SU random vector X can be
obtained by the inverse hyperbolic sine transformation of each variable Xi to a
normal variable, i.e., sinh−1

(
Xi−mi

si

)
= λi+θiZi where si > 0 and θi > 0. Hence,

the joint PDF of X is:
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)
, (1)
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i
]−1/2.

In the literature, there is an approach that uses copula functions to construct
the joint distribution of household income and wealth (Jäntti et al., 2015, among
others). The multivariate SU model discussed in this study can also be under-
stood using the concept of copulas. That is, the multivariate SU distribution can
be considered as a distribution that combines each marginal SU variable using a
Gaussian copula function. Since SU variables are transformed from normal vari-
ables, it is quite simple to transform them back to normal variables and combine
them using a Gaussian copula. It should be noted that R in (1) is the correla-
tion matrix of Z, which is the transformed variable from X. Due to the nonlin-
ear transformation, the correlation of Z is not the same as the correlation of X.
Rather, the Pearson’s correlation coefficient ρi j between Xi and X j is:

ρi j =
e

θ2
i +θ2

j
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σiσ j

[1
2

eri jθiθ j cosh(λi +λ j)
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becomes 1. Inversely, when X follows a multivariate SU distribution with corre-
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Consider a bivariate SU distribution with r, the correlation coefficient be-
tween Z1 and Z2. From (1), the joint PDF is:
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1− r2 (Kotz et al., 2000):

X1 | X2 = x2 ∼ SU(m1,s1,λ
∗
1 ,θ

∗
1 ). (3)

3. FITTING EXAMPLE

In the 2023 SHFLC dataset, we focus on the two variables that are of partic-
ular importance for household finances: net worth and disposable income. Both
are measured in units of one million Korean won, with a total of 18,904 house-
hold observations. Table 1 presents summary statistics for the two variables.1

It is noticeable that both variables exhibit extreme positive skewness and excess
kurtosis, indicating that the SU distribution can be an appropriate distribution.
The last row in the table provides the empirical Gini coefficients, revealing that

1In our study, all statistics were calculated using the weights provided in the SHFLC, and
the empirical Gini coefficients were also calculated using the weighted method as described by
Lerman and Yitzhaki (1989). Additionally, the maximum likelihood estimation (MLE) performed
below maximizes the weighted log-likelihood function.
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Net Worth Disposable Income

Mean 435.4 54.8
Standard Deviation 726.3 46.5
Skewness 10.3 5.1
Kurtosis 264.7 137.1
Gini (×100) 60.9 40.6

Table 1: SUMMARY STATISTICS. Except for the Gini coefficient, all statistics are in
million won. It is noticeable that both net worth and disposable income exhibit extreme
positive skewness and excess kurtosis.

Net Worth Disposable Income

m̂ -21.0 -3.5
ŝ 34.4 15.2
λ̂ 2.6 1.8
θ̂ 1.2 0.7

Gini (×100) 64.8 41.3

Table 2: ESTIMATION RESULTS OF SU MODEL. Parameter estimation was per-
formed using maximum likelihood estimation with the L-BFGS-B algorithm in the
Python SciPy optimize module.

the level of inequality measured by asset is considerably higher than income
inequality.

Maximum likelihood estimation was performed using the Python SciPy ‘op-
timize’ module with limited-memory BFGS (L-BFGS-B) algorithm. When com-
paring the Gini coefficient estimated by the SU model 2 in Table 2 with the em-
pirical Gini coefficient in Table 1, the former is higher than the latter for both
variables.

As shown in the histograms in the left panels of Figures 1 and 2, it is ev-
ident that both net worth and disposable income exhibit distributions that are
extremely positively skewed. The estimated SU distributions appear to represent
the empirical distributions quite well. The right panels of Figures 1 and 2 display
the empirical and estimated Lorenz curves. For disposable income, the Lorenz
curves of the SU model and the empirical one are nearly identical, consistent
with the close similarity of their Gini coefficients, as observed in Tables 1 and 2.

2The Gini coefficients of the SU model were calculated by numerical integration of the esti-
mated Lorenz curve.
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Figure 1: ESTIMATED DISTRIBUTION AND LORENZ CURVE USING SU MODEL
FOR NET WORTH. The estimated SU distribution appear to represent the empirical
distribution quite well.

Figure 2: ESTIMATED DISTRIBUTION AND LORENZ CURVE USING SU MODEL
FOR DISPOSABLE INCOME. The Lorenz curves of the SU model and the empirical
one are nearly identical.

To assess the usefulness and flexibility of the SU distribution, we compare
its goodness of fit with two other distribution functions: the log-normal and the
Generalized Beta of the Second Kind (GB2). The former is the most traditional
and basic distribution function for estimating income distribution, while the lat-
ter is considered one of the best-performing distributions in terms of goodness
of fit in the income distribution literature (McDonald et al., 2013). The log-
normal distribution has two parameters, while the GB2 distribution, like the SU

distribution, has four parameters.
One issue here is that the log-normal and GB2 distribution functions cannot
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Figure 3: ESTIMATED PDFS FOR LOCATION-SHIFTED NET WORTH. The SU
distribution (left) performs significantly better than the log-normal (center) and appears
slightly better than the GB2 (right).

