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zinc, using a range of continuous-time diffusion models. The study em-
ploys maximum likelihood estimation with approximate transition prob-
ability density functions to analyze daily price data. Our findings reveal
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model, with its generalized volatility function, is found to be the most
appropriate for aluminum, whereas the more parsimonious CKLS model
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eling approach for accurate price characterization.
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1. INTRODUCTION

Continuous-time diffusion models, with their flexible drift and volatil-
ity functions, have proven to be a powerful tool for capturing the complex
dynamics of various financial and economic variables. While early ap-
plications in finance can be traced back to the work of Louis Bachelier
in his 1900 thesis, these models were more widely utilized following the
seminal works of (Black and Scholes, 1973). Over time, their application
has expanded to a broader range of commodities, including metals and
agricultural products, to analyze price movements and to value related
derivatives such as futures and options (e.g., Schwartz, 1997; Dixit and
Pindyck, 1994).

A number of preceding studies have attempted to model the behavior
of commodity prices. For example, Brennan and Schwartz (1985) and
Paddock et al. (1988) assumed that commodity prices follow a geometric
Brownian motion to value natural resource investment projects. While this
simple approach provides a foundation, it is limited in its ability to capture
complex price dynamics such as mean-reversion and heteroskedasticity.
Other studies have employed alternative econometric models to analyze
commodity price movements (Nowman and Wang, 2001). However, many
of these approaches often rely on discretized versions of continuous-time
models, which can introduce estimation bias (Lo, 1988). A key assumption
in many applications is that the chosen diffusion model accurately reflects
the true dynamics of the underlying asset. However, as demonstrated
by Choi and Lee (2020b) in their study on exchange rates, relying on a
single, restrictive model can lead to inaccurate conclusions, as different
assets may follow different processes. This highlights the critical need to
empirically test various flexible diffusion models to identify which one best
describes the price movements of a particular asset.

This study contributes to the literature by applying a range of continuous-
time diffusion models to the price dynamics of four major non-ferrous
metals: copper, aluminum, nickel, and zinc. These metals were selected
from the non-ferrous metal group because they are among the most ac-
tively traded and are utilized extensively across various industries. As a
result, their prices are closely linked to the global economy. Consequently,
understanding the dynamic movements of these metal prices is of great
importance. Accurate analysis of their price behavior is essential for rel-
evant businesses to hedge against raw material price risk, for investors
to formulate portfolio diversification strategies, and for policymakers to
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make informed decisions.

To conduct our analysis, we utilize five univariate time-homogeneous
diffusion models: the Vasicek (Vasicek, 1977), CIR (Cox et al., 1985),
CKLS (Chan et al., 1992), General Drift and Constant Elasticity of Vari-
ance (GD-CEV), and the most general General Drift and General Volatil-
ity (GD-GV) model (Choi, 2009). A key methodological contribution is
the use of maximum likelihood estimation (MLE) based on the approx-
imate transition probability density function (TPDF), a method devel-
oped by (Ait-Sahalia, 2008). This approach overcomes the limitations of
discrete-time approximations, which are known to produce biased estima-
tors (Lo, 1988), ensuring the efficiency of our results.

Our empirical findings reveal distinct characteristics among the four
metals. While all four prices exhibit heteroskedasticity and volatility clus-
tering, the most appropriate model varies. The analysis suggests that the
simple CKLS model is sufficient for describing the dynamics of copper,
nickel, and zinc, with little evidence of mean reversion in their drift func-
tions. In contrast, the more complex GD-GV model is required to fully
capture the unique dynamics of aluminum, where the additional parame-
ters in its generalized volatility function are statistically significant. This
comparative analysis demonstrates that even within the same commodity
group, a one-size-fits-all approach is insufficient, and a flexible modeling
framework is essential for accurately understanding and characterizing
price behavior.

The remainder of this paper is structured as follows. Section 2 presents
the data and provides motivation for this study. Section 3 discusses the
diffusion models used and the estimation methodology. Section 4 reports
the estimation results for each metal and provides a comparative analysis
and discussion of the results. Finally, Section 5 offers a brief conclusion.

2. NON-FERROUS METAL PRICE DATA

This study analyzes the daily price movements of four major non-
ferrous metals: copper, aluminum, nickel, and zinc. The daily price data
for these metals were obtained from Datastream, which provides various
price series for the same metal, often with different price levels. To ensure
the use of globally recognized and representative prices, we specifically
utilized the prices from the London Metal Exchange (LME). The LME
is the world’s leading center for non-ferrous metal trading. A significant
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Data Copper Aluminium Nickel Zinc
Period 1987.11.20- 1993.7.14— 1993.7.20— 1988.12.01-
2021.7.13 2021.7.13 2021.7.13 2021.7.13
Observations 8,778 7,305 7,301 8,509
Mean 4,337 1,816 13,389 1,692
Minimum 1,318 1,023 3,731 722.8
Maximum 10,449 3,271 54,050 4,603
Std. Dev. 2,454 418.4 7,734 762.7
Kurtosis 1.782 3.235 7.477 3.210
Skewness 0.461 0.821 1.743 0.892

Table 1: SUMMARY STATISTICS OF NON-FERROUS METAL PRICES. This
table provides descriptive statistics for the daily LME prices of four non-ferrous
metals, copper, aluminum, nickel, and zinc, expressed in dollars per ton. The
statistics include the data period, number of observations, mean, minimum, max-
imum, standard deviation, kurtosis, and skewness for each metal. Kurtosis mea-
sures the tailedness of the distribution, while skewness measures the asymmetry
of the distribution.

portion of global non-ferrous metal transactions is conducted through it,
with its quoted prices widely accepted as international benchmarks.

Table 1 presents the descriptive statistics for the daily prices (per
ton) of copper, aluminum, nickel, and zinc used in this study. The table
provides key statistical measures, including the data period', number of
observations, mean, minimum, maximum, standard deviation, kurtosis,
and skewness for each metal. The kurtosis and skewness coefficients, in
particular, indicate departures from a normal distribution, suggesting that
these price series exhibit features such as fat tails and asymmetry, which
diffusion models are designed to capture. Visual inspection of the time
series plots (to be presented later) will further illustrate these characteris-
tics, providing motivation for the application of continuous-time diffusion
models.

The average price is notably highest for nickel at $13,389 per metric
ton, followed by copper, aluminum, and zinc. Nickel’s significantly higher
price can be attributed to its complex refining process and its increasing
demand in new applications, such as electric vehicle batteries, which has
attracted substantial speculative capital. All four metals show a wide gap
between their minimum and maximum prices, a trend largely driven by

' The reason why the data period differs for each metal is that the starting date for
which daily price data was made available is different for each metal.
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the sharp increase in commodity prices around 2005, which was fueled by
a surge in demand from China’s rapid industrialization.

