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Abstract This paper applies a Bayesian Variable Selection (BVS)
framework to forecast the year-on-year growth rate of China’s newly built
housing price index (HPI YoY). Using a broad set of macroeconomic and
financial predictors, we implement a hierarchical BVS model with rolling-
window estimation and direct multi-horizon forecasting. Out-of-sample
performance is evaluated against autoregressive (AR) models, the ran-
dom walk (RW), and a machine learning benchmark, the Random For-
est (RF). The results show that BVS consistently outperforms AR and
RW across most horizons in both point and density forecasts, and dom-
inates RF within two years (h = 1–18), while RF is only slightly better
at very long horizons (h = 24,30,36). Horizon-specific predictors provide
further insights: lagged HPI and market sentiment (RECI) drive short-
run dynamics; RECI, inflation (CPI), and housing credit conditions (HPF,
IHLL) matter at medium to long horizons; and demographic fundamentals
(PNGR) dominate at long and ultra-long horizons. The forecast results
point to a subdued housing market over the next two years, consistent
with a structural break around April 2022 and the lasting impact of de-
mographic shifts. Overall, the study demonstrates that BVS not only
improves forecasting accuracy but also enhances interpretability, making
it a valuable tool for academic research and housing market policy design.
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1. INTRODUCTION

House prices are an important indicator of the health and stability of
the real estate market. Predicting changes in house prices helps to clearly
understand the real estate market. Therefore, real estate investors, real
estate developers and government regulators always pay close attention
to house price trends. Accurate house price forecasts not only help the
government to regulate the real estate market more effectively, but also
help real estate developers make smarter investment decisions. Real estate
investors’ decisions also largely depend on the forecast of future house
prices. Especially in this period, after more than 30 years of continuous
increases in Chinese house prices, they have begun to decline in the past
three years. How government regulators should better stabilize house
prices has become an important topic.

At the same time, compared with major developed economies such as
the United States and the United Kingdom, China’s real estate market is
quite unique. Unlike other commodities, housing is the most important
asset of a typical Chinese family. In Chinese culture, it is a key indicator of
economic success and social status. Therefore, it is not only indispensable,
but also often ‘the more the better’. According to Huang, Yi and Clark
(2020), the house ownership rate in China has exceeded 80%, compared to
just over 60% in major ‘ownership countries’. Moreover, more than 20% of
urban households in China own multiple homes—significantly higher than
the 13% in the United States and around 10% in the United Kingdom.

Underdeveloped financial markets and capital controls limit household
investment options and make residential properties more like a financial
product rather than a pure place to live. Therefore, when housing prices
in China no longer continue to rise and begin to show a downward trend,
it becomes critically important for homeowners or investment-oriented
buyers to judge the trajectory of future housing prices and to understand
which factors are driving these changes.

Given these unique institutional features, understanding housing price
dynamics in China requires a macroeconomically grounded approach. This
study develops a forecasting model at the national level, using a wide
range of macro-financial variables and a Bayesian Variable Selection (BVS)
framework to capture short-, medium-, and long-term drivers of housing
price growth. The findings offer insights not only for central policymakers,
but also provide useful guidance for real estate investors seeking to un-
derstand nationwide market trends. In addition, the proposed modeling
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framework lays the groundwork for future studies aiming to analyze local
housing markets using the same infrastructure.

Many scholars have conducted extensive research on house price fore-
casting. For example, Crawford and Fratantoni (2003) forecasted quar-
terly house prices in five U.S. states from 1979 to 2001 using ARIMA,
GARCH, and regime-switching models, and compared their forecasting
performance. Their study reveals that regime-switching models are a com-
pelling choice for real estate markets with historical boom-and-bust cycles.
However, simple ARIMA models generally perform better in out-of-sample
forecasting. Rapach and Strauss (2007) used an autoregressive distributed
lag (ARDL) model framework with 25 determinants to forecast real hous-
ing price growth for individual states in the Federal Reserve’s Eighth Dis-
trict. They find that ARDL models tend to outperform a benchmark AR
model.

However, the traditional housing price prediction model faces at least
one or two major problems. First, the traditional housing price prediction
model cannot take into account the impact of multiple variables from
various fields on housing prices. Second, if too many irrelevant variables
are used, it will inevitably cause overfitting problems, which will affect the
accuracy of the prediction. Moreover, the impact of various variables on
housing prices is dynamic, and it is also necessary to dynamically reflect
the effects of various factors on housing prices.

With the rise of computational tools, many scholars have also explored
machine learning methods for house price prediction. For example, Ade-
tunji et al. (2022) and Xu and Zhang (2021) apply random forest and
neural networks to estimate housing values using U.S. and Chinese data,
respectively, reporting high predictive accuracy. Other studies such as
Satish et al. (2019), Kuvalekar et al. (2020), and Teoh et al. (2023) employ
models like Lasso regression, decision trees, and explainable AI techniques
to improve prediction performance.

The rapid advancement of machine learning techniques has improved
the ability to forecast housing prices while mitigating overfitting risks.
However, most existing machine learning studies focus on micro-level fea-
tures of individual properties—such as location, structure, and ameni-
ties—rather than macroeconomic dynamics. In contrast, this study aims
to forecast the overall housing price trend in China by applying a Bayesian
Variable Selection (BVS) model to a broad set of macroeconomic and fi-
nancial indicators. Given the increasing uncertainty in China’s housing
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market, understanding the macroeconomic drivers of housing price fluc-
tuations is critical for both policymakers and individual investors.

The BVS approach offers several key advantages. It dynamically se-
lects relevant predictors across short-, medium-, and long-term horizons
and captures the evolving transmission of macroeconomic influences. Un-
like conventional machine learning methods that rely on fixed variable sets
or produce only point forecasts, BVS generates full predictive distributions
and quantifies model uncertainty through posterior inclusion probabili-
ties. This enables transparent interpretation of variable importance and
enhances decision-making under uncertainty. By applying this framework
to China’s housing price data, our study provides both methodological
contributions and policy-relevant insights.

Kang (2018) proposed a mortgage prediction method and performed
density forecasting using a Bayesian machine learning algorithm based on
conditional Bayesian model averaging. Drawing inspiration from such ap-
plications of Bayesian Variable Selection (BVS) models in macroeconomic
contexts, our study extends this framework to forecast the year-on-year
growth rate of China’s housing price index. In contrast to Kang’s study,
which employed an indirect prediction strategy for rolling forecasts, we
adopt a direct multi-horizon forecasting approach to better capture the
dynamic influence of macroeconomic variables over short-, medium-, and
long-term horizons.

While Bayesian Variable Selection (BVS) methods have been widely
applied in macroeconomic forecasting, their use in housing price predic-
tion—particularly in identifying and interpreting macroeconomic influence
factors—remains relatively underexplored. Prior research across various
countries shows that housing prices are shaped by a wide array of fac-
tors, including GDP growth, demographics, credit and money supply, in-
come, interest rates, inflation, speculative capital flows, taxation policies,
and stock market wealth Mikhed and Zemcik (2009); Rapach and Strauss
(2009); Shiller (2005); Tsatsaronis and Zhu (2004). Fundamentally, hous-
ing prices reflect supply and demand dynamics: higher interest rates raise
borrowing costs for both developers and households, thereby constraining
investment and demand Arcelus and Meltzer (1973); Smith (1969); Maisel
(1968). Over the long run, prices tend to move with macroeconomic de-
velopment, as economic growth, urbanization, and rising incomes expand
housing demand Gottlieb (1976); Liang and Gao (2007). In China, mon-
etary policy—through interest rate and deposit regulation—exerts par-
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ticularly strong influence on housing prices Cai, Chen and Wang (2023),
motivating the selection of macro-financial variables to forecast changes
in the national housing price index.

The purpose of this study is to analyze the key macroeconomic vari-
ables that dynamically influence changes in housing prices using Bayesian
Variable Selection techniques, and to compare and evaluate the models’
predictive performance through out-of-sample forecasts. We use the year-
on-year growth rates of China’s New Housing Price Index as the dependent
variables in our forecasting models.

In our implementation of the Bayesian Variable Selection (BVS) tech-
nique, we build on the original approach proposed by George and McCul-
loch (1993), and adopt a common extension in which the hyperparameters
b0 and b1 are treated as unknown and estimated from the data. This hi-
erarchical prior setting helps mitigate the sensitivity of results to fixed
hyperparameter choices and enhances the model’s adaptability to chang-
ing macroeconomic environments Brown, Vannucci and Fearn (1998). To
further improve out-of-sample forecasting performance and account for
model uncertainty, we propose two alternative specifications—BVS1 and
BVS2—each based on distinct prior configurations. Our empirical results
confirm that the BVS approach effectively captures horizon-dependent
macroeconomic drivers and outperforms benchmark models across all fore-
cast horizons.