Figure 4: ESTIMATED PDFS FOR LOCATION-SHIFTED DISPOSABLE INCOME.
It is evident that the log-normal distribution (center) has a poorer fit compared to the SU
(left) and GB2 (right).

accommodate zero or negative values. As a result, it is inherently impossible to
use these distributions to estimate the distributions of net worth and disposable
income, which are the focus of this study. That said, selecting a new variable
that only takes positive values (such as gross income or assets) to compare the
goodness of fit of the three distributions would not align with the objective of this
study—namely, introducing a flexible distribution function capable of covering
the entire real number range for estimating economic well-being variables that
include zero and negative values.

Considering this, we decided to use the original net worth and disposable
income dataset but apply a location-shift by adding a constant value to all data
points, ensuring that all values become positive. We then compare the goodness
of fit of the three distribution functions based on the transformed data. For the
SU model, such a location-shift does not practically affect its goodness of fit,
making it possible to conduct a valid comparison with the log-normal and GB2
distributions. For each variable, we added a constant just enough to shift the
minimum value slightly above zero.

Figures 3 and 4 show the estimated PDFs of net worth and disposable in-
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Net Worth Disposable Income

SU Log-normal GB2 SU Log-normal GB2

χ2 522.1 9,450.8 3,175.7 854.0 5,301.9 1,061.2
MAD 1.4 7.2 3.4 4.0 7.6 3.7

Table 3: GOODNESS-OF-FIT. χ2 measures the differences between observed and
expected frequencies, while MAD (multiplied by 100) measures the differences between
the empirical and model-based distribution functions.

come, after applying location-shifts to ensure all values are positive. In the fig-
ures, the leftmost panel presents the estimation results based on the SU distribu-
tion, which remain virtually identical to those in Figures 1 and 2, except for the
shift in location. When comparing the empirical histogram with the model-based
estimated distributions in the figures, it is evident that the log-normal distribution
has a poorer fit compared to the SU and GB2 distributions.

To conduct a more formal comparison of goodness of fit, we use two mea-
sures. The first is derived from Pearson’s chi-square goodness-of-fit test, which
is defined as the sum of the squared differences between observed and expected
frequencies (i.e., counts of observations), each divided by the expected fre-
quency:

χ
2 =

k

∑
i=1

(Oi −Ei)
2

Ei

where Oi is the observed count for bin i, and Ei is the expected count for bin i,
as asserted by the model. The number of bins k was determined according to
Sturges’s rule.

The other goodness-of-fit measure is based on the Kolmogorov–Smirnov
(KS) test, which is a nonparametric test for the equality of one-dimensional prob-
ability distributions. The KS-type goodness-of-fit measure is defined as the mean
absolute difference (MAD) between the empirical distribution function Fn(x) and
the model-based distribution function F(x) across all n observations:

MAD =
1
n

n

∑
i=1

|Fn(xi)−F(xi)| .

Table 3 presents the goodness-of-fit results for the three distribution func-
tions. Consistent with the findings from Figures 3 and 4, the log-normal dis-
tribution shows a significantly poorer fit compared to the SU and GB2. When
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Parameters Net Worth Disposable Income

m̂ -19.8 -3.0
ŝ 40.6 19.5
λ̂ 2.5 1.6
θ̂ 1.2 0.7
r̂ 0.52

Table 4: ESTIMATION RESULTS OF BIVARIATE SU MODEL. The correlation pa-
rameter r̂ takes a positive value exceeding 0.5, indicating a strong correlation between
net worth and disposable income.

comparing the performance of SU and GB2 distribution functions, the SU out-
performs GB2 in both goodness-of-fit measures for net worth. For disposable
income, however, SU exhibits a better fit than GB2 based on the χ2, whereas
GB2 performs better than SU in terms of the MAD. The goodness of fit for the
SU distribution in this context can be considered at least comparable to the per-
formance of GB2, which is regarded as one of the best-fitting distributions for
variables that take only positive values.3

Next, we estimated the joint distribution of net worth and disposable income
using the bivariate SU distribution function presented in (2). In fact, it is possible
to perform the estimation in a two-step manner, where individual marginal dis-
tributions are estimated first and then the correlation parameters among them are
estimated. Such a two-step estimation may be used when dealing with a large
number of variables. However, in our case with only two variables, we estimated
all parameters in one step.

Table 4 presents the estimated parameters of the bivariate SU distribution.
Comparing with the individual univariate model in Table 1, we find that the
parameter estimates, particularly the shape parameters (λ and θ ), are very close
to each other. Additionally, the correlation parameter r takes a positive value
exceeding 0.5, and the Pearson’s correlation coefficient between net worth and
disposable income, calculated using equation (2), is 0.38, which is slightly lower
than the empirical correlation coefficient of 0.43.