For each metal, three types of graphs have been generated to provide a
visual overview of the data. The first is a time series plot of the daily price
levels. The second is a scatter plot of the daily price change against the
previous day’s price, which is useful for illustrating whether the magnitude
of daily changes is dependent on the price level. If larger daily changes
tend to occur at higher price levels, this scatter plot would exhibit a fan-
shaped pattern that widens as it moves away from the origin. The third is
a time series plot of the daily changes, which allows for the identification
of phenomena such as volatility clustering.

Among the four metals, copper holds a particularly significant posi-
tion. It is the second-most traded non-ferrous metal on the LME and is
extensively used in a wide range of industries, including electricity, elec-
tronics, construction, energy, architecture, and shipping.

Because of its high industrial demand, the price of copper is closely
tied to the global economic cycle. This relationship is often observed as
price increases during periods of economic recovery and expansion, and
price decreases during economic slowdowns and recessions. As such, cop-
per futures prices, along with oil prices, are widely considered a leading
indicator for the real economy. For this reason, copper is affectionately
known as “Doctor Copper" in the commodity and economic fields, a nick-
name that highlights its perceived ability to predict the health of the
global economy.

Figure 1 presents three visualizations of the daily LME copper price
data. The first panel is a time series plot of the daily copper price over the
period from 1987 to 2021. It shows that the copper price remained rela-
tively stable at a low level until around 2005, when it began a steep ascent,
driven largely by a surge in demand from China. The price then experi-
enced a sharp decline during the 2008 global financial crisis. Propelled by
the subsequent economic recovery, copper prices rose dramatically until
2012, before gradually declining through 2016, influenced by a slowdown
in China’s economic growth. This pro-cyclical behavior reinforces copper’s
reputation as a leading economic indicator.

The second panel is a scatter plot of the daily price change against
the previous day’s price level. The graph illustrates that as the price level
increases, the magnitude of daily changes also tends to expand, initially
forming a fan-shaped pattern. However, this spread appears to narrow
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again when the price exceeds approximately $8,000, suggesting that the
volatility of copper prices is not a simple, monotonically increasing func-
tion of the price level. The ability to statistically test for the presence of
this non-monotonic relationship is a key motivation for employing flexible
diffusion models.

The third panel shows the time series plot of the daily price changes.
This graph demonstrates the phenomenon of volatility clustering, where
periods of high price volatility are followed by similar periods. A dramatic
increase in the magnitude of price fluctuations is particularly evident from
around 2005, a period that coincides with China’s escalating demand and
increased speculative capital entering the market.

Among the non-ferrous metals, aluminum is the most traded metal on
the LME. This is attributed to its high industrial demand, driven by its
lightweight, corrosion resistance, and ease of processing. Aluminum’s soft
and ductile nature often necessitates alloying with other metals such as
copper, manganese, silicon, magnesium, zinc, and nickel to enhance its
properties for specific applications. For example, high-strength aluminum
alloys are used in the manufacturing of aircraft and car bodies. In 2020,
aluminum futures accounted for approximately 42% of the total futures
traded on the LME, highlighting its dominant position in the market.

Figure 2 presents three visualizations of the daily LME aluminum
price. The top panel displays the time series of the aluminum price from
1993 to 2021. The price remained at a lower level until around 2005, when
it began a steep ascent. The price then experienced a sharp decline during
the 2008 global financial crisis. Following the crisis, the price continued to
fluctuate, but its overall volatility was less pronounced compared to other
non-ferrous metals. This relative stability is attributed to aluminum’s
abundant reserves and a relatively stable global supply. Additionally, its
extensive range of applications, from packaging to construction and au-
tomotive industries, contributes to a more stable demand, which in turn
leads to less extreme price fluctuations than those observed in other met-
als.

The middle panel is a scatter plot of the daily price change versus
the previous day’s price. The plot illustrates that the magnitude of daily
changes tends to increase as the price level rises. However, the pattern
appears to narrow after the price exceeds $2,000, and again after exceeding
$3,000, suggesting that the volatility of aluminum prices, like copper, is
not a simple, monotonically increasing function of the price level. This
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Figure 1: CoOPPER GRAPHS. Figure 1 displays three graphs of the daily LME
copper price data from 1987 to 2021. The first panel is a time series plot of the
daily price, the second is a scatter plot of the daily change against the previous
day’s price, and the third is a time series plot of the daily changes.
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non-monotonic relationship motivates the use of flexible diffusion models
to capture this complex behavior.

The bottom panel shows the time series of the daily price changes.
It provides compelling evidence of volatility clustering, with periods of
high price volatility concentrated together. The most extreme volatility
is evident around the 2008-2009 financial crisis, highlighting the market’s
response to major economic events.

Nickel is the fourth most traded metal among the non-ferrous metals
on the LME. According to the LME’s ‘Annual Volume Report’, it ac-
counted for approximately 12% of the total futures trading volume on the
exchange in 2020. Although the global reserves of nickel are abundant, its
refining process is complex and energy-intensive, leading it to be consid-
ered a commercially rare metal. Consequently, nickel’s price is generally
higher compared to copper, aluminum, and zinc. The price of nickel is not
only determined by fundamental supply-and-demand dynamics but is also
heavily influenced by speculative capital. Recent technological advance-
ments have diversified nickel’s applications, bringing it into the spotlight.
In particular, nickel has emerged as a crucial raw material for the rapidly
growing battery and electric vehicle industries. This has strengthened
its link to the automotive market, and its usage is expected to increase
substantially in the coming years.

Figure 3 presents three visualizations of the daily LME nickel price
data. The first panel displays the time series of the nickel price from 1993
to 2021. The graph shows that the nickel price experienced a steep rise
from 2005, followed by a sharp drop during the 2008 global financial crisis.
Following this, nickel prices continued to fluctuate, with their movements
often corresponding to the stainless steel industry, which historically has
accounted for a large portion of nickel demand. More recently, nickel has
also become a critical component in electric vehicle battery production,
further diversifying its end-uses and making its price highly sensitive to
issues and policies related to both the stainless steel and automotive in-
dustries.

The second panel is a scatter plot of the daily price change versus the
previous day’s price. This plot suggests that as the price level increases,
the volatility of nickel prices also tends to increase. This heteroskedasticity
underscores the need for a diffusion model that can accommodate such a
strong dependency.

The third panel shows the time series of the daily price changes.
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Figure 2: ALUMINIUM GRAPHS. Figure 2 displays three graphs of the daily
LME aluminum price data from 1993 to 2021. The first panel is a time series
plot of the daily price, the second is a scatter plot of the daily change against
the previous day’s price, and the third is a time series plot of the daily changes.
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Volatility clustering is evident in this graph, with a distinct period of
heightened volatility occurring around 2007-2008. This pronounced volatil-
ity clustering, along with the extreme price spike in the time series plot,
suggests that nickel price dynamics are particularly complex and likely
influenced by non-linear factors and market speculation.

