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2 RISKS WITH SEMI-INFINITE SUPPORT

1. INTRODUCTION

This paper offers analytic characterizations of risks that are distributed over
a semi-infinite interval [0,∞) or (0,∞). The familiar normal distribution has
the whole real line (−∞,∞) as its support, which may be inappropriate if the
realized values are censored below at 0, e.g. if the random variable describes
nominal interest rates, nominal incomes or stock prices. We aim to offer useful
results for modeling such situations in this paper.

The certainty equivalent of risky prospects is a central concept in the eco-
nomics of uncertainty. In short, the certainty equivalent is the sure amount of
prize that is equivalent in utility to a risky prospect (“lottery”), hence is defined
for a particular risk and a particular utility function. It is used in formulating the
notion of risk aversion and in defining the risk premium. (Arrow, 1971; Pratt,
1964) For a risk averse person, the certainty equivalent of a risky prize is less
than the expected value of the prize and the difference is the risk premium.

The certainly equivalent greatly simplifies analysis of risky situations as it
is typically much easier to handle than the expected utility (integrals and prob-
ability measures). A particularly simple expression of the certainty equivalent
can play a useful role in applications, e.g. in describing optimal contracts for the
“LEN” model of moral hazard (Bolton and Dewatripont, 2005, Section 4.2). In
fact, we will later discuss an extension of the LEN model.

Since our aim is geared towards potential theoretical applications, we seek
results about specific classes of distributions and utility functions. We consider
two probability distributions supported on a semi-infinite interval: the gamma
distribution and the lognormal distribution. Both are widely used in economics
and finance (Kleiber and Kotz, 2003) and flexible enough to accommodate di-
verse modeling situations. However, concrete characterizations of the certainty
equivalent of such risks are not readily available in the literature, partly because
the usage of these distributions has been mostly limited to empirical work.

The gamma distribution is a two-parameter continuous probability distribu-
tion. It is one of the most flexible distributions, and includes as its special cases
the exponential distribution and the chi-square (χ2) distribution. It has another
attractive feature that the normal distribution lacks: the gamma distribution can
accommodate both (almost) symmetric and skewed distributions by varying pa-
rameter values, which gives us useful flexibility in modeling.

The lognormal distribution is another two-parameter continuous probability
distribution supported on a semi-infinite interval. Perhaps not as flexible as the
gamma distribution, it has the advantage of a close connection with the normal
distribution: the log of a lognormally distributed random variable is normally
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distributed. The logarithmic scale is convenient for modeling growth phenom-
ena and the lognormal distribution is often employed in applications involving
income distributions or stock market indices, for example.

In Sections 2 and 3, we derive the certainty equivalent and the risk premium
of lotteries following either of the two distributions, for utility functions that
are constant in risk aversion—in absolute and relative measures of Arrow and
Pratt. These utility functions are tractable and easily parameterized, as they in-
volve familiar forms of exponential or power functions (and the log function as
a limiting case), hence are often used in theoretical as well as empirical work.
In order to demonstrate usefulness of our results, we discuss applications. In
Section 4, we extend the LEN model to allow for gamma distributed risks and
compare the form of optimal contracts. Section 5 sketches other potential appli-
cations ranging from loan contracts with random interest rates to comparisons of
income distributions.

Throughout the paper, we assume that the preferences can be represented by
von Neumann-Morgenstern utility functions and that the expected utility hypoth-
esis applies.

2. CHARACTERIZATION OF GAMMA DISTRIBUTED RISKS

Consider a lottery with random prize w that follows the gamma distribution1

whose probability density function is given by

f (w) =
β α

Γ(α)
wα−1e−βw (1)

where α > 0, β > 0 and Γ(·) is the gamma function.2 This distribution is sup-
ported on the semi-infinite interval [0,∞) and has two positive parameters α and
β , commonly referred to as ‘shape’ (or ‘skewness’) and ‘rate’ (or ‘scale’) respec-
tively. Its mean is E[w] = α/β ≡ µ and the variance is Var[w] = α/β 2 ≡ σ2.
With some abuse of notation, we will write w∼ Γ(α,β ).

The gamma distribution is qualitatively different for 0 < α ≤ 1 and for α >
1. If 0 < α ≤ 1, the gamma density f (w) is strictly decreasing with the mode
(the highest density) occurring at w = 0 (see Figure 1(a)); a special case is α =

1We follow DeGroot’s (1970, p.39) notation. Some authors use the parameter 1/β in place of
β . See Hogg et al (2005, Section 3.3) for introductory treatment. Kleiber and Kotz (2003) Section
5.2 provides a survey related to applications in economics.

2The gamma function is defined as Γ(α) =
∫

∞

0 yα−1e−ydy. Some notable properties are:
Γ(1) = 1, Γ(α) = (α−1)Γ(α−1) and if n is an integer, then Γ(n) = (n−1)! .
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1 when it is the exponential distribution. In contrast, if α > 1, the density is
unimodal with an interior mode (Figure 1(b)).

As α increases, the gamma density becomes almost symmetric and approxi-
mates the shape of the normal density, but supported on the semi-infinite interval
(Figure 1(c)). Large values of α may be useful for some modeling situations if
the distribution is almost symmetric but restricted to positive values.