The structure of the rest of the paper is as follows. Section 2 out-
lines the methodology, presenting the Bayesian Variable Selection (BVS)
model and the Gibbs sampling algorithm. Section 3 describes the pre-
dictive distribution and the out-of-sample forecasting framework. Section
4 introduces the dataset and provides details on the predictor variables.
Section 5 presents the empirical analysis, dynamically examining the in-
fluencing factors and illustrating the out-of-sample forecast performance.
Section 6 provides a robustness check by detecting structural breaks in
the housing price series using a Bayesian change point model. Finally,
Section 7 concludes the paper and discusses broader policy implications.

2. BAYESIAN VARIABLE SELECTION MODEL

In a macroeconomic forecasting, there are often too many potentially
relevant predictors. For instance, most macroeconomic variables are theo-
retically related to Exchange rates in a general equilibrium context. Like-
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wise, when trying to predict housing prices, there are too many variables
to consider, such as the current housing price, the economy, household in-
come, inflation rate, loan interest rates, employment rate, and population
changes. Among a number of regressors, only a few variables have a sig-
nicant prediction power, while the others are unnecessary. But inclusion
of unnecessary regressors causes a poor prediction performance.

In practice, it is difficult to select important regressors maximizing
the predictive accuracy. Because if the number of regressors is 10, then
the number of models to be compared is 210 = 1024. But in most cases of
macroeconomic forecasting, it is larger than 10. It needs too many models
to compare.

Bayesian(or stochastic) variable selection can solve the above problem
well by selecting relevant predictors among a number of regressors. This is
a statistical learning algorithm designed to automatically select important
regressors by the information in data. The key idea is to shrink irrelevant
regression coe cients towards zero.

2.1. HIERARCHICAL BAYESIAN VARIABLE SELECTION MODEL

To obtain robust variable selection in high-dimensional macroeconomic
forecasting, we adopt a hierarchical spike-and-slab BVS specification. Con-
ventional implementations fix the hyperparameters of the spike-and-slab
prior—the prior inclusion probability p and the spike/slab variances (b0, b1)
—which makes results sensitive to tuning and can lead to over- or under-
selection of predictors, thereby hurting predictive performance.1 To miti-
gate this sensitivity, we endow p, b0, and b1 with hyperpriors and estimate
them jointly with the regression parameters, following George and Mc-
Culloch (1997) and Ishwaran and Rao (2005). This allows the degree of
sparsity and shrinkage to adapt to the signal in the data and improves
out-of-sample stability.

Let K denote the number of predictors, and let βk denote the coeffi-
cient on predictor k (k = 1, . . . ,K). The hierarchical prior is specified as
follows:

p ∼ Beta(a0, c0),

P r[γk = 1 | p] = p and Pr[γk = 0 | p] = 1−p.

1See O’Hara and Sillanpää (2009) for a review of the sensitivity of BVS methods to
prior settings.
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b0 ∼ InverseGamma(α00/2, δ00/2),
b1 ∼ InverseGamma(α01/2, δ01/2),

bk = γk × b1 +[1−γk]× b0,

βk | γk, b0, b1 ∼ N (β0 = 0, bk) for k = 1,2, . . . ,K.

Under this construction, when γk = 1, the prior variance bk = b1 is
large, allowing βk to deviate significantly from zero—this corresponds to
the “slab” component. Conversely, when γk = 0, the prior variance bk =
b0 ≈ 0, heavily shrinking βk toward zero—this is the “spike” component.
This flexible prior specification is widely referred to as the spike-and-slab
prior.2

Once {βk}K
k=1 are generated, the dependent variable Y is assumed to

follow a conditional normal distribution as in the preliminary model:

σ2 ∼ InverseGamma
(

α0
2 ,

δ0
2

)
,

Y | X,β,σ2 ∼ N (Xβ,σ2IT ).

2.2. PARAMETER POSTERIOR SAMPLING FOR HIERARCHICAL
BVS MODEL

The model is a hierarchical model, but since it is based on a linear
regression model, it does not require a complex algorithm and has the
advantage of being able to be simply estimated using the Gibbs sampling
technique. Gibbs sampling samples parameters from the full conditional
distribution of each parameter in each iteration of the simulation. The
algorithm are summarized as Table 1.

3. DISTRIBUTION PREDICTION USING BVS MODEL

3.1. PREDICTION MODEL STRUCTURE

We begin by formulating the Bayesian Variable Selection (BVS) model
used to generate multi-horizon forecasts of housing price growth. The
predictive distribution for the h-step-ahead forecast is defined as:

2The term “spike-and-slab” was first introduced by Mitchell and Beauchamp (1988).
See also Ishwaran and Rao (2005) for a detailed treatment.
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Algorithm: Bayesian Variable Selection

Step 0 Initialize the parameters and set j = 1.
Step 1 Sample β(j) from β | Y,σ(j−1), b

(j−1)
1 , b

(j−1)
0 ,Γ(j−1) ∼ N (β̄, B̄).

Step 2 Sample σ(j) from σ2 | Y,β(j) ∼

InverseGamma
(

α0+T
2 ,

δ0+
(

Y −Xβ(j)
)′(

Y −Xβ(j)
)

2

)
.

Step 3 Sample b
(j)
0 and b

(j)
1 from b0 | β(j),Γ(j−1) ∼

InverseGamma
(

α00+K0
2 ,

δ00+β
(j)′
Γ(j−1)=0

β
(j)
Γ(j−1)=0

2

)
,

b1 | β(j),Γ(j−1) ∼ InverseGamma
(

α01+K1
2 ,

δ01+β
(j)′
Γ(j−1)=1

β
(j)
Γ(j−1)=1

2

)
.

Step 4 Sample p(j) from p | Γ ∼ Beta(a0 +K1, c0 +K0).
Step 5 For each k, if uk ∼ Unif(0,1) is less than

p(j)N
(
β

(j)
k | 0, b

(j)
1
)

p(j)N
(
β

(j)
k | 0, b

(j)
1
)

+
(
1−p(j)

)
N
(
β

(j)
k | 0, b

(j)
0
) ,

then set γ
(j)
k = 1, and 0 otherwise.

Step 6 Repeat Steps 1–5 n times.

Table 1: Algorithm steps for Bayesian Variable Selection. This
table summarizes the Gibbs sampling procedure for the hierarchical BVS model.

yt+h | Ft,θ ∼ N
(

β0 +
K∑

k=1
Xk,tβk ·γk, σ2

)
.

Here, Ft denotes the information set available up to time t, The parameter
vector θ includes all model parameters. β0 represents the intercept term.
Xk,t denotes the kth lag-1 predictor, βk is the coefficient for the k-th
predictor and γk is the binary inclusion indicator that determines whether
the kth variable is selected into the model. σ2 is the variance term.

The predictive distribution is therefore a normal distribution centered
at the linear combination of selected predictors and the intercept, with
variance σ2. These parameters are estimated through Gibbs sampling
under the BVS algorithm, and the resulting posterior distributions char-
acterize the full predictive uncertainty.

To improve forecast accuracy, we extend the model to include multiple
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lags for each predictor, up to a maximum lag order J . The extended
prediction model is:

yt+h | Ft,θ ∼ N

β0 +
J∑

j=1

K∑
k=1

Xk,t−j+1βj,k ·γj,k, σ2

 ,

where β0 is the intercept term; Xk,t−j+1 is the value of the k-th predictor
at lag j; βj,k is the coefficient associated with the k-th predictor at lag j;
γj,k is the inclusion indicator for the k-th predictor at lag j; and σ2 is the
posterior variance of the error term.

This formulation enables the model to flexibly adapt to time-lagged
dynamics, while the Bayesian Variable Selection algorithm ensures a parsi-
monious representation by including only the most informative predictors.
To implement this structure, we horizontally concatenate lagged values of
each predictor from j = 1 to J into the predictor matrix Xt.3

The time index t refers to the forecast origin during the out-of-sample
evaluation window. In our study, the out-of-sample period consists of
36 months, from May 2022 to April 2025. We compare forecasting per-
formance across different lag orders J to identify the optimal dynamic
structure for each horizon.

3.2. OUT-OF-SAMPLE FORECASTING FRAMEWORK AND
ROLLING FORECAST PROCEDURE

To evaluate the predictive performance of the Bayesian Variable Selec-
tion (BVS) model, we implement an out-of-sample forecasting procedure
based on a rolling regression framework and a direct prediction approach.
This method allows for robust evaluation of forecast accuracy across var-
ious horizons and prevents overfitting by dynamically updating the esti-
mation sample.

3For example, when K = 5 and J = 2, the predictor matrix Xt includes the current
intercept and 10 lagged predictor values:

Xt =
[
1 x1,t · · · x5,t x1,t−1 · · · x5,t−1.