Zinc is the third most traded metal among non-ferrous metals on the
LME. According to the LME’s ’Annual Volume Report’, it accounted for
approximately 16% of the total futures trading volume on the exchange in
2020. Zinc is primarily used for galvanization and die-casting of automo-
tive parts. Galvanization, the process of coating steel to prevent corrosion,
is particularly sensitive to the construction industry’s performance, as it
is widely used in steel structures for weather protection. For these rea-
sons, the zinc market is known to be closely related to the global economy.
Its price tends to rise during periods of economic expansion and strong
construction activity, and fall during periods of economic downturn. This
close correlation with global economic health makes zinc a key indicator
for industrial activity and a crucial metal to analyze within the non-ferrous
group.

Figure 4 presents three visualizations of the daily LME zinc price data.
The top panel shows that the zinc price surged from around 2005 before
plummeting during the 2008 global financial crisis. The price subsequently
experienced another significant increase around 2016, a period attributed
to a combination of expectations for a global economic recovery and supply
regulations in China due to environmental concerns. This demonstrates
that the zinc price is highly sensitive to both demand and supply dynam-
ics. As zinc is closely tied to the construction industry, which is often
considered a leading economic indicator, its price also tends to move in
sync with the economic cycle. For example, price declines were observed
during the 2008 financial crisis and the 2012 Southern European debt
crisis.

The middle panel is a scatter plot of the daily price change against the
previous day’s price. Contrary to a simple fan shape, the plot shows that
daily price volatility initially increases with the price level but then ap-
pears to decrease at higher price levels. This non-monotonic relationship
between price and volatility is a key characteristic that motivates the use
of flexible diffusion models.

The bottom panel shows the time series of the daily price changes. This
graph demonstrates the phenomenon of volatility clustering, with periods
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Figure 3: NICKEL GRAPHS. Figure 3 displays three graphs of the daily LME
nickel price data from 1993 to 2021. The first panel is a time series plot of the
daily price, the second is a scatter plot of the daily change against the previous
day’s price, and the third is a time series plot of the daily changes.
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Figure 4: ZINC GRAPHS. Figure 4 displays three graphs of the daily LME zinc
price data from 1988 to 2021. The first panel is a time series plot of the daily
price, the second is a scatter plot of the daily change against the previous day’s
price, and the third is a time series plot of the daily changes.

of high and low volatility grouped together. A period of extremely high
volatility is particularly noticeable around the 2007-2008 financial crisis,
highlighting the market’s reaction to major economic events.
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The preliminary visual analysis of the daily price data for copper, alu-
minum, nickel, and zinc reveals several notable similarities and differences
in their dynamic characteristics.

All four metals share a similar long-term price trajectory, with prices
remaining relatively low and stable until the mid-2000s. Around 2005, all
metals experienced a sharp and sustained price increase, a phenomenon
widely attributed to the rapid industrialization and soaring demand from
China. This common pattern was followed by a dramatic price collapse
during the 2008 global financial crisis, highlighting their collective sensi-
tivity to the global economic cycle.

The scatter plots of daily price changes against price levels for all four
metals show clear evidence of heteroskedasticity. The spread of the daily
changes generally widens as the price level increases, indicating that price
volatility is not constant but is a function of the price level itself. This fan-
shaped pattern, though varying in its intensity, is a shared characteristic
across all four metals, underscoring the need for diffusion models with
non-constant volatility functions.

The time series plots of daily price changes for all metals exhibit dis-
tinct periods of volatility clustering. Periods of large price movements
(both positive and negative) tend to be followed by similar periods, while
calm periods are also clustered together. This behavior is most pro-
nounced during periods of economic turbulence, such as the 2008 finan-
cial crisis, suggesting a shared market response to major macroeconomic
events.

While all metals show increasing volatility with price, the absolute
price levels and the degree of volatility differ significantly. Nickel stands
out with a remarkably higher average price and a wider price range be-
tween its minimum and maximum values. The scatter plot for nickel
shows a more pronounced fan shape, with the price spikes and collapses,
suggesting that its volatility is more extreme and highly sensitive to price
levels compared to the other metals.

Although all four are sensitive to the global economy, the specific
drivers differ. Copper is often seen as a leading economic indicator due
to its widespread use in construction and electronics. Zinc is also closely
tied to construction through its use in galvanization. Nickel, while his-
torically linked to the stainless steel industry, has seen its price dynamics
increasingly influenced by the high-tech and electric vehicle battery sec-
tors, making it more susceptible to speculative capital and specific techno-
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logical advancements. Aluminum, with its abundant reserves and stable
supply, tends to exhibit less extreme volatility compared to the others.

While all scatter plots show a general trend of increasing volatility with
price, the exact relationship is not identical. The fan-shaped pattern for
copper and aluminum, as noted previously, appears to narrow at very high
price levels, suggesting a non-monotonic relationship. In contrast, nickel’s
fan shape is more consistently and dramatically widening, particularly
at its highest price levels. This indicates that a simple, single volatility
function might not be sufficient to capture the nuanced behavior of all
four metals, necessitating the use of flexible models that can accommodate
these subtle differences.

3. DIFFUSION MODELS AND ESTIMATION METHOD

3.1. DIFFUSION MODELS

In this study, five univariate time-homogeneous diffusion processes are
estimated for each of the four metal prices to explain their movements.
The maximum likelihood estimation method is used. For the sake of
estimation convenience, the prices of copper, aluminum, and nickel were
converted to prices per 0.1 kg, while the price of zinc was converted to the
price per 1 kg.

The general form of the diffusion model is in equation (1).

dXt:M(Xt;9>dt+U(Xt;9)th. (1)

Here, W is a standard Brownian Motion, u(Xy;0) is a drift function,
and o(Xy;0) is a volatility function. A variety of diffusion models have
been proposed in previous studies.

Table 2 summarizes the mathematical form of each model we employ.
The most comprehensive model is the General Drift and General Volatility
(GD-GV) model suggested by Choi (2009). This model is highly flexible
and encompasses almost all other diffusion models proposed in the litera-
ture. The General Drift and Constant Elasticity of Variance (GD-CEV)
model is a restricted version of the GD-GV model, where the volatility
function is simplified to the Constant Elasticity of Variance (CEV) form.
However, its drift function remains highly flexible. The Chan-Karolyi-
Longstaff-Sanders (CKLS) model, proposed in Chan et al. (1992), is a
more restricted model with a linear drift function and a CEV volatility
function. The Cox—Ingersoll-Ross (CIR) model, introduced in Cox et al.
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Model Equation

Vasicek dXt = (ap + a1 X¢)dt ++/B2 dW

CIR dXt = (ag+ a1 Xy ) dt+ /B2 X1 dW;

CKLS dXt:(aO+a1Xt)dt+det

GD-CEV | dX; = (a—1X; ' +ag+a1Xi + ao X7 +asX}) dt + 1/ 52X AW,
GD-GV | dX; = (aaX;' + a0 + aiX: + X7 + asXP)dt +
\/50+51Xt+52X,553th

Table 2: DIFFUSION MODELS FOR METAL PRICES. This table summarizes
the five diffusion models used in this study, which include the Vasicek, CIR,
CKLS, GD-CEV, and GD-GV models.