Finally, based on the bivariate estimation, we illustratively derived the con-

3Our objective is to quantitatively assess how well the SU distribution approximates the em-
pirical data compared to other distributions, notably the log-normal and GB2. Accordingly, we do
not present p-values, as our primary goal is to evaluate the models’ relative performance through
goodness-of-fit statistics.
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Figure 5: NET WORTH DISTRIBUTION FOR HOUSEHOLDS WITH A DISPOS-
ABLE INCOME OF 100 MILLION WON. The ability to explicitly derive this kind of
conditional distribution is another advantage of the SU distribution.

ditional distribution. Specifically, we chose to estimate the net worth distribution
for households with a disposable income of 100 million won. We used the equa-
tion (3), and the result is shown in Figure 5. The ability to explicitly derive such
conditional distributions is another advantage of the SU distribution.

4. CONCLUSION

Parametric distribution models for wealth and income offer the advantage
of capturing all features of the distribution with a small number of parameters.
They also have the advantage of estimating distributions and inequality/poverty
indices even when survey microdata is unavailable and only grouped data is pro-
vided. Various parametric distributions have been used to estimate income dis-
tributions, but they cannot be applied to variables like net worth and disposable
income that include negative values.

When it comes to estimating the distribution of these variables, the SU distri-
bution can be considered one of the best candidates, because it is defined over the
entire real number space and capable of capturing extreme skewness and kurto-
sis significantly well. Another advantage of the SU distribution is that, since the
SU distribution is essentially a transformation of the normal distribution, it can
be easily extended to multivariate dimensions using multivariate normal distri-
bution. Due to the fact that it is derived by transforming the normal distribution,
the SU distribution has several advantages. The joint PDF has a simple form,
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making maximum likelihood estimation relatively straightforward, even in one-
step estimation. Furthermore, generating multivariate SU random numbers is
also straightforward, making it advantageous for simulation analyses in a multi-
variate dimension. In our example, we considered two variables: net worth and
disposable income. However, when dealing with more than two variables—for
instance, when estimating the joint distribution of wealth, income, and consump-
tion—the multivariate SU model is likely to be an attractive option.
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APPENDIX: LORENZ CURVE OF SU DISTRIBUTION

This appendix derives the Lorenz curve for the SU distribution, providing a
closed-form expression and relevant mathematical formulations.

Consider an SU variable X = m+ s · sinh(λ +θZ) with the PDF f (x) and the
CDF F(x). Let p be the proportion of people in the population with wealth lower
than x, i.e., p = F(x) = Φ(θ−1[sinh−1((x−m)/s)−λ ]). Then the Lorenz curve
L(p) for X is defined as follows Lubrano (2017):

L(p) =
1

E[X ]

∫ x

−∞

t f (t)dt =
1

m+ seθ 2/2 sinh(λ )

∫ x

−∞

t f (t)dt.

For a normal random variable Y ∼ N(µ,σ) conditional on a ≤ Y ≤ b, its
moment generating function is:

E[etY |a ≤ Y ≤ b] =
etµ+ 1

2 t2σ2
[
Φ

(
b−µ

σ
− tσ

)
−Φ

(a−µ

σ
− tσ

)]
Φ((b−µ)/σ)−Φ((a−µ)/σ)

.

Consider an SU random variable X conditional on a ≤ X ≤ b, The first mo-
ment about zero of X is:

E[X |a ≤ X ≤ b]

= E[m+ ssinh(Y )|sinh−1((a−m)/s)≤ Y ≤ sinh−1((b−m)/s)]

= m+ sE
[

1
2
(eY − e−Y )

∣∣∣sinh−1((a−m)/s)≤ Y ≤ sinh−1((b−m)/s)
]

= m+
s
2
{

E[eY |sinh−1((a−m)/s)≤ Y ≤ sinh−1((b−m)/s)]

−E[e−Y |sinh−1((a−m)/s)≤ Y ≤ sinh−1((b−m)/s)]
}

= m+
s
2

eθ 2/2 eλ [Φ(β −θ)−Φ(α −θ)]− e−λ [Φ(β +θ)−Φ(α +θ)]

Φ(β )−Φ(α)
, (A1)
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where α = θ−1[sinh−1((a−m)/s)− λ ] and β = θ−1[sinh−1((b−m)/s)− λ ].
When a =−∞ and b = x, the (A1) simplifies to:

E[X |−∞ < X ≤ x] = m+
s
2

eθ 2/2

× eλ Φ(θ−1[sinh−1((x−m)/s)−λ ]−θ)− e−λ Φ(θ−1[sinh−1((x−m)/s)−λ ]+θ)

Φ(θ−1[sinh−1((x−m)/s)−λ ])
.

Since E[X |−∞ ≤ X ≤ x] = 1
F(x)

∫ x
−∞

t f (t)dt, we obtain:∫ x

−∞

t f (t)dt = mp+
s
2

eθ 2/2
[
eλ

Φ(Φ−1(p)−θ)− e−λ
Φ(Φ−1(p)+θ)

]
.

Therefore, the Lorenz curve L(p) simplifies to:

L(p) =
mp+ s

2 eθ 2/2
[
eλ Φ(Φ−1(p)−θ)− e−λ Φ(Φ−1(p)+θ)

]
m+ seθ 2/2 sinh(λ )

.
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