]
The corresponding regression coefficient vector is defined as

β =
[
β0,β1,1, . . . ,β1,K ,β2,1, . . . ,β2,K

]′
.
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The full dataset is divided into two segments: an in-sample period for
parameter estimation and an out-of-sample period for forecast evaluation.
The last 36 months of the sample are reserved for out-of-sample forecasting
(OS_size = 36). At each forecast origin, the model is re-estimated using
data available up to that point, and a forecast is generated for future
values at multiple horizons.

We conduct forecasting for five different horizons: h = 1, 3, 6, 9, and
12, corresponding to one-month, three-month, six-month, nine-month, and
twelve-month-ahead predictions, respectively. For each horizon, a separate
model is estimated and a direct forecast is produced without relying on
recursive steps. This approach enables us to evaluate short-term, medium-
term, and long-term forecasting performance independently.

We adopt a ‘rolling window strategy’ with a fixed in-sample size and
sequentially move the forecast origin one period forward. For each itera-
tion and each forecast horizon, the following steps are executed:

(1) The model is estimated via Gibbs sampling using a spike-and-slab
prior on each regression coefficient. Posterior samples are drawn for
the regression coefficients βk, inclusion indicators γk, prior variances
b0, b1, model inclusion probability p, and error variance σ2.

(2) A direct forecast is made for yt+h using the posterior distribution:

y
(s)
t+h = x⊤

t+h(β(s) ·γ(s))+ε(s), ε(s) ∼ N (0,σ2(s)),

where (β(s),γ(s),σ2(s)) are posterior draws, and xt+h is the predictor
vector (including intercept) used for forecasting.

(3) After discarding burn-in samples, the posterior predictive distribu-
tion of yt+h is obtained. The point forecast is computed as the
posterior mean, and forecast accuracy is evaluated using squared
prediction errors and log predictive likelihood.

By repeating this procedure over the 36 out-of-sample periods and
across all forecast horizons, we obtain distributions of forecast errors for
each h. The Root Mean Squared Error (RMSE) and the log Predictive
Probability(log PPL) are calculated to assess the model’s predictive accu-
racy and distributional fit at each forecast horizon. This rolling forecast-
ing framework enables us to rigorously evaluate how the model performs
across different temporal horizons and under evolving economic condi-
tions.
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3.3. FORECAST EVALUATION METRICS

The accuracy of the forecasts is assessed by comparing them to the ac-
tual values observed during the out-of-sample period. Common evaluation
metrics include Mean Squared Error (MSE), Root Mean Squared Error
(RMSE), and Mean Absolute Error (MAE). In this study, we use RMSE as
the primary evaluation criterion, as it is widely adopted in macroeconomic
forecasting and places greater weight on large errors.

The Root Mean Squared Error for forecast horizon h is computed as:

RMSE(h) =

√√√√ 1
N

N∑
i=1

(yti+h − ŷti+h)2.

Here, ti represents the ith forecast origin during the rolling forecast pro-
cedure, and yti+h denotes the actual value observed h steps ahead.4 The
point forecast ŷti+h is calculated as the posterior predictive mean given
information available at time ti.

In addition to RMSE, we also evaluate the quality of the full predictive
distribution using the log posterior predictive likelihood (logPPL). This is
computed as the sum of log posterior predictive densities over the out-of-
sample period:

logPPL(h) =
N∑

i=1
logp(yti+h | Fti).

A higher value of logPPL indicates better alignment between the pre-
dictive distribution and the actual outcomes. While RMSE captures the
accuracy of point forecasts, logPPL evaluates the overall calibration and
sharpness of the probabilistic forecasts, making it a complementary mea-
sure in the Bayesian framework.

3.4. BENCHMARK MODEL

We employ three benchmarks to contextualize the performance of the
BVS approach: (i) an autoregressive model AR(p), (ii) a random walk
(RW), and (iii) a Bayesian full regression that includes all predictors at
all lags without selection. For (iii), to isolate selection from shrinkage, we

4For example, if h = 3 and the ith forecast origin is ti = February 2022, then yti+3
corresponds to the realized value in May 2022. The index i runs from 1 to N , where
N = 36 is the total number of out-of-sample forecast iterations.
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estimate it under the two prior environments used in our BVS specifica-
tions, denoted BVS1-Full and BVS2-Full.

To evaluate the predictive performance of the proposed Bayesian Vari-
able Selection (BVS) model, we compare it against a traditional bench-
mark: the p-th order autoregressive model, AR(p), which is widely used
in time series forecasting. The AR(p) model is defined as:

yt+h | Ft,θ ∼ N

c+
p∑

j=1
ϕjyt−j+1, σ2

 .

Here, yt denotes the dependent variable at time t, c is the intercept term,
and ϕj are autoregressive coefficients. The error variance σ2 is assumed
to be constant across forecast horizons.

The lag order p is selected recursively to minimize the Root Mean
Squared Error (RMSE) over the out-of-sample forecast window. Specifi-
cally, we set a maximum allowable lag P , and for each forecast horizon h,
all AR(p) models with p ≤ P are estimated. The model with the lowest
RMSE is then selected as the optimal benchmark for comparison.

In addition to the autoregressive benchmark, we also consider the
random walk (RW) model, a widely used naive benchmark in macroe-
conomic forecasting. The RW assumes that the best forecast equals the
most recently observed value (no-change forecast). Let yt = yt−1 +ut with
ut ∼ N (0,σ2

u). Then the h-step-ahead predictive distribution is

yt+h | Ft ∼ N
(
yt, hσ2

u

)
,

so that the predictive mean is yt while the variance scales linearly with the
horizon h. In implementation, we estimate σ2

u from the rolling training
window using the first-difference residuals {yt −yt−1}, and evaluate density
forecasts with σ2

h = hσ̂2
u.5 This RW benchmark provides a parsimonious

yardstick against which the predictive gains of the BVS model can be
evaluated, particularly when structural breaks or low signal-to-noise ratios
make sophisticated models hard to beat in real time.

To specifically quantify the value of the variable selection mechanism,
we additionally consider a Bayesian regression model that includes all
available predictors without imposing any selection. Unlike the BVS

5Equivalently, one may estimate a horizon-specific error variance σ2
h nonparametri-

cally from the training-sample forecast errors et,h = yt+h − yt. Under homoskedastic
innovations both approaches coincide up to sampling noise.
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model, where the inclusion indicators γj,k control whether a predictor
enters the regression, the full regression benchmark sets all inclusion in-
dicators equal to one, such that every predictor at every lag is forced into
the model. The model is therefore specified as:

yt+h | Ft,θ ∼ N

β0 +
J∑

j=1

K∑
k=1

Xk,t−j+1βj,k, σ2

 ,

where β0 is the intercept term; Xk,t−j+1 is the value of the k-th predictor
at lag j; βj,k,h are regression coefficients estimated by Bayesian posterior
sampling; in this full-regression benchmark all coefficients use slab-only
Gaussian priors; σ2 is the variance of the error term.

This benchmark captures the predictive performance of a Bayesian re-
gression without variable selection, thereby reflecting the potential over-
fitting problem when all predictors are included. Comparing its results
against the BVS model highlights the importance of variable selection in
improving forecast accuracy and preventing over-parameterization.

4. DATA AND PREDICTOR VARIABLES

This study analyzes the year-on-year growth rate of the China Newly
Built Housing Price Index as the dependent variable. The data are monthly
and span the period from January 2011 to July 2025. The list of predictor
variables is provided in Table 2. A total of 14 predictors are used, grouped
into five categories: housing prices, inflation, interest rates, economic fluc-
tuations, and demographics.

To ensure comparability, most predictors are expressed as year-on-
year (YoY) growth rates, except for two cases. First, the Real Estate
Climate Index (RECI) is transformed to reflect deviations from neutral
market conditions (i.e., RECI −100). This form improves interpretabil-
ity—positive values suggest overheating and negative values imply slug-
gishness—and yields significantly lower forecast errors.6 For notational
simplicity, we continue to refer to this transformed variable as RECI. Sec-
ond, the Population Natural Growth Rate (PNGR) is available only at
an annual frequency and measured in per mille (‰). To align with the
monthly frequency of the forecasting framework, each annual observation

6Forecasts using the deviation form of RECI produce lower Root Mean Squared
Error (RMSE) values compared to forecasts using its year-on-year growth rate.
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N Data (Growth Rate (%,
YoY))

Abbreviation Category Source

1 China Newly Built Hous-
ing Price Index

HPI Housing
Prices

National Bureau
of Statistics of
China

2 Real Estate Climate Index RECI
3 Consumer Price Index CPI Inflation
4 M2 Money Supply M2
5 Global Price of Brent

Crude
Oil Federal Reserve

Bank of St. Louis
(FRED)

6 Value-added of Industry VAI Business
Fluctua-
tions

National Bureau
of Statistics of
China

7 Consumer Confidence In-
dex

CCI

8 Manufacturing Purchasing
Managers Index

PMI China Federation
of Logistics and
Purchasing

9 Shanghai SE Composite
Index

SSEC Investing.com

10 10-Year Treasury Bond
Yield

Bond10 Interest
Rate

China Central
Depository and
Clearing Co.,
Ltd.