(a) α = 0.5, β = 5 (b) α = 2, β = 5

(c) α = 10, β = 5

Figure 1: Gamma density functions

2.1. CARA UTILITY

Consider the utility function parametrized by θ :

u(w;θ) =−exp(−θw) (2)

so that −u′′/u′ = θ is the constant absolute risk aversion coefficient.

For the lottery having the gamma density (1), the expected utility can be
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computed as3

E[u(w)] =
∫
−e−θw β α

Γ(α)
wα−1e−βwdw

=−
∫

β α

Γ(α)
wα−1e−(β+θ)wdw

=− β α

(β +θ)α

∫
(β +θ)α

Γ(α)
wα−1e−(β+θ)wdw︸ ︷︷ ︸
=1

=−
(

β

β +θ

)α

where in the penultimate line, the integrand has been transformed into a gamma
distribution with parameters α and (β + θ). The expected utility turns out to
have a simple expression involving the risk aversion parameter θ and the distri-
bution parameters α and β .

We now derive the expression for the certainty equivalent of the lottery. De-
noting it as wC, we must have u(wC) = E[u(w)] so

−exp(−θwC) =−
(

β

β +θ

)α

=⇒ wC =
α

θ
ln
(

β +θ

β

)
Hence, we obtained the expression for the certainty equivalent of a gamma-

distributed risk for the CARA utility function. Noting E[w] = α/β , the risk
premium is also easily computed.

RP =
α

β

[
1− β

θ
ln
(

β +θ

β

)]
The following proposition summarizes the results obtained so far.

Proposition 1. If the random prize w follows Γ(α,β ) and if preferences are
represented by the CARA utility function (2), then the certainty equivalent wC of
the prize is given by

wC =
α

θ
ln
(

1+
θ

β

)
(3)

and the risk premium is given by

RP =
α

β

[
1− β

θ
ln
(

1+
θ

β

)]
(4)

3We omit ranges of integration throughout the paper for ease of notations.
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Some corollaries are immediate and they will be useful for applications later.
The first one offers alternative formulas involving the mean µ and the variance
σ2 of the distribution.

Corollary 1. If we let µ = α/β and σ2 = α/β 2 be the mean and the variance
of w, then we have

wC =
µ2

θσ2 ln
(

1+
θσ2

µ

)
(5)

RP = µ

[
1− µ

θσ2 ln
(

1+
θσ2

µ

)]
(6)

Proof: From µ = α/β and σ2 = α/β 2, we have α = µ2/σ2 and β = µ/σ2.
Substituting these into (3) and (4) yield (5) and (6), respectively.

The next corollary considers scalar multiples of a gamma distributed risk.
This will come in handy when we consider linear contracts later.

Corollary 2. Suppose w∼ Γ(α,β ) and consider a new random variable v≡ kw
for some k ∈ R. Then we have v ∼ Γ(α,β/k). Hence if w ∼ Γ(α,β ), then the
certainty equivalent of v = kw is

vC =
α

θ
ln
(

1+
kθ

β

)
=

µ2

θσ2 ln
(

1+
kθσ2

µ

)
(7)

Proof. That v also follows a gamma distribution is obvious. Let v∼Γ(α ′,β ′).
Since E[kw] = kE[w] and Var[kw] = k2Var[w], we have α ′=(E[kw])2/Var[kw] =
(E[w])2/Var[w] = α and β ′ = E[kw]/Var[kw] = E[w]/(kVar[w]) = β/k. There-
fore we can use the formula (3) with β replaced by β/k.

Corollary 3 gives approximate formulas that apply for limited parameter val-
ues.

Corollary 3. Suppose w ∼ Γ(α,β ). If θ/β is sufficiently small or equivalently
if θσ2/µ is sufficiently small, then

wC ≈
α

β

(
1− θ

2β

)
= µ− 1

2
θσ

2 (8)

Proof. By first-order Taylor expansion, we have ln(1+ x)≈ x− 1
2 x2 when x

is sufficiently small. Use this approximation in (3) and (5) to obtain (8).
The latter formula in (8) in terms of µ and σ2 is the same as the one for

a normally distributed risk. We see that there is continuity between a normally
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distributed risk and a gamma distributed risk when θ (the extent of risk aversion)
or σ2 (the size of risk) is relatively small.4

The next proposition offers consistency check and comparative statics.

Proposition 2. For the gamma distributed risk and the CARA utility, we have
the expected inequality

E[w]> wC [or equivalently, RP > 0] (9)

As we vary the parameters α,β , or θ , we have the following comparative
static results:

∂wC

∂α
> 0,

∂RP
∂α

> 0 (10)

∂wC

∂β
< 0,

∂RP
∂β

< 0 (11)

∂wC

∂θ
< 0,

∂RP
∂θ

> 0 (12)

As we vary the mean µ or the variance σ2, we have the following compara-
tive static results:

∂wC

∂ µ
> 0,

∂RP
∂ µ

> 0 (13)

∂wC

∂σ2 < 0,
∂RP
∂σ2 > 0 (14)

Proof: See Appendix.