(1985), is a special case of the CKLS model where the elasticity parameter
B3 is restricted to 1. It features a linear drift and a volatility that is pro-
portional to the square root of the price. Finally, the Vasicek model, from
Vasicek (1977), is characterized by a linear drift function and a constant
volatility.

The models are nested in the following relationship. Vasicek and CIR
are special cases of CKLS, which in turn is a special case of GD-CEV. All
four of these models are nested within the most general GD-GV model.
This hierarchical structure allows for a robust comparison of models, from
the simplest to the most complex, to determine which one provides the
most appropriate representation of the data.

3.2. MAXIMUM LIKELIHOOD ESTIMATION

We employ the maximum likelihood estimation (MLE) method to es-
timate the diffusion models. If the transition probability density function
(TPDF) of a diffusion model is known, the log-joint probability density
function of the daily metal prices can be written as follows, ignoring the
first observation.

L(0) =S Inpx (A Xia | Xo_yya:0)]. @
=1

where px (A, X;a | X(i—1)a;0) is the TPDF of a diffusion process at
time iA given X(;_1)a. We observe metal prices X; discretely at times ¢t =
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1A, i=0,1,...,n, where A is the time difference between two consecutive
observations and A = %2 in the case of daily data.

However, to apply the MLE and ensure the efficiency of its estimators,
we must know the TPDF of the diffusion process. While the TPDF is
known for a few diffusion models such as Vasicek (1977), CIR (1985), and
Black and Scholes (1973), it is unknown for most diffusion process models.
Therefore, we first obtain an approximate yet accurate log-TPDF in a
closed form using the method developed by (Ait-Sahalia, 2008) 2. Then we
use it to estimate the parameters via the Maximum Likelihood Estimation
method.

In a groundbreaking work, Ait-Sahalia (2008) conjectured that even
for an irreducible diffusion process, the log-TPDF retains the same form
as that of a reducible model. Accordingly, even in the irreducible case,
the log-TPDF can be expressed as in equation (3).

(1) .
19 (A, | 20:6) = — L In(2mA) — Dy(a:0) + X (Ai [ 20:6)

—|—];)CX (A x| xo;e)ﬁ.

The subsequent process can be summarized as follows. First, substi-
tute equation (3) into the following Kolmogorov partial differential equa-
tions.

Olx (A, x| 20;0) _8/%(36;0) n 182vij(x;0)
0A N 81‘Z 2 (3.%@6.%3
alx(A,l' ’ xo;G)
_/’Ll(t’x) 6.%'1
n 0vij(x;0) Olx (A, z | x0)
8.757; 8:1:]-
82l)((A T | .%'09)
1, . ) I
+ 5vi5(x;0) iz,
8[)((A,1‘ ‘ .Z‘o)
+ %—6:@ vij(x;0)

81)((A,$ ’ xo)

8.lej (4)

2 A more detailed explanation of the methods for obtaining the approximate TPDF,
ranging from Ait-Sahalia’s univariate time-homogeneous diffusion model (Ait-Sahalia,
2002) to Choi’s multivariate time-inhomogeneous diffusion model (Choi, 2015a), is well-
summarized in (Choi, 2020a).
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Secondly, by comparing terms of the same order of A, we derive the
partial differential equations (PDEs) that each coefficient C’g?) (A, x| x0;0),
(k=—1,0,...,K) satisfies. The approximate log-TPDF can be obtained
by solving these PDEs. While these PDEs can be solved for reducible
diffusion models, they cannot be solved for irreducible models. For this
reason, Ait-Sahalia (2008) suggests that in the PDEs of each coefficient,
C&l—c)(A,x | 0;0) and all other functions of x are Taylor expanded around
the value xg. Next, by comparing terms of the same order of (z —zg) in
these Taylor series expansions, the Taylor series of Cg?)(A,ZL‘ | £0;60) can
be obtained up to the desired order. By substituting C’gg’“’k)(A,x | 0;0),
which represents the Taylor series of Cﬁf)(A,az | 0;6) up to the ji order,
into equation (3), we can obtain the approximate log-TPDF as follows?

f(XK)(A,:U | 20;0) = —%ln(27rA) — Dy(x;0)

LA 20:0) |k Ah
X A +kz_%)0§gk’ )(A,az|x0;«9)ﬂ.
(5)
Finally, by substituting equation (5) into the combined equation (2),
we can obtain the maximum likelihood estimate.

_|_

4. ESTIMATION RESULTS AND DISCUSSIONS

Five diffusion models—Vasicek, CIR, CKLS, GD-CEV, and GD-GV—are
applied to four non-ferrous metal prices. The most suitable model is deter-
mined using the Akaike information criterion (Akaike, 1973), the Bayesian
information criterion (Schwarz, 1978), and the likelihood ratio test.

The Akaike information criterion (AIC) is defined as AIC = 2k —
2In(L), where k is the number of parameters being estimated and L is
the estimated maximum likelihood. Akaike (1973) shows that it can be
viewed as the estimator of the information loss associated with the cor-
responding model. Therefore, we prefer the model that gives the least
value of AIC. The Bayesian information criterion (BIC) is defined as
BIC = kln(n) — 2In(L), where k is the number of parameters being es-
timated, L is the estimated maximum likelihood, and n is the number of

3During the calculation of the coefficients, each coefficient depends on the lower-
order coefficients. Therefore, they must be derived sequentially, starting from K = —1,
and the Taylor expansion must be obtained from the lowest order first. In this study,
we used the approximate log-TPDF up to the K =1 order.
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observations. Like AIC, it measures the information loss, but by adding
the kln(n) term, it imposes a greater penalty on the model as the number
of parameters increases. If two models give the equal likelihood value,
BIC will prefer the parsimonious model.

4.1. ESTIMATION RESULTS FOR COPPER

We applied five diffusion models—Vasicek, CIR, CKLS, GD-CEV, and
GD-GV—to the daily LME copper price data to identify the model that
best explains its dynamics. The estimation results are summarized in
Table 3, with the estimated drift and volatility functions presented in
Figure 5.

Based on the estimation results, the CKLS model is the most appropri-
ate for describing the dynamics of copper prices. When the CKLS model
was tested against the more general GD-GV model using the likelihood
ratio test, the p-value was 0.07. This means that at a 5% significance level,
the CKLS model cannot be rejected in favor of the more complex GD-GV
model. Additionally, the AIC is smallest for the GD-CEV model, while
the BIC is smallest for the CKLS model. Given the statistical insignifi-
cance of the additional parameters in the GD-GV model, and the inability
to reject the CKLS model at the 5% level, the CKLS model provides the
most parsimonious and suitable fit for the copper price data.