11 U.S. 10-Year Treasury
Bond Yield

USBond10 Investing.com

12 Housing Provident Fund
Loan Interest Rate (Loan1-
5)

HPF Beijing Housing
Fund Manage-
ment Center

13 Individual Housing Loan
Lending Rate

IHLL People’s Bank of
China (CEIC)

14 Population Natural
Growth Rate

PNGR Demographi-
cs

National Bureau
of Statistics of
China

Table 2: List of Predictor Variables. For variables sharing the same
data source, the "Source" column is only filled once for brevity. Empty cells in
the "Source" column indicate that the source is the same as that of the previous
entry.
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Figure 1: Housing Price Index (HPI) Year-on-Year Growth
Rate. This figure shows the monthly growth rate of China’s newly built Hous-
ing Price Index (HPI YoY) from January 2011 to July 2025.

is replicated across twelve months. We further standardize PNGR using
a z-score transformation, which places the demographic indicator on a
comparable scale with the other predictors.7

Housing Price Index (HPI) The Housing Price Index (HPI) reflects
the overall trend in residential sales prices and serves as a key bench-
mark for real estate participants. It is compiled monthly by the National
Bureau of Statistics (NBS) based on data from 70 major cities, includ-
ing municipalities and provincial capitals, and captures both first-tier and
non-first-tier markets.

As shown in Figure 1, the year-on-year growth rate of HPI remained
largely positive between 2011 and mid-2022, with particularly strong growth
from 2016 to 2019. Following the COVID-19 outbreak, however, price
growth began to slow, turning negative by mid-2022 and declining fur-
ther through 2023 and 2024. Since December 2024, the trend has slightly
recovered, though it is unclear whether this reflects a lasting stabilization.

China’s Real Estate Climate Index (RECI) The National Real
Estate Climate Index (RECI) is constructed based on the theory of eco-
nomic cycle fluctuations, drawing upon business cycle theory and analyt-
ical methods. It employs time series analysis, multivariate statistics, and

7When PNGR is included as a predictor in z-score standardized form, the out-of-
sample RMSE of HPI forecasts is noticeably smaller than when using the year-on-year
growth rate of PNGR as the predictor.
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Figure 2: China’s Real Estate Climate Index (RECI). This figure
shows the monthly Real Estate Climate Index (RECI) for China from January
2011 to July 2025. The index is normalized to 100 in 2012, with values between
95 and 105 indicating a moderate market climate, below 95 a depressed market,
and above 105 an overheated market.

econometric techniques, with real estate development investment serving
as the benchmark indicator. The index incorporates a set of variables
related to real estate investment, funding, construction area, and sales,
with seasonal effects removed and stochastic components included. It is
compiled using a growth rate cycle method and is revised monthly as new
data become available. The year 2012 is designated as the base year, with
the index level set to 100. In general, a RECI value of 100 represents
the optimal climate level; values between 95 and 105 indicate a moderate
climate; values below 95 suggest a relatively depressed climate; and val-
ues above 105 reflect an overheated market condition. Overall, the RECI
provides an early warning signal for macroeconomic regulation and serves
as a valuable statistical tool to support investment decision-making. The
historical data from January 2011 to July 2025 are shown in Figure 2.

From Figure 2, we can observe that during the period of particularly
strong housing price growth between 2016 and 2019, the RECI index also
remained at a relatively high level. When HPI YoY turned negative in
early 2022, the RECI likewise experienced a rapid decline. After December
2024, the index value remained below 95 but showed a mild rebound.
These turning points align closely with the critical shifts in the HPI YoY,
suggesting that RECI may serve as an important predictor of housing
price dynamics.
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Figure 3: Population natural growth rate (PNGR). This figure
shows the annual population natural growth rate of China over the period Jan-
uary 2011 to July 2025.

Housing Provident Fund Loan Interest Rate (HPF) Housing Prov-
ident Fund Loan Interest Rate (HPF) refers to the interest rate applied to
homebuyers who obtain loans through China’s Housing Provident Fund
system. This rate is centrally determined and adjusted by the People’s
Bank of China (PBoC), based on macroeconomic conditions such as eco-
nomic growth and monetary policy objectives. As a form of national
policy-based lending, Housing Provident Fund loans are available exclu-
sively to employees who contribute to the fund. These loans offer lower
interest rates compared to commercial mortgages and exhibit relatively
greater stability over time. Interest rates may vary depending on loan
maturity and repayment terms. In practice, the loan interest rate is di-
vided into two categories: short-term (1–5 years) and long-term (6–30
years).8

Individual Housing Loan Lending Rate (IHLL) Individual Hous-
ing Loan Lending Rate (IHLL) refers to the interest rate charged on com-
mercial personal housing loans in China. It is a major component of the
national interest rate system and directly affects homebuyers’ borrowing
costs. In recent years, China has promoted interest rate marketization by
shifting the pricing benchmark for personal housing loans from the tradi-
tional benchmark rate to the Loan Prime Rate (LPR), which is adjusted

8In this study, we use only the short-term 1–5 year Housing Fund Loan interest rate
as the predictor variable. Description of this policy-based loan are based on information
from Baidu Baike.
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monthly.

Population natural growth rate (PNGR) The population natural
growth rate, abbreviated as PNGR, refers to the ratio of the natural in-
crease in population (births minus deaths) to the average total population
over a given period (typically one year), expressed in per mille (‰).

Figure 3 illustrates the historical evolution of PNGR from 2011 to
2025. The rate exhibits a persistent downward trend, declining from above
6‰ in the early 2010s to negative values after 2022, reflecting China’s
structural demographic transition. This demographic shift coincides with
weakening housing demand fundamentals, suggesting that PNGR has sub-
stantial implications for the long-term forecasting of housing prices.

5. EMPIRICAL ANALYSIS

5.1. PRIORS

As discussed in Section 2, the choice of priors is critical in Bayesian
variable selection, as the hyperparameters α00, δ00, α01, and δ01 determine
the prior variances b0 (spike) and b1 (slab). These govern the shrinkage
pattern: a smaller b0 enforces stronger shrinkage on coefficients associ-
ated with irrelevant predictors, while a larger b1 grants more flexibility
for relevant coefficients. Poorly specified values may result in excessive
shrinkage or insufficient sparsity. To assess the impact of shrinkage struc-
ture on forecast performance, we consider two prior settings—BVS1 and
BVS2—that differ in their spike–slab variance scales.

The priors for BVS1 are specified as:

a0 = 5, c0 = 5,

α00 = α01 = 10, δ00 = 0.032 ×10, δ01 = 10,

α0 = 20, δ0 = 4.

The priors for BVS2 are specified as:

a0 = 5, c0 = 5,

α00 = α01 = 10, δ00 = 0.012 ×10, δ01 = 100,

α0 = 20, δ0 = 4.
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Under these specifications, BVS2 induces a tighter spike (b0 smaller)
and a looser slab (b1 larger), promoting sparser models by shrinking ir-
relevant coefficients more aggressively while allowing selected coefficients
greater variability. In contrast, BVS1 features a relatively looser spike and
a tighter slab, yielding denser models with more conservative magnitudes
for selected coefficients.

We evaluate out-of-sample forecasting performance for both BVS1 and
BVS2 across multiple horizons using two complementary criteria: (i) the
root mean squared error (RMSE) for point forecasts, and (ii) the log
predictive probability (log PPL) for density forecasts. Comparing results
under both metrics allows us to identify which prior configuration is better
suited to forecasting China’s housing price dynamics at each horizon.

5.2. BAYESIAN VARIABLE SELECTION MODEL: PREDICTIVE
DISTRIBUTION AND FORECAST EVALUATION

We evaluate the forecast performance of the Bayesian variable selection
(BVS) model using monthly data spanning January 2011 to July 2025,
yielding a total sample of 174 observations. Forecasts are generated with a
rolling regression scheme under a direct multi-horizon setting. The out-of-
sample forecasting window is fixed at 36 months, covering all periods after
the structural change in the year-on-year growth rate of the housing price
index. As benchmarks, we consider the random walk (RW), autoregressive
models of order p [AR(p)], and a full-regression BVS specification that
forces all predictors into the model (BVS-Full). For comparability across
specifications, all models are estimated using an MCMC sampler with
11,000 iterations. We discard the first 1,000 as burn-in and retain 10,000
posterior draws.