Changes in either α or β affect both the mean and the variance of the random
variable, and intuitions for (10) or (11) are not straightforward. They say that an
increase in the shape parameter α leads to higher certainty equivalent and risk
premium; an increase in the scale parameter β leads to lower certainty equivalent
and risk premium.

(12) through (14) are more intuitive. As the degree of risk aversion increases,
the certainty equivalent falls and the risk premium rises; as the mean (the ex-
pected prize) increases, both the certainty equivalent and the risk premium rises;
and finally as the variance (the size of risk) increases, the certainty equivalent
falls and the risk premium rises.

4In fact, this first-order approximation is a general property; see Pratt (1964).
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2.2. CRRA UTILITY

Now consider a different class of utility functions (again parametrized by θ ):

u(w;θ) =


w1−θ , 0 < θ < 1
ln(w), θ = 1
−w1−θ , θ > 1

(15)

so that −u′′/u′ = θ/w. Hence, the absolute risk aversion is decreasing in w
(DARA) while the relative risk aversion is constant at θ (CRRA). The parameter
θ now represents the constant relative (or proportional) risk aversion coefficient.

The parametrization of CRRA utility is a bit trickier than that of CARA util-
ity, as shown by three sub-cases in (15).5 As Figure 2 shows, all three sub-cases
are similar in overall shape, but the technical difference lies in the bounded-
ness of utility values: utilities are bounded below (and unbounded above) for
0 < θ < 1 and bounded above (and unbounded below) for θ > 1, while they are
unbounded for θ = 1.

(a) θ = 0.5 (b) θ = 1

(c) θ = 2

Figure 2: Illustrative graphs of CRRA utility function for different θ values

We will consider the case 0 < θ < 1 here. Mathematically the θ > 1 case

5Some authors combine the θ 6= 1 cases to u(w) = w1−θ/(1− θ), while Bikhchandani et al
(2013, p.92) omits the θ > 1 case. We follow Pratt’s (1964) exposition.
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is almost symmetric. The θ = 1 case (u = ln(w)) is singular and can be treated
separately if needed.6

For u(w) = w1−θ , 0 < θ < 1, we have

E[u(w)] =
∫

w1−θ β α

Γ(α)
wα−1e−βwdw

=
∫

β α

Γ(α)
w(α+1−θ)−1e−βwdw

=
β α

Γ(α)
· Γ(α +1−θ)

β α−θ+1

∫
β α−β+1

Γ(α−θ +1)
w(α+1−θ)−1e−βwdw︸ ︷︷ ︸
=1

=
1

β 1−θ
· Γ(α +1−θ)

Γ(α)

While we can now easily derive the formula for the certainty equivalent from
the above expression, one difficulty is that the gamma function Γ(·) does not have
an easy explicit expression for non-integer values. By the condition 0 < θ < 1,
the two arguments of gamma function above, ‘α +1−θ ’ and ‘α’ would not be
integers simultaneously in general.

Fortunately, for sufficiently large values of α , we also have a simpler asymp-
totic expression (Tricomi and Erdélyi, 1951) given by7

Γ(α−θ +1)
Γ(α)

≈ α
1−θ

[
1− θ(1−θ)

2α

]
for large α

in which case we can write

E[u(w)]≈ 1
β 1−θ

·α1−θ

[
1− θ(1−θ)

2α

]
=

(
α

β

)1−θ [
1− θ(1−θ)

2α

]
for large α

Therefore, for large values of α , we have the approximate identity

[wC]
1−θ ≈

(
α

β

)1−θ [
1− θ(1−θ)

2α

]
for large α

=⇒ wC ≈
α

β

[
1− θ(1−θ)

2α

]1/(1−θ)

for large α

These are summarized in the following proposition.
6A characterization of the E[ln(x)] when x follows a gamma distribution can be given in terms

of the so-called digamma function ψ(x) = Γ′(x)/Γ(x). See Johnson et al (1995, Section 17.5).
7Tricomi and Erdélyi (1951) give more refined approximate formulas applicable for smaller

values of α .
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Proposition 3. If the random prize w follows Γ(α,β ) and preferences are rep-
resented by the CRRA utility function u(w;θ) = w1−θ , where 0 < θ < 1, then the
certainty equivalent wC of the prize is given by the expression

wC =
1
β

[
Γ(α +1−θ)

Γ(α)

]1/(1−θ)

(16)

(which can be written in terms of µ and σ2 as well but the expression is unwieldy
and omitted). In addition, for sufficiently large α , we have the approximate
expression

wC ≈
α

β

[
1− θ(1−θ)

2α

]1/(1−θ)

= µ

[
1− θ(1−θ)σ2

2µ2

]1/(1−θ)

(17)

The exact and approximate risk premium expressions are as follows

RP =
α

β
− 1

β

[
Γ(α +1−θ)

Γ(α)

]1/(1−θ)

(18)

RP≈ α

β

[
1−
[

1− θ(1−θ)

2α

]1/(1−θ)
]
= µ

[
1−
[

1− θ(1−θ)σ2

2µ2

]1/(1−θ)
]

(19)
, for large α

We could also state results on consistency check and comparative statics,
analogous to Proposition 2. The inequality wC < E[w] should hold in principle
for the exact expression (16), as the utility function shows risk aversion but writ-
ing out the proof is challenging because of the gamma functions.8 The inequality
is easy to show for the approximate expression (17).9 Most of the comparative