Upon examining the estimated parameters, it is notable that the drift
parameters (a_1, g, a1, a9, a3) for all models are statistically insignificant
at the 5% level. This is visually confirmed in the drift function graphs
of Figure 5, where the 95% confidence bands for most models include
the z-axis for the entire range of observed prices. However, a closer look
at the GD-CEV and GD-GV drift functions reveals some evidence of a
mean-reverting property, as their 95% confidence bands are slightly above
the z-axis in the price range around 0.5. This suggests that while not
statistically strong, there is a tendency for the price to revert to its mean
in certain middle-price scenarios.

In contrast, the volatility parameters (f2, 83) for all non-Vasicek mod-
els are highly significant at the 1% level. This finding indicates that the
volatility of copper prices is strongly dependent on the price level. The
volatility function graphs in Figure 5 further support this, showing that
volatility is an increasing function of the copper price. The GD-CEV
model shows a volatility function that increases with the price at a rate
determined by the significant 83 parameter, confirming the heteroskedas-
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0 Vasicek CIR CKLS GD-CEV GD-GV
Panel A. Drift parameters
a1 0 0 0 0.065 0.065
(std.err) (0.042) (0.042)
ap 0.026 0.017 0.013 -0.71 -0.71
(std.err) (0.037) (0.021) (0.013) (0.54) (0.54)
ai -0.016 -0.00 -0.00 2.29 2.29
(std.err) (0.055) (0.042) (0.046) (2.30) (2.32)
[e D) 0 0 0 -1.91 -1.91
(std.err) (3.90) (3.93)
as 0 0 0 -0.00 -0.00
(std.err) (2.25) (2.26)
Panel B. Volatility parameters
Bo 0 0 0 0 0.00
(std.err) (0.00020)
b1 0 0 0 0 0
(std.err) (0.0024)
B2 0.0080** 0.015** 0.041** 0.040™* 0.040™*
(std.err) (0.000027) (0.000057) (0.00041) (0.00040) (0.0017)
B3 0 1 2.16** 2.16** 2.14**
(std.err) (0.0090) (0.0090) (0.11)
Panel C. Criterions
log-lik 49368.91 53066.12 54657.73 54661.27 54661.27
LR test 0 0 0.21 1 -
(p-val)
AIC -98731.82 -106126.24 -109307.46 -109308.54 -109304.54
BIC -98710.58 -106105.00 -109279.14 -109258.98 -109240.82

Table 3: ESTIMATION RESULTS FOR COPPER. ** indicates statistical sig-
nificance at the 1% level. * indicates statistical significance at the 5% level. The
numbers in parentheses below the estimated values are the standard errors of
the parameters. The table presents maximum likelihood estimation results for
five diffusion models applied to daily LME copper prices. It is organized into
three panels: Panel A for drift parameters, Panel B for volatility parameters,
and Panel C for information criteria and the likelihood ratio (LR) test.
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Figure 5: DRIFT AND VOLATILITY FUNCTIONS FOR COPPER. The drift
and volatility functions were evaluated using the estimated parameters from each
diffusion model over the range of observed copper prices. The dashed lines rep-
resent the 95% confidence bands for the estimated functions.
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ticity observed in the preliminary visual analysis. The elasticity of volatil-
ity with respect to the price, given by f3/2 in the CEV-type models, is
estimated to be approximately 1.08, suggesting that a 1% increase in the
copper price leads to a more than 1% increase in its volatility.

Overall, the estimation results for copper suggest that its price dy-
namics are best described by a model with a CEV volatility structure,
but a statistically insignificant drift term. This highlights that for copper,
volatility is a more critical component than mean-reversion in explaining
its price movements.

4.2. ESTIMATION RESULTS FOR ALUMINUM

We estimated five diffusion models—Vasicek, CIR, CKLS, GD-CEV,
and GD-GV—using daily LME aluminum price data to capture its un-
derlying dynamics. The key findings of this analysis are presented in the
summary statistics of Table 4 and visualized through the estimated drift
and volatility functions in Figure 6.

The empirical results for aluminum reveal distinct characteristics com-
pared to copper. When comparing the five models, the GD-GV and GD-
CEV models exhibit a strong performance with high log-likelihood values.
However, the likelihood ratio test results are mixed. While both the CKLS
and GD-CEV models are rejected against the GD-GV model, the informa-
tion criteria present a divided picture. The AIC is lowest for the GD-GV
model, which suggests that its additional parameters are valuable for cap-
turing the data’s dynamics. Conversely, the BIC, which applies a heavier
penalty for the number of parameters, favors the simpler CKLS model.
This conflicting evidence suggests that either the GD-GV or the CKLS
model could be considered the most appropriate for explaining aluminum
price movements, depending on the chosen criterion.

In terms of mean reversion, the simpler models (Vasicek, CIR, and
CKLS) show statistically significant drift parameters («, o1), providing
some evidence that aluminum prices tend to revert to a long-run mean.
This is graphically confirmed in Figure 6, where the 95% confidence bands
of their drift functions lie consistently above the z-axis. However, since
the drift function remains close to the z-axis, the strength of this mean
reversion does not appear to be very large. Furthermore, this statistically
significant result is not found in the more general GD-CEV and GD-GV
models with their more flexible drift terms.

The role of volatility is equally important. All models show highly sig-



22 DIFFUSION MODELS OF NON-FERROUS METAL PRICES

nificant volatility parameters. Notably, the GD-GV model, which proved
to be the best fit, provides a more complex picture. As seen in the volatil-
ity function graphs in Figure 6, volatility is a monotonically increasing
function of the aluminum price. The estimated elasticity of volatility with
respect to price, approximately 1.60, was calculated based on the similar
B3 estimates from both the GD-CEV and GD-GV models. This indicates
that aluminum’s price fluctuations are highly responsive to changes in its
price level.

To summarize, the GD-GV and CKLS models emerge as the most
plausible candidates for describing aluminum prices, though a definitive
conclusion depends on the model selection criteria used. While the mean-
reverting property is statistically significant in simpler models, the general
volatility function is essential for capturing the complete dynamics, as
evidenced by the significance of its additional parameters. This suggests
that a more complex model is required to fully understand the behavior
of aluminum prices.

4.3. ESTIMATION RESULTS FOR NICKEL

We estimated five diffusion models—Vasicek, CIR, CKLS, GD-CEV,
and GD-GV—to analyze the dynamic behavior of daily LME nickel prices.
The key findings from this analysis are presented in Table 5, and the
estimated drift and volatility functions are visualized in Figure 7.