Forecast performance is evaluated along two complementary dimen-
sions: (i) point forecasts measured by root mean squared error (RMSE),
and (ii) density forecasts assessed by log posterior predictive likelihood
(Log PPL). The evaluation is conducted across forecast horizons h ∈
{1,3,6,9,12,18,24}. For the AR(p) benchmark, we allow up to 24 monthly
lags (p ≤ 24) to capture annual and bi-annual dynamics and the slow ad-
justment observed in housing markets.9 By contrast, in the multivariate
BVS specification, the lag length is restricted to at most 3 for pragmatic

9See Case and Shiller (1989) and Genesove and Mayer (2001) for housing market
inertia.
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RMSE Lag = 1
h RW AR(p) BVS1-

Full
BVS1 BVS2-

Full
BVS2

1 0.40 0.16 0.39 1.22 0.39 0.91
3 1.14 0.68 0.93 2.04 0.87 1.18
6 2.13 1.75 1.18 1.95 1.12 1.25
9 2.90 2.92 1.98 1.85 2.03 1.83
12 3.43 4.12 3.02 2.41 2.73 2.52
18 4.05 5.81 2.65 2.25 2.21 2.34
24 4.35 6.17 2.94 2.58 2.92 2.94

RMSE Lag = 2
h RW AR(p) BVS1-

Full
BVS1 BVS2-

Full
BVS2

1 0.40 0.16 0.17 0.18 0.19 0.17
3 1.14 0.68 0.57 0.92 0.54 0.55
6 2.13 1.75 1.10 0.94 1.14 0.89
9 2.90 2.92 2.25 1.70 2.11 1.76
12 3.43 4.12 3.32 2.94 2.89 2.70
18 4.05 5.81 2.84 1.75 2.37 1.90
24 4.35 6.17 3.93 3.28 3.81 4.24

RMSE Lag = 3
h RW AR(p) BVS1-

Full
BVS1 BVS2-

Full
BVS2

1 0.40 0.16 0.17 0.18 0.18 0.17
3 1.14 0.68 0.57 1.02 0.54 0.56
6 2.13 1.75 1.26 0.88 1.22 0.96
9 2.90 2.92 2.46 1.91 2.19 1.82
12 3.43 4.12 3.42 2.96 2.92 2.71
18 4.05 5.81 2.98 1.67 2.48 1.67
24 4.35 6.17 4.69 4.00 4.19 4.67

Table 3: Out-of-sample RMSE comparison across models by lag.
RW = random walk; “Full” = all predictors included. AR(p): minimum RMSE
over p ≤ 24 at each horizon. Bold numbers indicate, at each horizon, the lowest
RMSE across all models and lag specifications.
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Log PPL Lag = 1
h RW AR(p) BVS1-

Full
BVS1 BVS2-

Full
BVS2

1 -26.18 4.43 -21.67 -77.13 -21.96 -56.51
3 -56.17 -40.39 -54.51 -77.16 -53.47 -59.01
6 -80.53 -71.50 -67.05 -75.49 -66.83 -68.18
9 -93.89 -89.79 -77.41 -76.91 -77.84 -76.11
12 -100.35 -102.61 -90.33 -82.61 -87.54 -84.93
18 -104.37 -117.32 -85.22 -80.70 -79.97 -81.91
24 -104.98 -121.05 -86.50 -84.37 -87.98 -88.64

Log PPL Lag = 2
h RW AR(p) BVS1-

Full
BVS1 BVS2-

Full
BVS2

1 -26.18 4.43 0.69 -0.35 -0.07 1.26
3 -56.17 -40.39 -39.41 -49.43 -38.89 -39.93
6 -80.53 -71.50 -57.73 -57.64 -58.28 -55.44
9 -93.89 -89.79 -79.47 -71.23 -76.92 -71.67
12 -100.35 -102.61 -96.56 -90.16 -89.73 -88.18
18 -104.37 -117.32 -87.25 -73.90 -81.13 -76.21
24 -104.98 -121.05 -100.54 -91.63 -103.30 -111.53

Log PPL Lag = 3
h RW AR(p) BVS1-

Full
BVS1 BVS2-

Full
BVS2

1 -26.18 4.43 -0.27 -0.35 -0.00 1.43
3 -56.17 -40.39 -39.75 -52.38 -39.01 -40.19
6 -80.53 -71.50 -59.33 -56.23 -59.13 -55.73
9 -93.89 -89.79 -82.53 -73.75 -77.86 -72.67
12 -100.35 -102.61 -97.68 -89.94 -89.21 -88.09
18 -104.37 -117.32 -90.21 -72.62 -82.78 -72.68
24 -104.98 -121.05 -114.06 -101.85 -107.51 -117.49

Table 4: Out-of-sample Log PPL comparison across models by
lag. RW = random walk. “Full” denotes the BVS full-regression variant (all
predictors forced in). AR(p): maximum Log PPL over p ≤ 24 at each horizon.
Bold numbers indicate the highest Log PPL across all models and lag specifica-
tions at each forecast horizon.

reasons: exploratory out-of-sample checks with lags 4–5 yield no RMSE
gains, and a shorter lag structure curbs model-space proliferation and
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to enable clear visualization and interpretation of key predictors in Sec-
tion 5.3.

As shown in Tables 3 and 4, the BVS models (BVS1 and BVS2) out-
perform the random walk and AR(p) benchmarks at all forecast horizons
except h = 1; for h ≥ 3, they deliver lower RMSEs and higher Log PPL.
At h = 1,3, BVS-Full performs comparably to the sparse BVS models;
for h ≥ 6, the sparse BVS tends to outperform, reflecting parsimony in
the predictor set. Between priors, BVS2 (tighter spike, looser slab) tends
to lead in short-horizon performance, whereas BVS1 delivers more sta-
ble forecast accuracy at medium to long horizons. A multi-lag design is
beneficial; at short-to-medium horizons, models with two or three lags
generally outperform single-lag specifications.

Guided by Tables 3 and 4, we follow a simplicity-first rule: at each
horizon, we choose the simplest model that performs competitively on
both RMSE and Log PPL. To enhance visualization and interpretability,
we restrict each predictor to at most two lags when identifying key pre-
dictors. At h = 1, the differences in RMSE and Log PPL between BVS2
with lag 2 and lag 3 are negligible. Similarly, at h = 18, BVS1 with lag
2 and lag 3 shows only minor differences, further supporting the two-lag
restriction. To ensure forecast accuracy, however, we relax the lag cap
(lags 1–3) and select the horizon-specific optimum based on both metrics.
Accordingly, we report two selection standards—one for influencing-factor
analysis (lags up to two) and one for forecasting accuracy (allowing up to
three)—as summarized in Table 5.

Horizon (h) Influencing-factor analysis Forecasting accuracy
Prior Lag Prior Lag

1 BVS2 2 BVS2 2
3 BVS2 2 BVS2 2
6 BVS2 2 BVS2 2
9 BVS1 2 BVS1 2
12 BVS1 1 BVS1 1
18 BVS1 2 BVS1 3
24 BVS1 1 BVS1 1

Table 5: Model selection by purpose and forecast horizon.
BVS1 and BVS2 are the prior settings in Section 5.1. Selections follow the
parsimony-first rule: up to two lags for the influencing-factor analysis; up to
three for forecasting and comparing out-of-sample predictive distributions.
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(a) h = 1 (b) h = 3

Figure 4: Posterior inclusion probabilities and credibility in-
tervals (short-term forecasts). Variables labeled with “L2” denote
lag-2 predictors; unlabeled variables (e.g., HPI) refer to lag-1 predictors.

(a) h = 6 (b) h = 9

Figure 5: Posterior inclusion probabilities and credibility in-
tervals (mid-term forecasts). Variables labeled with “L2” denote lag-2
predictors; unlabeled variables (e.g., HPI) refer to lag-1 predictors.

5.3. KEY PREDICTORS OF CHINA’S HOUSING PRICE GROWTH

This section investigates the key macroeconomic and financial vari-
ables associated with the year-on-year growth rate of China’s newly built
housing price index (HPI), using results from the Bayesian Variable Selec-
tion (BVS) model. The analysis is conducted separately for each forecast
horizon (h = 1,3,6,9,12,18,24), following the optimal model and lag spec-
ification identified in Section 5.2. For posterior inference, we run a Markov
chain Monte Carlo (MCMC) sampler for a total of 11,000 iterations, dis-
carding the first 1,000 as burn-in.

Figures 4 to 6 summarize the findings. Each figure consists of two
panels: Panel (a) displays predictors ranked by posterior inclusion proba-
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(a) h = 12 (b) h = 18

Figure 6: Posterior inclusion probabilities and credibility in-
tervals (long-term forecasts). Variables labeled with “L2” denote lag-2
predictors; unlabeled variables (e.g., HPI) refer to lag-1 predictors.

bilities, and Panel (b) shows the corresponding 90% posterior credible in-
tervals for the regression coefficients. The posterior probability of γk = 1
corresponds to the mean of the posterior samples for γk, reflecting the
likelihood of a predictor being included. Black boxes represent credible
intervals that exclude zero, indicating statistical significance at the 90%
level, while white boxes indicate non-significance. To highlight how pre-
dictor relevance varies by forecast horizon, we group the analysis into
four buckets: short term (h = 1,3), medium term (h = 6,9), long term
(h = 12,18), and ultra-long term (h = 24).