8A non-rigorous but heuristic argument for α < 1 and very small θ is as follows: Rewrite the
equation (16) as

wC =
α

β

[
Γ(α +1−θ)

α1−θ Γ(α)

] 1
1−θ

= E[w] ·
[

Γ(α +1−θ)

α1−θ Γ(α)

] 1
1−θ

Since 1/(1− θ) > 1, we need to show the expression within the brackets [·] is less than 1. The
gamma function satisfies the recurrence relation Γ(α +1) = αΓ(α). If θ is very small 1−θ ≈ 1,
and we could say Γ(α + 1−θ) ≈ αΓ(α). Then the expression inside the brackets becomes αθ ,
which is less than 1 for α < 1.

9This follows easily because wC = E[w] ·
[
1− θ(1−θ)

2α

]1/(1−θ)
and 1− θ(1−θ)

2α
< 1.
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static results are as expected, although some are a bit involved and are omitted
for brevity. A few remarks are in order in view of potential applications.

Remark 1. The formula (17) holds for large α only. As noted before, if
α is large, the gamma distribution is almost symmetric. On the other hand,
both mean and variance are determined by α and β together, so a large α alone
doesn’t necessarily constrain sizes of mean or variance.

Remark 2. Even the simple formula (17) may seem too complicated for easy
manipulations. But the certainty equivalent can be safely transformed monoton-
ically as it is a “sure” amount. The von Neumann-Morgenstern expected utility
is cardinal (expressing an attitude towards risk), but when u′(·) > 0, the agent
maximizing E[u(w)] is equivalent to maximizing wC, which is again equivalent
to maximizing (wC)

k for an arbitrary k > 0. If 0 < θ < 1, then we can safely
focus on

1− θ(1−θ)

2α
or 1− θ(1−θ)σ2

2µ2

which are relatively simple to handle. For example, the above expressions show
that wC is non-monotonic with regards to the degree of relative risk aversion θ ,
while it is increasing in α , µ and decreasing in σ2 (and independent of β ).

3. CHARACTERIZATION OF LOGNORMALLY DISTRIBUTED
RISKS

We now consider a different continuous distribution with the semi-infinite
support (0,∞).10 The lognormal distribution is the distribution of a random vari-
able whose logarithm is normally distributed. In other words, w is lognormally
distributed if and only if y = ln(w) is normally distributed. If w is lognormally
distributed, then its probability density function is

f (w) =
1

wσ
√

2π
exp
(
−(lnw−µ)2

2σ2

)
(20)

with the mean exp(µ + 1
2 σ2) and the variance (exp(σ2)−1)exp(2µ +σ2). We

write w∼ LN(µ,σ2) when ln(w)∼ N(µ,σ2). Note that µ and σ2 are the mean
and the variance of ln(w) (not of w) when w is lognormally distributed.

Perhaps not as commonly known as the normal distribution, it has been ap-
preciated and used since early stages of formal statistics by statisticians such as

10The point 0 is not included in the support for the lognormal distribution.
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Francis Galton.11 The lognormal distribution is positively skewed, as it is es-
sentially a logarithm of a symmetric distribution. Appeals to logarithm makes
it particularly useful in dealing with growth phenomena, e.g. so-called Gibrat’s
law, etc, hence is used widely in a variety of fields.

While conceptually easy (at least in relation to the normal distribution), the
formulaic expressions themselves are rather unwieldy for most purposes. As
simple inspections reveal, the CARA utility function is not well suited to log-
normally distributed risks, but a pleasant surprise is that the the CRRA utility
functions are quite suitable for the purpose.

3.1. SPECIAL CASE (CRRA, θ = 1): u = ln(w)

When the coefficient of relative risk aversion is θ = 1, the CRRA utility re-
duces to u = ln(w). In this case, computing the expected utility of a lognormally
distributed lottery is very simple because if w is lognormally distributed, then
ln(w) is normally distributed. Hence, if f (w) is given as (20), then y = ln(w) has
the normal density. In other words,

E[u(w)] =
∫

ln(w)
1

wσ
√

2π
exp
(
−(lnw−µ)2

2σ2

)
︸ ︷︷ ︸

lognormal density

dw

=
∫

y
1

σ
√

2π
exp
(
−(y−µ)2

σ2

)
︸ ︷︷ ︸

normal density

dy

= µ

so that any lognormally distributed risk has a constant expected utility for the
utility function u = ln(w). From ln(wC) = µ , the certainty equivalent is

wC = eµ < eµ+ 1
2 σ2

= E[w]

and the risk premium is

RP = eµ [e
1
2 σ2−1]

11See Chapter 1 of Aitchison and Brown (1957) for a brief history of the distribution. Also see
Kleiber and Kotz (2003, Chapter 4) for definition and survey of applications in economics.
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3.2. CRRA UTILITY FUNCTION: u =±w1−θ

We now turn to the more general case. Consider 0 < θ < 1. The expected
utility of a lottery following a lognormal distribution is given below.