The empirical results for nickel reveal a pattern distinct from the other
non-ferrous metals. A statistical comparison using log-likelihood values
and information criteria indicates that the CKLS model is the most suit-
able for describing nickel’s price dynamics. When the CKLS and GD-
CEV models are tested against the more general GD-GV model, both are
not rejected, suggesting that the additional parameters in the GD-GV
model are statistically insignificant. Furthermore, when the CKLS model
is tested against the GD-CEV model, the p-value is 0.96, meaning that at
any conventional significance level, the CKLS model cannot be rejected in
favor of the more general GD-CEV model. Both the AIC and BIC values
are also smallest for the CKLS model. This strong evidence suggests that
the CKLS model is the most appropriate choice for explaining the price
movements of nickel.

When we examine the drift component, the linear drift models (Va-
sicek and CIR) show a drift function that is close to the z-axis, suggesting
that while there may be a tendency towards mean reversion, the effect is
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0 Vasicek CIR CKLS GD-CEV GD-GV

Panel A. Drift parameters

a1 0 0 0 0.00010 0.0056
(std.err) (0.10) (0.12)
ap 0.045"* 0.044** 0.034* 0.16 0.082
(std.err) (0.017) (0.016) (0.014) (2.40) (2.76)
aq -0.22** -0.22** -0.16 -2.48 -2.22
(std.err) (0.078) (0.079) (0.088) (20.85) (23.58)
az 0 0 0 13.72 14.021
(std.err) (77.89) (87.11)
ag 0 0 0 -25.83 -27.65
(std.err) (105.63) (117.12)

Panel B. Volatility parameters

Bo 0 0 0 0 0.00041**
(std.err) (0.00012)
b1 0 0 0 0 -0.0039*
(std.err) (0.0016)
Bo 0.00081** 0.0040** 0.17** 0.17** 0.18**
(std.err) (0.00) (0.000019) (0.0075) (0.0076) (0.039)
B3 0 1 3.27%* 3.27%* 3.085**
(std.err) (0.025) (0.025) (0.23)

Panel C. Criterions

log-lik 58148.16 59233.65 60233.01 60233.31 60245.25
LR test 0 0 0 0 B
(p-val)
AIC -116290.32 -118461.30 -120458.02 -120452.62 -120472.50
BIC -116269.63 -118440.61 -120430.43 -120404.35 -120410.43

Table 4: ESTIMATION RESULTS FOR ALUMINUM. ** indicates statistical
significance at the 1% level. * indicates statistical significance at the 5% level.
The numbers in parentheses below the estimated values are the standard errors
of the parameters. The table presents maximum likelihood estimation results for
five diffusion models applied to daily LME aluminum prices. It is organized into
three panels: Panel A for drift parameters, Panel B for volatility parameters, and
Panel C for information criteria and the likelihood ratio (LR) test.
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Figure 6: DRIFT AND VOLATILITY FUNCTIONS FOR ALUMINUM. The drift
and volatility functions were evaluated using the estimated parameters from each
diffusion model over the range of observed aluminum prices. The dashed lines
represent the 95% confidence bands for the estimated functions.
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not strong. This is also visually confirmed in Figure 7, where the 95% con-
fidence bands for these models lie consistently away from the x-axis, but
closely to it. However, the more flexible GD-CEV and GD-GV models fail
to produce statistically significant drift parameters, with their confidence
bands almost entirely overlapping the x-axis. This suggests that while a
simple linear relationship might indicate mean reversion, a more nuanced,
non-linear perspective does not provide statistically significant evidence
for it.

The volatility component, in contrast, consistently demonstrates strong
statistical significance across all models. The volatility parameters for all
models are highly significant at the 1% level. As seen in the volatility
function graphs in Figure 7, nickel’s volatility is a monotonically increas-
ing function of its price. The elasticity of volatility with respect to price,
calculated from the similar f3 estimates of the CKLS, GD-CEV, and GD-
GV models, is approximately 1.19. This suggests that a 1% increase in
the nickel price leads to a corresponding 1.19% increase in its volatility,
a responsiveness that reflects the metal’s high susceptibility to market
forces.

To summarize, the price dynamics of nickel are best captured by a
model with a flexible volatility structure, such as the CKLS model. While
the drift component shows some evidence of mean reversion in simpler
models, this finding is not robust when more complex, general models are
used. This highlights that volatility is the dominant factor in explaining
nickel price movements.

4.4. ESTIMATION RESULTS FOR ZINC

We estimated five diffusion models—Vasicek, CIR, CKLS, GD-CEV,
and GD-GV—to analyze the dynamic behavior of daily LME zinc prices.
The key findings from this analysis are presented in Table 6, and the
estimated drift and volatility functions are visualized in Figure 8.

The empirical results for zinc reveal a pattern that, while sharing some
similarities, has its own unique characteristics. A statistical compari-
son using log-likelihood values and information criteria indicates that the
CKLS, GD-CEV, and GD-GV models are the most suitable for describing
zinc’s price dynamics. When the CKLS and GD-CEV models are tested
against the more general GD-GV model, both are not rejected, suggest-
ing that the additional parameters in the GD-GV model are statistically
insignificant. Furthermore, when the CKLS model is tested against the
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0 Vasicek CIR CKLS GD-CEV GD-GV
Panel A. Drift parameters
a1 0 0 0 0.00010 0.00010
(std.err) (0.25) (0.26)
o 0.26* 0.22% 0.098 0.099 0.089
(std.err) (0.13) (0.093) (0.056) (1.013) (1.028)
o -0.16™* -0.13* -0.020 -0.015 -0.041
(std.err) (0.044) (0.053) (0.068) (1.30) (1.31)
o2 0 0 0 0.0061 0.067
(std.err) (0.61) (0.62)
a3 0 0 0 -0.0083 -0.026
(std.err) (0.090) (0.091)
Panel B. Volatility parameters
Bo 0 0 0 0 0.00020
(std.err) (0.0016)
B1 0 0 0 0 0.00010
(std.err) (0.0053)
Ba 0.17** 0.085"* 0.052** 0.052** 0.052**
(std.err) (0.00049) (0.00034) (0.00025) (0.00025) (0.0037)
B3 0 1 2.38"* 2.38%* 2.38"*
(std.err) (0.0097) (0.0098) (0.056)
Panel C. Criterions
log-lik 19036.83 23109.86 25182.98 25183.13 25183.97
LR test 0 0 0.85 0.43 -
(p-val) 0 0 0 0
AIC -38067.66 -46213.72 -50357.96 -50352.26 -50349.94
BIC -38046.97 -46193.03 -50330.38 -50303.99 -50287.88

Table 5: ESTIMATION RESULTS FOR NICKEL. ** indicates statistical signif-

icance at the 1% level.

indicates statistical significance at the 5% level. The

numbers in parentheses below the estimated values are the standard errors of the
parameters. The table presents maximum likelihood estimation results for five
diffusion models applied to daily LME nickel prices. It is organized into three
panels: Panel A for drift parameters, Panel B for volatility parameters, and Panel
C for information criteria and the likelihood ratio (LR) test.
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Figure 7: DRIFT AND VOLATILITY FUNCTIONS FOR NICKEL. The drift
and volatility functions were evaluated using the estimated parameters from each
diffusion model over the range of observed nickel prices. The dashed lines repre-
sent the 95% confidence bands for the estimated functions.
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GD-CEV model, the p-value is 0.40, meaning that at any conventional sig-
nificance level, the CKLS model cannot be rejected in favor of the more
general GD-CEV model. Both the AIC and BIC values are also smallest
for the CKLS model, making it the most parsimonious and appropriate
choice. This suggests that the additional drift parameters in the GD-CEV
and GD-GV models are not statistically significant for explaining zinc’s
price movements.