Short-term key predictors (h = 1,3) Short-term housing price dy-
namics are primarily driven by strong momentum effects. Both the current
HPI and its second lag (HPI-L2) consistently exhibit the highest posterior
inclusion probabilities and statistically significant coefficients, confirming
that recent price trends are key determinants of near-term fluctuations.
In addition, the Real Estate Climate Index (RECI) also appears as an in-
fluential factor, suggesting that real estate market sentiment and cyclical
conditions contribute meaningfully to short-term price movements. These
results indicate that short-term housing price growth in China is mainly
governed by internal price inertia and prevailing market conditions, as
illustrated in Figure 4.

Medium-term key predictors (h = 6,9) Over the medium term, the
importance of RECI continues to rise, indicating that promoting real-
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Figure 7: Posterior inclusion probabilities and credibility in-
tervals (ultra-long forecasts). Variables labeled with “L2” denote
lag-2 predictors; unlabeled variables (e.g., HPI) refer to lag-1 predictors.

estate investment plays an important role in medium-term increases in
housing prices (h = 6–9). Inflation (CPI) emerges as significant with a
positive association, consistent with inflation-hedging demand for housing.
Lagged HPI growth remains a key predictor, capturing momentum effects.
Policy-related credit indicators also matter: the Housing Provident Fund
(HPF) lending rate and the IHLL index enter with negative coefficients,
implying that tighter mortgage and credit conditions may suppress price
growth, whereas lower borrowing costs would ease downward pressures.
Taken together, medium-term forecasts are jointly shaped by macroeco-
nomic fundamentals (inflation and market activity) and the credit-policy
stance, as illustrated in Figure 5.

Long-term key predictors (h = 12,18) At long horizons, demograph-
ics become central. The population natural growth rate (PNGR) carries
a high positive median effect; at h = 12 it already ranks among the top
predictors, and by h = 18 it becomes the single most influential factor for
housing price growth. At h = 12, RECI and CPI remain important with
positive contributions, while the Housing Provident Fund (HPF) lending
rate exhibits a stronger negative effect than in the medium term, indi-
cating that tighter mortgage credit continues to restrain price growth at
longer horizons. At h = 18, HPF remains relevant and broad money (M2)
enters with a small negative coefficient. The negative sign on M2 can be
interpreted as a countercyclical policy-response effect, acting as a “bad-
times” signal rather than a pure liquidity driver, as illustrated in Figure 6.
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Horizon (h) Influencing Factors

1 HPI, RECI
3 HPI, RECI
6 CPI, RECI, HPI
9 RECI, HPI, –HPF, –IHLL
12 PNGR, RECI, CPI, –HPF, –M2, –IHLL
18 PNGR, –M2, –HPF
24 PNGR, –M2

Table 6: Summary of key predictors across forecast horizons.
This table summarizes the main predictors selected by the Bayesian Variable
Selection (BVS) model for each forecast horizon h. The ordering of variables
reflects their relative importance. By convention, positive associations are not
marked, whereas a minus sign indicates that the predictor is negatively related
to housing price growth.

Ultra-long term key predictors (h = 24) At the ultra-long horizon,
the population natural growth rate (PNGR) emerges as the nearly exclu-
sive driver of housing price growth. In addition, M2 also appears with a
small negative coefficient, which can be interpreted as reflecting its role as
a countercyclical policy-response indicator. The effects of other variables
become negligible at this horizon, as illustrated in Figure 7.

To provide a concise overview of how predictor importance evolves
across forecast horizons, Table 6 summarizes the key variables identified
by the BVS model for each value of h. The ordering of variables indicates
their relative importance, and the positive/negative signs denote the di-
rection of effects whose posterior credible intervals exclude zero.

5.4. OUT-OF-SAMPLE FORECAST DISTRIBUTIONS

For an intuitive visualization of model performance, Figures 8 and 9
display the out-of-sample forecast distributions of the best-performing
Bayesian Variable Selection (BVS) models alongside two benchmark mod-
els: the random walk (RW) model and the best-performing AR(p) model.
Forecast horizons span from short- to medium-term (h = 1,3,6,9) and
long- to ultra-long-term (h = 12,18,24). Each panel plots the forecast me-
dian (black line), 80% and 95% credible intervals (shaded areas), and the
actual HPI year-on-year growth (blue line), enabling transparent compar-
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BVS2 (lag=2) (h = 1) RW model (h = 1) AR(p) model (h = 1)

BVS2 (lag=2) (h = 3) RW model (h = 3) AR(p) model (h = 3)

BVS2 (lag=2) (h = 6) RW model (h = 6) AR(p) model (h = 6)

BVS1 (lag=2) (h = 9) RW model (h = 9) AR(p) model (h = 9)

Figure 8: Out-of-sample forecast distributions of HPI YoY for
h = 1,3,6,9 across three models (left to right). Best-performing
BVS, RW benchmark, and best-performing AR(p).

isons of predictive accuracy and uncertainty across models and horizons.
Across all horizons, the BVS models demonstrate superior predictive

performance compared to both the RW and AR(p) benchmarks. The fore-
cast medians from the BVS models more closely track the actual housing
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BVS1(lag=1) (h = 12) RW model (h = 12) AR(p) model (h = 12)

BVS1(lag=3) (h = 18) RW model (h = 18) AR(p) model (h = 18)

BVS1(lag=1) (h = 24) RW model (h = 24) AR(p) model (h = 24)

Figure 9: Out-of-Sample Forecast Distributions of HPI YoY
for h = 12,18,24 across tree models (left to right). Best-
performing BVS, RW benchmark, and best-performing AR(p).

price growth, and the associated credible intervals are generally narrower,
indicating improved uncertainty quantification. One exception is at the
1-month horizon (h = 1), where the AR(p) model exhibits slightly better
forecast accuracy than BVS. These results are consistent with the RMSE
and log PPL comparisons reported in Section 5.2.

Forecast performance varies by horizon. At short horizons (h = 1,3),
BVS models closely match the actual trajectory with narrow uncertainty
bands. As the horizon increases (h = 6,9), the forecast medians remain
close to the actual values and lie within the 95% credible intervals. At
h = 12,18,24, forecast precision diminishes as the credible intervals widen
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horizon = 1 horizon = 3 horizon = 6

horizon = 9 horizon = 12 horizon = 18 horizon = 24

Figure 10: Posterior forecast densities of HPI YoY at horizons
h = 1–24. This figure shows the forecast distributions of China’s housing price
growth (HPI YoY) from one month to 24 months ahead. Each distribution is
obtained from the best-performing Bayesian Variable Selection (BVS) model at
the corresponding horizon, as identified by the forecasting accuracy criteria in
Table 4.

further, and actual values occasionally fall outside the 95% bands. In the
most recent periods of the out-of-sample window, the forecast medians
show a slight upward bias at horizons h = 12 and h = 18, while at h = 24 the
median is marginally lower than the actual values. This pattern suggests
a tendency to overestimate housing price growth at 12–18 months and
underestimate it at 24 months. Importantly, actual values remain within
the 95% credible intervals, underscoring the robustness of the BVS model
even at longer horizons.

5.5. FORECAST DISTRIBUTIONS FOR HPI YOY

In this section, we generate 24-month-ahead forecasts of the housing
price index (HPI YoY) using the direct forecasting approach. For each
horizon, the forecasting model is selected according to the horizon-specific
optimal specifications presented in Table 5 of Section 5.2.

The Bayesian framework enables full probabilistic forecasting, allow-
ing us to obtain not only point predictions but also entire forecast dis-
tributions. This provides a richer description of future uncertainty and
improves the interpretation of risks associated with housing market dy-
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Horizon
(h)

Quantile
5%

Median
50%

Quantile
95%

1 -3.15 -2.45 -1.72
3 -4.00 -2.12 -0.22
6 -4.32 -1.44 1.50
9 -3.67 -0.18 3.46
12 -4.75 -0.80 3.29
18 -1.93 2.54 7.24
24 -6.71 -1.92 2.94

Table 7: Posterior quantiles of the HPI YoY forecasts. This
table reports the posterior predictive quantiles of China’s housing price growth
(HPI YoY) for forecast horizons from 1 to 24 months.

namics. Figure 10 presents the posterior predictive densities of HPI YoY
across horizons from h = 1 to h = 24, capturing both the central tendency
and the uncertainty bands. Forecasts are made for the period from August
2025 to July 2027.

Table 7 reports the 5%, median, and 95% posterior quantiles of the
HPI YoY forecasts for each horizon.