E[u(w)] =
∫

w1−θ 1
wσ
√

2π
exp
(
−(lnw−µ)2

2σ2

)
dw

=
∫

e(1−θ) lnw 1
wσ
√

2π
exp
(
−(lnw−µ)2

2σ2

)
dw

=
∫ 1

wσ
√

2π
exp
(
(1−θ) lnw− (lnw−µ)2

2σ2

)
dw

=
∫ 1

wσ
√

2π
exp
(
−(lnw)2−2(µ− (1−θ)σ2) lnw+µ2

2σ2

)
dw

=
∫ 1

wσ
√

2π

exp
(
−(lnw− [µ− (1−θ)σ2])2

2σ2 +[µ +
1
2

σ
2(1−θ)](1−θ)

)
dw

=
∫ 1

wσ
√

2π

exp
(
−(lnw− [µ− (1−θ)σ2])2

2σ2

)
exp([µ +

1
2

σ
2(1−θ)](1−θ))dw

= exp([µ +
1
2

σ
2(1−θ)](1−θ))∫ 1

wσ
√

2π
exp
(
−(lnw− [µ− (1−θ)σ2])2

2σ2

)
dw︸ ︷︷ ︸

=1

= exp([µ +
1
2

σ
2(1−θ)](1−θ))

where in the penultimate line, we produced another lognormal density function
which integrates out to 1. From u(wC) = E[u(w)], we can easily derive the cer-
tainty equivalent.

exp((1−θ) lnwC) = exp([µ +
1
2

σ
2(1−θ)](1−θ))

lnwC = µ +
1
2

σ
2(1−θ)

=⇒ wC = exp(µ +
1
2

σ
2(1−θ))< E[w] = exp(µ +

1
2

σ
2)
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where the last inequality follows from 1−θ < 1. The risk premium is then

RP= exp(µ+
1
2

σ
2)−exp(µ+

1
2

σ
2(1−θ))= exp(µ+

1
2

σ
2)

[
1− exp(−1

2
σ

2
θ)

]

The case for θ > 1 can proceed almost identically. The expression for
E[u(w)] would have a ‘minus’ sign before and the resulting formula for wC

would be the same as above. The inequality wC < E[w] would still hold be-
cause 1−θ < 0 in this case. Finally, note that for θ = 1, the certainty equivalent
is eµ , consistent with the result we derived in Section 3.1.

Proposition 4. If the lottery has random prize w with the lognormal density
function (20) and if preferences are represented by the CRRA utility function
(15), then the certainty equivalent wC of the lottery is given by

wC = exp(µ +
1
2

σ
2(1−θ)) (21)

and the risk premium RP is given by

RP = exp(µ +
1
2

σ
2)

[
1− exp(−1

2
σ

2
θ)

]
(22)

The formulas have the expected behavior with respect to changes in θ : as
θ → 0 (less risk averse), wC approaches the expected prize E[w]; as θ → 1, wC

approaches eµ . On the other hand, as θ →∞, the risk premium RP increases and
approaches exp(µ + 1

2 σ2).
The formula (21) may seem a bit difficult to manipulate but Remark 2 from

Section 2.2 again applies here. If we are mostly interested in a strictly increasing
utility function of wC, then we can freely take a monotone transformation and
focus on

µ +
1
2

σ
2(1−θ)

which is relatively simple to handle.
For reference, Table 1 summarizes the key formulas we have obtained in

Sections 2 and 3.
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Table 1: Formulas for Certainty Equivalent

gamma distribution lognormal distribution
w∼ Γ(α,β ) w∼ LN(µ,σ2)

u =−e−θw (CARA)
α

θ
ln(1+

θ

β
) =

µ2

θσ2 ln(1+
θσ2

µ
)

≈ α

β

(
1− θ

2β

)
= µ − 1

2
θσ

2 for

small
θ

β
and

θσ2

µ

v =−e−θkw (CARA)
α

θ
ln(1+

kθ

β
)

=
µ2

θσ2 ln(1+
kθσ2

µ
)

u =±w1−θ (CRRA)
1
β

[
Γ(α +1−θ)

Γ(α)

]1/(1−θ)

exp(µ +
1
2

σ
2(1−θ))

≈ α

β

[
1− θ(1−θ)

2α

] 1
1−θ

= µ

[
1− θ(1−θ)σ2

2µ2

] 1
1−θ

for large α

Notes:

1. (α,β ) are parameters for the gamma distribution, with µ = α/β and σ2 = α/β 2.

2. For the lognormal distribution, µ and σ2 are not the mean and the variance. They are the
mean and the variance for the log of the distribution. The distribution itself has the mean
exp(µ + 1

2 σ2) and the variance (exp(σ2)−1)exp(2µ +σ2).
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4. AN APPLICATION: OPTIMAL CONTRACTING UNDER
MORAL HAZARD

4.1. THE LEN MODEL

The so-called LEN model is a simple and popular model in the moral hazard
literature.12 The acronym LEN stands for ‘linear contract’, ‘exponential utility,’
and ‘normally distributed risks’. In particular, the ‘exponential utility’ refers
to CARA utility function u(w;θ) = −e−θw. It is well-known (Bolton and De-
watripont, 2005, Section 4.2) that the certainty equivalent of a risk that follows
N(µ,σ2) for the CARA utility is

wC = µ− 1
2

θσ
2 (23)

(identical to the approximate formula (8) for a gamma distributed risk in Corol-
lary 3).