When we examine the drift component, the drift parameters for all
models are not statistically significant at any conventional level. This is
visually confirmed in Figure 8, where the 95% confidence bands for all
models lie consistently encompassing the z-axis for the entire range of
observed prices. This suggests that there is no statistically significant
evidence of a mean-reverting property in the zinc price data.

The volatility component, in contrast, consistently demonstrates strong
statistical significance across all models. The volatility parameters for all
models are highly significant at the 1% level. As seen in the volatility
function graphs in Figure 8, zinc’s volatility is a monotonically increasing
function of its price. The elasticity of volatility with respect to price, cal-
culated from the similar 53 estimates of the CKLS, GD-CEV, and GD-GV
models, is approximately 1.42. This suggests that a 1% increase in the
zinc price leads to a corresponding 1.42% increase in its volatility.

To summarize, the price dynamics of zinc are best captured by a model
with a flexible volatility structure, such as the CKLS model. The drift
component, however, does not show statistically significant evidence of
a mean-reverting property in the zinc price data. This highlights that
volatility is the dominant factor in explaining zinc price movements.

4.5. COMPARISON AND DISCUSSION

The estimation results for the four non-ferrous metals reveal both
shared characteristics and distinct differences in their price dynamics. All
four metals consistently show that price volatility is a dominant factor,
with volatility functions monotonically increasing with price level, a clear
indication of heteroskedasticity. However, the selection of the most ap-
propriate model and the significance of the drift component vary. For
aluminum, the complex GD-GV model emerged as the best fit, as the
likelihood ratio test rejected all simpler nested models, suggesting that
its unique dynamics require a more generalized framework. In contrast,
for copper, nickel, and zinc, the simpler CKLS model was identified as
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0 Vasicek CIR CKLS GD-CEV GD-GV
Panel A. Drift parameters
a1 0 0 0 1.090 1.090
(std.err) (1.59) (1.59)
ag 0.21 0.17 0.053 -2.19 -2.18
(std.err) (0.16) (0.12) (0.085) (4.43) (4.43)
o -0.099 -0.075 -0.00052 1.22 1.22
(std.err) (0.058) (0.057) (0.069) (4.29) (4.29)
az 0 0 0 -0.056 -0.056
(std.err) (1.69) (1.69)
a3 0 0 0 -0.052 -0.052
(std.err) (0.23) (0.23)
Panel B. Volatility parameters
Bo 0 0 0 0 0.00
(std.err) (0.0038)
B1 0 0 0 0 -0.00016
(std.err) (0.0068)
Ba 0.16** 0.071** 0.024** 0.024** 0.024**
(std.err) (0.00053) (0.0003) (0.00016) (0.00016) (0.0030)
B3 0 1 2.84** 2.84** 2.84**
(std.err) (0.014) (0.014) (0.093)
Panel C. Criterions
log-lik 22820.30 25961.36 28282.85 28284.33 28285.86
LR test 0 0 0.30 0.22 -
(p-val) 0 0 0 0
AIC -45634.60 -51916.72 -56557.70 -56554.66 -56553.72
BIC -45613.45 -51895.57 -56529.50 -56505.32 -56490.28

Table 6: ESTIMATION RESULTS FOR ZINC.

icance at the 1% level.

indicates statistical signif-
indicates statistical significance at the 5% level. The

numbers in parentheses below the estimated values are the standard errors of the
parameters. The table presents maximum likelihood estimation results for five
diffusion models applied to daily LME zinc prices. It is organized into three pan-
els: Panel A for drift parameters, Panel B for volatility parameters, and Panel C
for information criteria and the likelihood ratio (LR) test.



30 DIFFUSION MODELS OF NON-FERROUS METAL PRICES

Drift Function p(X¢;0)

Volatility Function o (X¢;0)

Panel A: ji(x,6) and 95% Confidence Band Panel B: o(x,6) and 95% Confidence Band
08
0.5 ~
— e N
% T, S o6
L S —— >
£ Tt e-a =
£ - T :g 04
05 T~ =
0.2
-1 0
. 1 2 3 4 2 3
Vasicek Zinc Price (US$/0.001 MT) Zinc Price (US$/0.001 MT)
Panel A: ji(x,6) and 95% Confidence Band Panel B: o(x,6) and 95% Confidence Band
08
05 ~
—_ <
I T So6r
R -
= S--a =
£ R 3 04+
05 - =
02F
-1 0
1 2 3 4 2 3
CIR Zinc Price (US$/0.001 MT) Zinc Price (US$/0.001 MT)
Panel A: ji(x,6) and 95% Confidence Band 15 Panel B: o(x,6) and 95% Confidence Band
05 e —~
s BT 31
S L _---- 5
X 0 — =
£ TTee-al H
S TTee-l 2os
- S o
05 =
-1 0
1 2 3 4 2 3
CKLS Zinc Price (US$/0.001 MT) Zinc Price (US$/0.001 MT)
Panel A: pi(x,6) and 95% Confidence Band 15 Panel B: o(x,6) and 95% Confidence Band
- .
/
’
.
05 -7 =
& -7 2
SR 51
T, — -
= N =
a hEN B s
~ S o
05 AN >
~
N
\
- » 0
1 3 4 2 3
GD-CEV Zinc Price (US$/0.001 MT) Zinc Price (US$/0.001 MT)
Panel A: pi(x,6) and 95% Confidence Band 15 Panel B: o(x,6) and 95% Confidence Band
. .
/
’
; .,
- L &
@ 05 _———- - =
T ~——— 5
T oobER=== — >
£ o5 AR E
5 - ~ 3
4 N E
N
\
\
1 2 3 4 2 3 1
GD-GV Zinc Price (US$/0.001 MT) Zinc Price (US$/0.001 MT)

Figure 8: DRIFT AND VOLATILITY FUNCTIONS FOR ZINC. The drift and
volatility functions were evaluated using the estimated parameters from each
diffusion model over the range of observed zinc prices. The dashed lines represent
the 95% confidence bands for the estimated functions.
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the most suitable. This is because the more complex models (GD-CEV
and GD-GV) were not found to be statistically superior, and their drift
parameters were largely insignificant. This analysis demonstrates that
while all non-ferrous metals share a common dependence on volatility,
the specific price dynamics are not homogeneous, necessitating a careful,
metal-specific statistical approach.