Figure 11 presents the posterior median and 90% credible interval of
HPI YoY forecasts from August 2025 to July 2027. The median forecast
shows a mild upward trend in the first year; however, the pace of recov-
ery is limited, and YoY growth is likely to remain negative for most of
the forecast horizon. The forecast shows greater variability between the
12- and 24-month horizons. As discussed in Section 5.4, the forecasts
at h = 12 and h = 18 may be slightly upward biased, while the h = 24
forecast may be slightly downward biased. Accounting for these biases,
the projected recovery appears remain weaker, with a high probability of
continued negative HPI growth through mid-2027.

These results suggest a subdued outlook for China’s housing market
over the next two years. Investors should remain cautious, and policymak-
ers may consider proactive measures informed by the key macroeconomic
drivers identified in Section 5.3.



XIA GAO 91

Figure 11: Forecasts of HPI YoY from august 2025 to july
2027. This figure shows the posterior predictive forecasts of China’s housing
price growth (HPI YoY) for horizons from one to 24 months ahead.

6. BAYESIAN VARIABLE SELECTION COMPARISON WITH
RANDOM FOREST

In addition to traditional benchmarks such as AR(p) models and the
Random Walk, we also compare the Bayesian Variable Selection (BVS)
framework with a modern machine learning method: the Random Forest
(RF). This provides a more demanding nonlinear benchmark and helps
assess whether the predictive gains of BVS are robust beyond linear time-
series models.

6.1. RANDOM FOREST MODEL STRUCTURE

Random Forest, introduced by Breiman (2001), is an ensemble learning
method that combines predictions from multiple regression trees. Each
tree is trained on a bootstrap sample of the data, and at each split only
a random subset of predictors is considered. The forecast is obtained by
averaging across all trees, which reduces variance and mitigates overfitting.

Formally, the h-step-ahead Random Forest forecast is given by:

ŷRF
t+h = 1

B

B∑
b=1

Tb(Xt),

where Tb(·) denotes the prediction of the b-th regression tree trained on a
resampled dataset, B is the number of trees in the forest, and Xt is the
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predictor vector at time t (including lagged variables).
Unlike the BVS model, which performs Bayesian variable selection

through γj,k indicators, RF implicitly selects variables at each split and
models non-linear interactions between predictors. This allows RF to
flexibly capture complex dynamics, but it does not provide posterior dis-
tributions or probabilistic forecasts.

6.2. FORECASTING PROCEDURE

To ensure comparability with BVS, the Random Forest model is im-
plemented under the same out-of-sample forecasting framework:

(1) We adopt a direct forecasting approach for each horizon h = 1,3,6,9,
12,18,24,30,36, where a separate model is trained to predict yt+h

directly.

(2) Five lag structures are considered (J = 1,2,3,4,5). For example,
under J = 5 it expands to [1,Xt−4,Xt−3,Xt−2,Xt−1,Xt].

(3) A rolling forecasting window with out-of-sample size of 36 months
(August 2022–July 2025) is used. At each forecast origin, the RF
model is re-trained on all available in-sample data, and a prediction
is generated for yt+h.

(4) Forecast accuracy is evaluated using the Root Mean Squared Error
(RMSE), identical to the metrics applied in the BVS, AR(p), and
Random Walk benchmarks.

The Random Forest implementation uses 500 trees, a minimum leaf
size of 5, and

√
K predictors sampled at each split, where K denotes the

total number of candidate predictors (all variables and their lags). These
hyperparameters follow common practice in macro-financial forecasting
and ensure stable performance.

6.3. BVS COMPARISON WITH RANDOM FOREST

The two models are evaluated by out-of-sample RMSE across hori-
zons and lag specifications, as reported in Table 8. The results show that
BVS dominates across short-, medium-, and long-term horizons. Specifi-
cally, for h = 1,3,6,9,12,18, the Best BVS specification achieves the lowest
RMSE in all cases, often with a substantial margin over RF. This indicates
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h
Best
BVS

RF
(lag1)

RF
(lag2)

RF
(lag3)

RF
(lag4)

RF
(lag5)

1 0.17 1.35 1.07 1.08 1.10 1.16
3 0.55 1.71 1.51 1.52 1.54 1.58
6 0.88 2.45 2.20 2.19 2.14 2.17
9 1.70 2.79 2.59 2.52 2.51 2.56
12 2.41 3.13 2.97 2.93 2.91 2.86
18 1.67 3.66 3.33 3.20 3.00 2.95
24 2.58 3.20 2.84 2.67 2.53 2.47
30 3.64 3.21 2.83 2.71 2.63 2.48
36 2.65 3.12 2.67 2.57 2.62 2.60

Table 8: Out-of-sample RMSE comparison: BVS vs. Random
Forest. The evaluation period spans from August 2022 to July 2025. Each
column reports RMSE values of the Best BVS model and Random Forest (RF)
under different lag specifications. Bolded values indicate the best performance
(lowest RMSE) for each forecast horizon. “Best BVS” denotes the BVS1 or BVS2
model with lag ≤ 3 that achieves the lowest RMSE at each horizon.

that the linear BVS framework with parsimonious predictor selection is
highly effective in capturing housing price dynamics within two years. In
the ultra-long horizons, beyond two years, the relative performance shifts.
For h = 24 and h = 30, RF with higher lag orders (lag 4–5) outperforms
BVS, while at h = 36 the best RF specification (lag 3) slightly improves
upon BVS. These results suggest that the nonlinear structure of RF may
capture longer-term dependencies that BVS does not fully exploit.

The comparative findings are consistent with the broader literature
on the relative performance of Bayesian shrinkage methods and machine
learning models. Studies such as Koop and Korobilis Koop and Koro-
bilis (2012) and Groen, Paap, and Ravazzolo Groen, Paap and Ravazzolo
(2013) show that Bayesian variable selection and shrinkage approaches are
particularly effective at short horizons, where efficient elimination of irrel-
evant predictors enhances forecast precision. In contrast, flexible machine
learning models such as random forests and boosting often gain strength
at longer horizons by accommodating complex lag structures and nonlin-
ear interactions Medeiros et al. (2019). Overall, while RF provides some
value at very long horizons, the BVS framework proves more effective
across most relevant horizons in this study.
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Figure 12: Change point analysis of HPI YoY. This figure shows
the posterior probability of the low-growth regime (top panel) and the posterior
probability of a change point (bottom panel) in China’s housing price growth
(HPI YoY), indicating a structural break around March–April 2022.

7. ROBUSTNESS ANALYSIS: STRUCTURAL BREAK IN
NATIONAL HOUSING PRICES

To assess the robustness of our forecasting results, we examine whether
China’s housing price dynamics experienced structural shifts prior to the
out-of-sample evaluation. Detecting such breaks is essential for interpret-
ing recent model performance within the broader macroeconomic context.
For this purpose, we apply a Bayesian change point model to the HPI
YoY series to identify potential regime changes and evaluate whether the
recent downturn reflects a persistent structural shift.

We assume the HPI YoY series {yt} follows a regime-switching normal
distribution:

yt | cSt ,σ
2
St

∼ Normal(cSt ,σ
2
St

),

where St ∈ {1,2} denotes the latent state at time t, governed by a two-state
Markov chain. The prior distributions are:

p11 ∼ Beta(100,4), p22 = 1,

c1, c2 ∼ Normal(3,25), σ2
1,σ2

2 ∼ InverseGamma(5,35).
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Variables Mean s.e. 2.5% Median 97.5% Ineff p-val

cSt=1 4.56 0.38 3.82 4.56 5.31 0.76 0.963
cSt=2 -2.21 0.38 -2.96 -2.21 -1.47 1.50 0.675
σ2

St=1 19.19 2.30 15.10 19.02 24.17 0.78 0.795
σ2

St=2 5.08 1.07 3.34 4.95 7.49 1.34 0.849
p 0.979 0.009 0.958 0.980 0.993 0.91 0.914

Table 9: Bayesian estimation results for HPI YoY. This table re-
ports posterior estimates from a two-state Bayesian regime-switching model for
China’s national housing price index (HPI YoY). The two regimes reflect a high-
growth state (St = 1) and a low-growth state (St = 2), with distinct mean growth
rates cSt . The variance parameters σ2

St
indicate greater volatility in the high-

growth regime. The transition probability p corresponds to p11, the probability
of remaining in regime 1.

Figure 12 illustrates the posterior probability of the low-growth regime
and the inferred change point in the HPI YoY series. The results suggest
a clear structural break around March–April 2022, when the probability
of a regime switch rises sharply and persists throughout the subsequent
period.

The Bayesian estimation results (Table 9) implies that the HPI YoY
series shifted from a high-growth regime (∼ 4.6%) to a low-growth regime
(∼ −2.2%) around March–
April 2022. This structural break coincides with major developments in
China’s housing policy and macroeconomic environment. In particular,
the “three red lines” policy, introduced in 2020, placed strict leverage
constraints on real estate developers. Although implemented earlier, its
effects accumulated over time, limiting refinancing capacity and worsening
the liquidity strains of highly indebted firms such as Evergrande. At the
same time, the COVID-19 pandemic depressed household income growth
and housing demand, while demographic shifts—especially the declining
natural population growth rate—further weighed on the housing market.
Together, these factors contributed to the regime transition, marked by
weaker price growth and heightened volatility.