The ‘linear contract’ refers to the compensation scheme in the form of w =
t+sq, where t is the “fixed payment” and s is the “incentive power” proportional
to the random outcome q. A linear contract is not only practical and prevalent in
the real life; it can be theoretically optimal under some assumptions.13

Bolton and Dewatripont (2005, Section 4.2) outline the following simple
LEN model. Performance of the agent is assumed to be q = a+ε , where a is the
agent’s effort (hidden action) with quadratic disutility 1

2 ca2 and ε ∼ N(0,σ2). If
the agent has the CARA utility function and the principal uses the linear contract
of the form w = t + sq, then the certainty equivalent of the compensation takes
a simple form based on (23), which leads to a particularly simple (and intuitive)
formula for the optimal incentive power s∗ (with the subscript N for ‘normal’):

s∗N =
1

1+θcσ2 < 1 (24)

It is optimal to use a low s∗N (low-powered incentive) when θ (agent’s degree of
risk aversion) and c (agent’s marginal disutility of effort) and σ2 (noise associ-
ated with the performance measure) are high.

12For the standard textbook treatment of this model in a moral hazard setting, see Bolton and
Dewatripont (2005, Section 4.2). Although they do not use the term ‘LEN’, Holmström and
Milgrom (1987, 1991) are considered to be pioneers of this model. Also see Kirkegaard (2015).

13See Carroll (2015), Barlo and Özdog̃an (2014), Holmström and Milgrom (1987).
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4.2. EXTENSION: THE LEG MODEL

As we have argued in Introduction, one potential problem with the LEN
model is the fact that the noise ε follows a normal distribution, hence could take
an arbitrarily large negative value. This may be problematic if, for example, the
agent’s effort cannot produce a negative output; the worst an agent can do for the
principal may be to produce nothing.

So now suppose that ε follows the gamma distribution with parameters (α,β ).
If the agent chooses effort level a, then the outcome is almost surely positive with
mean (a+α/β ) and variance α/β 2. Also suppose that the principal uses a lin-
ear contract.14 We might as well call this a “LEG” (linear-exponential-gamma)
model.

It is possible to show that the optimal incentive power s∗G in this model is
greater than s∗N and may even be greater than 1.15 The following proposition
presents an approximate formula of s∗G which parallels that of s∗N for the case
of sufficiently small values of θβ . (The proof in Appendix derives the exact
formula for s∗G as well.)

Proposition 5. Consider the LEG model, where the agent receives linear com-
pensation t + sq, has CARA utility function and the agent’s effort is subject to
noise ε ∼ Γ(α,β ). Assume that the disutility of effort is 1

2 ca2. If θβ is suffi-
ciently small, then the optimal incentive power s∗G is:

s∗G ≈
β 2

β 2 +θ(αc−β )
=

1
1+θ(c−1/µ)σ2 (25)

Proof: See Appendix.

Comparing (25) with (24), we first notice the similarity of their dependence
on θ , c, and σ2. As in the LEN model, the principal will optimally impose
lower-powered incentives on the agent when the agent is more risk averse, the
effort is more costly and the performance measure is subject to higher noise.

s∗G differs from s∗N in the appearance of the term (c−1/µ) in place of c. Since
µ > 0, we have s∗G > s∗N . This difference disappears as µ → ∞. Furthermore, if
cµ < 1, then we have s∗G > 1. For these observations, we may offer following
rough intuitions.

14It is not clear whether the optimal contract in this setting is indeed linear. A recent paper
by Carroll and Meng (2016) offers a foundation for linear contracts for a situation where a lower
bound on the shocks is perceived by the principal.

15The incentive share greater than 1 is unconventional, but it can be accommodated in principle
if the fixed payment t is sufficiently small or even negative.
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First, the agent is assured of producing positive output with any (minimal)
effort, so inducing effort requires higher incentive power. Secondly, note that the
mean and the variance of a gamma distribution may not be independent of each
other, since µ = α/β and σ2 = α/β 2. If µ increases, then σ2 may increase as
well. So a noise with high µ may also be associated with high variance. Fur-
thermore, if µ (expected output from no effort) is very high, effort is relatively
insignificant. Hence it makes sense to lower the incentive power when µ is high.
Finally, if µ is very low (but still positive) and c (marginal disutility of effort) is
also very low, then it may be necessary to grant the whole output and more to
the agent to induce the effort (the principal can profit by imposing a negative t,
i.e. fixed participation fee on the agent).

5. FURTHER APPLICATIONS

To stress the potential for applications, we discuss some sketchy ideas for
further applications. We leave fuller explorations of these ideas to future work.

LOAN CONTRACTS WITH UNCERTAIN INTEREST RATES

An interesting possibility of application is loan contracts with uncertain in-
terest rates, as many loan products offered by banks leave interest rates open to
future fluctuations at the time of issuance. Using a normal distribution for in-
terest rates is clearly inappropriate in many real life situations. The so-called
Cox-Ingersoll-Ross model shows that the interest rate has the gamma distribu-
tion as its asymptotic distribution (Cox et al, 1985).