5. CONCLUSION

This paper empirically investigates the most appropriate continuous-
time diffusion models to describe the dynamic behavior of four major
non-ferrous metals: copper, aluminum, nickel, and zinc, using daily price
data. To this end, five diffusion models—Vasicek, CIR, CKLS, GD-CEV,
and GD-GV—were specified, and their parameters were estimated using
the maximum likelihood estimation method after deriving approximate
transition probability density functions via the method developed by (Ait-
Sahalia, 2008).

The estimation results reveal several important similarities and dif-
ferences in the price dynamics of the four metals. A key commonality is
that the price dynamics of all metals are dominated by the volatility func-
tion. Volatility-related parameters in all models were found to be highly
statistically significant, and volatility consistently showed heteroskedastic-
ity, increasing with the price level. This suggests that the assumption of
constant volatility is inappropriate for modeling non-ferrous metal prices.

However, the most appropriate model for each metal differed. For
aluminum, the most flexible GD-GV model was selected as the optimal
model, based on a comprehensive consideration of the likelihood ratio test
and information criteria AIC and BIC. This is supported by the finding
that the additional parameters in the GD-GV model’s generalized volatil-
ity function were statistically significant. Conversely, the price dynamics
of copper, nickel, and zinc were best explained by the more parsimonious
CKLS model. For these three metals, no evidence was found to suggest
that more complex models like GD-GV were statistically superior.

Furthermore, the analysis of the drift function yielded varying results
across metals. While a weak tendency towards mean-reversion was ob-
served in aluminum’s simpler models, the drift parameters for copper,
nickel, and zinc were largely statistically insignificant. This suggests that
the role of the volatility function is more critical than that of the drift
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function in explaining the price dynamics of non-ferrous metals.

The findings of this study demonstrate that even within the same
category of commodities, price movements are not homogeneous, and it
is crucial to select a flexible model that fits the specific characteristics of
each metal. This provides important implications for risk management in
related industries, derivative pricing, and investors’ portfolio management.

Future research could explore other models not considered in this pa-
per. For instance, a diffusion model incorporating jump factors could be
used to explain sudden price surges or drops, or a multivariate diffusion
model could be applied to analyze the interdependence among multiple
metals.

REFERENCES

Ait-Sahalia, Y. (1996). “Testing continuous-time models of the spot inter-
est rate,” Review of Financial Studies 9, 385-426.

Ait-Sahalia, Y. (2002). “Maximum likelihood estimation of discretely sam-
pled diffusions: a closed-form approximation approach,” Econometrica
70, 223-262.

Ait-Sahalia, Y. (2008). “Closed-form likelihood expansions for multivari-
ate diffusions,” Annals of Statistics 36, 906-937.

Akaike, H. (1973). “Information theory and an extension of the maximum
likelihood principle,” in 2nd International Symposium on Information
Theory, Akademiai Kiado, 267-281.

Bates, D.S. (1996). “Jumps and stochastic volatility: Exchange rate pro-
cesses implicit in Deutsche Mark options,” Review of Financial Studies
9, 69-107.

Black, F. and M. Scholes (1973). “The pricing of options and corporate
liabilities,” Journal of Political Economy 81, 637-654.

Brennan, M.J. and E.S. Schwartz (1985). “Evaluating natural resource
investments,” Journal of Business 58, 135-157.

Chan, K.C., G.A. Karolyi, F.A. Longstaff, and A.B. Sanders (1992). “An
empirical comparison of alternative models of the short-term interest
rate,” Journal of Finance 47, 1209-1227.



DOKYUN AN AND SEUNGMOON CHOI 33

Choi, S. (2009). “Regime-switching univariate diffusion models of the
short-term interest rate,” Studies in Nonlinear Dynamics € FEconomet-
rics 13, 1-24.

Choi, S. (2013). “Closed-form likelihood expansions for multivariate time-
inhomogeneous diffusions,” Journal of Econometrics 174, 45-65.

Choi, S. (2015a). “Explicit form of approximate transition probability
density functions of diffusion processes,” Journal of Econometrics 187,
57-73.

Choi, S. (2015b). “Maximum likelihood estimation of continuous-time dif-
fusion models for Korean short-term interest rates,” Fconomic Analysis
(Quarterly) 21, 28-58.

Choi, S. (2020a). “Recent development of closed-form approximate (log-)
transition probability density functions of diffusion processes,” Journal
of Economic Theory and Econometrics 31, 97-152.

Choi, S. and J. Lee (2020). “Maximum likelihood estimation of continuous-
time diffusion models for exchange rates,” Fast Asian FEconomic Review
24, 61-87.

Cox, J.C., J.E. Ingersoll, and S.A. Ross (1985). “A theory of the term
structure of interest rates,” Econometrica 53, 385-407.

Dias, J.C. and J.P.V. Nunes (2011). “Pricing real options under the con-
stant elasticity of variance diffusion,” Journal of Futures Markets 31,
230-250.

Dixit, A.K. and R.S. Pindyck (1994). Investment under Uncertainty,
Princeton University Press.

Dothan, L.U. (1978). “On the term structure of interest rates,” Journal
of Financial Economics 6, 59-69.

Heston, S.L. (1993). “A closed-form solution for options with stochastic
volatility with applications to bond and currency options,” Review of
Financial Studies 6, 327-343.

Lo, A.W. (1988). “Maximum likelihood estimation of generalized It6 pro-
cesses with discretely sampled data,” Econometric Theory 4, 231-247.



34 DIFFUSION MODELS OF NON-FERROUS METAL PRICES

Merton, R.C. (1973). “Theory of rational option pricing,” Bell Journal of
Economics and Management Science 4, 141-183.

Nowman, K.B. and H. Wang (2001). “Modelling commodity prices using
continuous time models,” Applied Economics Letters 8, 341-345.

Paddock, J.L., D.R. Siegel, and J.L. Smith (1988). “Option valuation of
claims on real assets: The case of offshore petroleum leases,” Quarterly
Journal of Economics 103, 479-508.

Schwartz, E.S. (1997). “The stochastic behavior of commodity prices: Im-
plications for valuation and hedging,” Journal of Finance 52, 923-973.

Schwartz, E.S. and J.E. Smith (2000). “Short-term variations and long-
term dynamics in commodity prices,” Management Science 46, 893-911.

Schwarz, G. (1978). “Estimating the dimension of a model,” Annals of
Statistics 6, 461-464.

Yan, X. (2002). “Valuation of commodity derivatives in a new multi-factor
model,” Review of Derivatives Research 5, 251-271.

Vasicek, O. (1977). “An equilibrium characterization of the term struc-
ture,” Journal of Financial Economics b, 177-188.

Yu, J. (2007). “Closed-form likelihood approximation and estimation of
jump-diffusions with an application to the realignment risk of the Chi-
nese Yuan,” Journal of Econometrics 141, 1245-1280.