The out-of-sample forecasting period in this study (August 2022 to
July 2025) largely falls within this low-growth regime. The superior per-
formance of the BVS model—particularly in quantifying forecast uncer-
tainty—demonstrates its usefulness in capturing housing market dynamics
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under conditions of structural adjustment and financial stress. This ro-
bustness check supports the validity of our rolling forecast framework and
provides a consistent context for interpreting the empirical results. The
next section turns to the broader policy implications of these findings.

8. CONCLUSION AND POLICY IMPLICATIONS

This paper applies a Bayesian Variable Selection (BVS) framework
to forecast the year-on-year growth rate of China’s newly built housing
price index (HPI YoY). Using rolling-window estimation and direct multi-
horizon forecasts, we compare BVS with traditional benchmarks and a
machine learning alternative, the Random Forest (RF). The results show
that BVS consistently outperforms autoregressive (AR) models and the
random walk (RW) across most horizons in both point and density fore-
casts. Against RF, BVS dominates within two years (h = 1 to h = 18),
while RF performs slightly better at very long horizons (h = 24,30,36).
Overall, BVS emerges as the more reliable forecasting tool in our study.

The horizon-specific determinants of housing prices provide valuable
economic interpretations. In the short run (h = 1,3), housing price mo-
mentum (lagged HPI) and real estate market sentiment (RECI) dominate.
In the medium term (h = 6 to h = 9), inflation (CPI), RECI, and credit
conditions (HPF, IHLL) become influential, reflecting the importance of
macro-financial interactions. Over the long run (h = 12,18,24), demo-
graphic fundamentals (PNGR) gain increasing importance, while negative
coefficients on credit variables suggest that easier financing conditions can
mitigate downside risks. Notably, the influence of RECI persists through-
out h = 1 to h = 12, underscoring its important role in shaping housing
price dynamics across short and medium horizons.

The forecast results over the next 24 periods point to a subdued hous-
ing market, with negative year-on-year growth likely to persist and only
limited prospects of recovery before mid-2027. This weak outlook is con-
sistent with the structural break identified around April 2022, reflecting
the lasting impact of demographic shifts.

From a policy perspective, several implications emerge. First, the per-
sistence of short-term momentum suggests that immediate interventions
may not quickly alter housing price dynamics, highlighting the impor-
tance of early policy signaling rather than reactive measures. Second, the
medium-term role of market sentiment, inflation (CPI), and housing credit
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conditions (HPF) indicates that policymakers can stabilize housing prices
by fostering real estate investment and easing mortgage-related financial
policies. Third, the long-term influence of demographic shifts suggests
that reversing housing price trends will be challenging. Therefore, policy-
makers should adopt a multi-horizon perspective that balances short-term
stabilization needs with long-term structural considerations.

The comparison with RF shows that while machine learning methods
may provide complementary forecasting strength at very long horizons, the
BVS framework offers distinct advantages in transparency, interpretabil-
ity, and the identification of key economic drivers. These features make
BVS particularly well suited for policy environments where understanding
the underlying determinants is as important as forecast accuracy. At the
same time, it is important to note that this study adopts a prediction-
oriented framework, focusing on forecast accuracy and horizon-specific
correlations rather than establishing causal relationships. This highlights
both the practical relevance of BVS for forecasting and its limitations
in causal inference. Future research could address potential endogeneity
concerns by incorporating instrumental variable approaches or structural
VAR models, thereby complementing the predictive focus of this paper
and deepening the understanding of the structural drivers of housing price
dynamics.

Future research could apply this framework to housing markets in
other countries, such as Korea, where local policy environments and struc-
tural conditions may significantly influence housing price dynamics. The
BVS model may also be useful for forecasting regional housing markets
in major metropolitan areas such as Seoul, Beijing, or Shanghai, where
market fundamentals and policy responses can differ substantially from
national averages. Such extensions would help assess the generalizability
of the model and offer localized insights for policymakers seeking to man-
age housing markets under varying economic and institutional conditions.

In summary, the evidence demonstrates that BVS not only improves
forecasting performance but also deepens understanding of the macro-
financial forces shaping housing markets. By combining accuracy with
interpretability, the framework offers a valuable tool for both research
and policy, with the potential to inform housing market stability across
countries and regions.
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A. APPENDIX

We first document the materials underlying Section 5.3 (Key predic-
tors of China’s housing price growth) for the short-term forecast (h = 1).
Forecasts are produced with a Bayesian variable selection specification us-
ing the BVS2 prior and a lag length of two. The predictor set comprises
14 variables; with two lags and an intercept, the regression contains 29
coefficients in total. The Markov chain is run for 11,000 iterations in total;
the first 1,000 draws are discarded as burn-in, and the remaining 10,000
draws are used for inference (MCMC size = 10,000).

We next document the materials underlying Section 5.3 (Key predic-
tors of China’s housing price growth) for the mid-term forecast (h = 6).
Forecasts are produced with a Bayesian variable selection specification us-
ing the BVS2 prior and a lag length of two. The predictor set comprises
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Parameter Estimate S.E. 5% 95% Ineff

Constant 0.265 0.239 -0.128 0.657 0.781
HPI-L2 -0.879 0.050 -0.961 -0.797 0.988
RECI-L2 -0.033 0.052 -0.119 0.053 1.034
CPI-L2 0.063 0.057 -0.031 0.158 1.189
M2-L2 -0.062 0.042 -0.130 0.008 0.884
Oil-L2 -0.004 0.002 -0.008 -0.000 1.132
VAI-L2 0.001 0.017 -0.026 0.029 1.029
PMI-L2 -0.003 0.008 -0.016 0.010 0.900
CCI-L2 -0.007 0.008 -0.020 0.007 1.088
SSEC-L2 -0.003 0.003 -0.008 0.002 0.998
Bond10-L2 -0.001 0.005 -0.010 0.008 0.981
USBond10-L2 0.001 0.002 -0.002 0.004 1.089
HPF-L2 -0.008 0.011 -0.027 0.010 1.150
IHLL-L2 0.016 0.007 0.004 0.028 0.962
PNGR-L2 0.193 0.241 -0.205 0.591 1.036
HPI 1.830 0.050 1.749 1.911 0.986
RECI 0.090 0.049 0.010 0.169 1.005
CPI -0.041 0.054 -0.129 0.050 0.997
M2 0.063 0.043 -0.008 0.134 0.989
Oil 0.003 0.002 -0.001 0.007 0.913
VAI -0.011 0.019 -0.041 0.020 1.252
PMI -0.007 0.007 -0.018 0.005 1.142
CCI 0.014 0.008 0.000 0.027 0.961
SSEC 0.003 0.003 -0.003 0.008 1.054
Bond10 0.002 0.006 -0.007 0.011 0.972
USBond10 -0.000 0.002 -0.003 0.003 0.753
HPF 0.007 0.012 -0.013 0.027 1.174
IHLL -0.022 0.008 -0.035 -0.009 1.126
PNGR -0.152 0.243 -0.556 0.242 1.119

Table A.1: Posterior summaries for h = 1 (BVS2, lag = 2). Ineff
denotes the inefficiency factor.

14 variables; with two lags and an intercept, the regression contains 29
coefficients in total. The MCMC size = 10,000, and the first 1,000 draws
are discarded as burn-in.
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Figure A.1: MCMC convergence diagnostics for key predictors
at h = 1. This figure shows the trace plots and posterior histograms of the
estimated coefficients for HPI-L2, HPI, RECI, and the innovation variance σ2

under the BVS2 model with lag = 2, corresponding to the one-month-ahead
forecast results in Section 5.3.

We finally present the long-horizon forecast (h = 12) in Section 5.3.
The model uses the BVS1 prior with one lag, including 14 predictors plus
an intercept (15 coefficients). We run 11,000 MCMC iterations, discarding
the first 1,000 as burn-in.
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Figure A.2: MCMC convergence diagnostics for key predictors
at h = 6. This figure shows the trace plots and posterior histograms of the esti-
mated coefficients for HPI-L2, CPI-L2, HPI, RECI, and the innovation variance
σ2 under the BVS2 model with lag = 2, corresponding to the six-month-ahead
forecast results in Section 5.3.
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Figure A.3: MCMC convergence diagnostics for key predictors
at h = 12. This figure shows the trace plots and posterior histograms of the
estimated coefficients for HPI, RECI, CPI, M2, HPF, IHLL, PNGR, and the
innovation variance σ2 under the BVS1 model with lag = 1, corresponding to
the twelve-month-ahead forecast results in Section 5.3.