A potential borrower has a project that requires investment of 1 unit of money
but does not have any wealth to draw on. Ex ante, the return R to the project is
uniformly distributed on [0,R]. Assume that the borrower learns the realized
value of R before making a loan application but the bank cannot observe it, so
expects it to be 1

2 R. The bank offers a loan contract with gamma-distributed
interest rate with the mean 1

2 R. In other words, the repayment is going to be D,
which follows the gamma distribution with the mean 1

2 R and some variance σ2.
If the potential borrower has the CARA utility function u(w) =−exp(−θw),

with w = R−D, then using the formula from Table 1, the certainty equivalent of
the loan will be

wC = R− R2

4θσ2 ln(1+
2θσ2

R
)
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She will accept the loan contract only if

R≥ R2

4θσ2 ln(1+
2θσ2

R
) (26)

We could further simplify (26). Since ln(1+x)≈ x− 1
2 x2 for x≈ 0, we have,

when 2θσ2/R is sufficiently small,

R≥ 1
2

R− 1
2

θσ
2 (27)

the right-hand side of which has resemblance to the expression of the certainty
equivalent in the LEN model. If θ = 0 (risk neutral) or σ2 = 0 (no risk), then
(27) is an obvious requirement that the borrower accept the loan only if her return
is greater than the expected interest rate. If θ > 0 and σ2 > 0, this requirement
is weakened: if the borrower is more risk averse and the interest rate is more
variable, the borrower will get the loan for the (sure) return that falls below the
expected interest rate. This somewhat paradoxical result may be explained by
the fact that the return is fixed while the repayment is random. A risk averse
borrower assesses a random interest rate as being lower than its mean rate.

COMPARISON BETWEEN DIFFERENT INCOME DISTRIBUTIONS

One conspicuous area where both the gamma distribution and the lognormal
distribution are employed is the study of income (or wealth) distribution. Kleiber
and Kotz (2003, Section 4.9) report on a number of empirical studies that at-
tempted to fit income or wealth distribution data to lognormal distributions with
varying degrees of fitness. It is evident that many authors deemed it worthwhile
to examine the lognormal distribution, although it seems to be outperformed by
the gamma distribution in many studies. Kleiber and Kotz (2003, Section 5.2.6)
also report on the use of the gamma distribution in studying income or wealth
distribution.

Suppose a society’s income distribution follows w∼ Γ(α,β ). Also suppose
that the representative voter or the benevolent policy maker has the CARA utility
function. In this context, the degree of ‘risk aversion’ θ would be interpreted as
inequality aversion or preference for equal distribution. Then from Table 1, we
know that the utility of the distribution is equivalent to the utility of

µ2

θσ2 ln(1+
θσ2

µ
)≈ µ− 1

2
θσ

2

where µ = α/β is the mean income and σ2 = α/β 2 is the variance.
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The first-order approximation applies if θσ2/µ is sufficiently small. As long
as the mean income is sufficiently high, the inequality is not too great and the
inequality aversion is not too strong, the policy maker compares alternative poli-
cies that entail different income distributions by looking at the means and the
variances. The marginal rate of substitution between µ and σ2 would be then
approximately constant at 1

2 θ . A policy that increases the variance of income by
1 unit needs to ensure that the mean of income also increase by at least 1

2 θ units.

APPLICATIONS OF RESULTS FOR CRRA UTILITY FUNCTION

All the applications mentioned so far use CARA utility and gamma distri-
bution. For completeness, we give a brief account of potential applications of
CRRA utility and gamma or lognormal distribution.

One interesting topic is the cost of macroeconomic risks. Gollier (2001, Sec-
tion 2.8) gives a sketch of the argument using ideas of Lucas (1987). Assuming
the CRRA utility (with the degree of relative risk aversion unspecified) for the
population, we compute the certainty equivalent of GDP per capita from times
series data. The risk premium implied by this computation is interpreted as the
macroeconomic cost of the fluctuation in per capita income. For reasonable de-
grees of risk aversion, it is found that the cost is negligible.

We can employ our results from Table 1 to conduct further hypothetical anal-
yses. If we focus on the GDP per capita itself rather than its growth rate, then
we can use the gamma distribution. When α is sufficiently high (the distribution
is almost symmetric), we can carry out similar computations as in Gollier (2001,
Section 2.8).

Or we can model the GDP as following a lognormal distribution LN(µ,σ2)
where µ and σ2 would designate the mean and the variance of growth rates
rather than the GDP itself. The certainty equivalent in this case is a simple
formula which is proportional to µ + 1

2 σ2(1− θ). We can compare alternative
scenarios focusing on three parameters µ,σ2 and θ .

6. CONCLUSION

In this paper, we argued for the importance of allowing semi-infinite support
(with a lower bound) in modeling risks. Then we characterized the expected util-
ity, the certainty equivalent and the risk premium for risky prospects that follow
either a gamma or a lognormal distribution for constant risk aversion utility func-
tions. These tools may be applicable to several different areas; in particular they
complement those associated with the LEN model in moral hazard literature.
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APPENDIX

Proof of Proposition 2

To prove (9), note that E[w] = α/β , so we have the inequality (9) if and only if

θ > β ln
(

β +θ

β

)
Let g(θ)≡ θ−β ln(β +θ)+β ln(β ). Then we need to show g(θ)> 0 for θ > 0. First, it is easily
checked that g(0) = 0. Moreover, g′(θ) = 1−β/(β +θ)> 0 for all θ > 0. Hence g(·) is a strictly
increasing function for θ > 0. (10) is trivial, since both wC and RP are proportional to α .

For (11),
∂wC

∂β
=

α

θ

(
1

β +θ
− 1

β

)
< 0

∂RP
∂β

=
∂E[w]

∂β
− ∂wC

∂β
=− α

β 2 −
α

θ

(
1

β +θ
− 1

β

)
=− αθ

β 2(β +θ)
< 0

(12) involves some messy computations, so we simplify the presentation by writing “A∼ B”
to mean “A has the same sign as B”,

∂wC

∂θ
∼ θ

β +θ
− ln

(
β +θ

β

)
=

θ/β

1+θ/β
− ln

(
1+

θ

β

)
, letting k ≡ θ

β
> 0

=
k

1+ k
− ln(1+ k)≡ h(k)

Note that h(0) = 0 and h′(k) = −k/(1+ k)2 < 0 for k > 0. Therefore h(k) < 0 for k > 0, hence
we know the sign of ∂wC/∂θ to be positive. Then since E[w] does not involve θ , we see that

∂RP
∂θ

=−∂wC

∂θ
> 0

To show (13), from (5)

∂wC

∂ µ
=

2µ

θσ2 ln
(

1+
θσ2

µ

)
− 1

1+ θσ 2

µ

, letting k ≡ θσ2

µ
> 0

=
2
k

ln(1+ k)− 1
1+ k

=
2(1+ k) ln(1+ k)− k

k(1+ k)

∼ 2(1+ k) ln(1+ k)− k ≡ i(k)

To determine the sign of i(k), note that i(0) = 0 and i′(k) = 2ln(1+ k)+ 1 > 0 for k > 0, hence
i(k) > 0 for k > 0. Therefore, we showed the sign of ∂wC/∂ µ to be positive. As for the risk
premium

∂RP
∂ µ

= 1− ∂wC

∂ µ
=

k(2+ k)−2(1+ k) ln(1+ k)
k(1+ k)

∼ k(2+ k)−2(1+ k) ln(1+ k)≡ j(k)

Again j(0) = 0 and j′(k) = 2[k− ln(1+k)]> 0 for k > 0, so j(k)> 0 for k > 0 and ∂RP/∂ µ > 0.
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Finally to show (14), again from (5)

∂wC

∂σ2 =−µ2

θ
· 1

σ4 ln
(

1+
θσ2

µ

)
+

µ

σ2 ·
1

1+ θσ 2

µ

=−θ

(
µ

θσ2

)2
ln
(

1+
θσ2

µ

)
+θ · µ

θσ2 ·
1

1+ θσ 2

µ

, letting k ≡ θσ2

µ
> 0

= θ

[
−(1+ k) ln(1+ k)+ k

k2(1+ k)

]
∼−(1+ k) ln(1+ k)+ k ≡ l(k)

Since l(0) = 0 and l′(k) =− ln(1+k)< 0, we see that l(k)< 0 for k > 0 and we showed the sign
of ∂wC/∂σ2 to be negative. Since E[w] does not depend on σ2, we have

∂RP
∂σ2 =−∂wC

∂σ2 > 0

Proof of Proposition 5

If the agent chooses a, then the output is q = a + ε and the compensation (net of effort
disutility) would be w = t + sq− 1

2 ca2 = t + s(a+ε)− 1
2 ca2 = t + sa− 1

2 ca2 + sε , where the only
random term is “sε”. The certainty equivalent of w is derived from the certainty equivalent of sε

by (7) from Corollary 2:

wC = t + sa− 1
2

ca2 +
α

θ
ln(1+

sθ

β
)

The effort a that maximizes the expected utility of the agent is the same as that maximizes the
certainty equivalent wC: from dwC/da = 0 we have a∗ = s/c.

The principal wants to maximize the expected outcome (net of compensation) E[q− (t + sq)]
subject to the familiar participation constraint (PC) and the incentive compatibility constraint (IC)
for the agent. (IC) is satisfied by a∗ = s/c. (PC) leads to w = w (reservation wage) or combined
with (IC):

t +
s2

c
− 1

2
c

s2

c2 +
α

θ
ln(1+

sθ

β
) = w

We can now rewrite the principal’s objective by using (PC) and (IC) as follows:

E[q− (t + sq)] = a+
α

β
−
(

t + s(a+
α

β
)

)
= a− (t + sa)+(1− s)

α

β

=
s
c
−
(

w+
s2

2c
− α

θ
ln(1+

sθ

β
)

)
+(1− s)

α

β

FOC in s > 0 yields

s∗G =
1

2βθ

(
−[αcθ +β (β −θ)]+

√
[αcθ +β (β −θ)]2 +4β 3θ

)
If θβ 3 is sufficiently small, the first-order approximation yields

s∗G ≈
1

2βθ
× 1

2[αcθ +β (β −θ)]
×4β

3
θ =

β 2

β 2 +θ(αc−β )
=

1
1+θ(c−1/µ)σ2


