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Abstract This paper provides a novel approach to extract the trend and seasonal components
from panel data consisting of individual entries showing both strong trend and seasonality. For
such a data set, the usual principal component analysis generally fails to disentangle them. In the
paper, we suggest a methodology to separately identify them using the Hodrick-Prescott filter that is
commonly and widely used to remove trends in various economic data. We apply our methodology
to a food product sales panel data and show that it effectively disentangles the trend and seasonal
components in the data set.
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1. INTRODUCTION

In applied work, we often find it necessary to identify and extract trend and seasonality for
various reasons. Trend and seasonality may be the objects of interest themselves, or they may also
be regarded as noises that should be removed or controlled. We have plenty of solutions and tools to
identify and extract trend and seasonality in time series, although their performances are not always
satisfactory. However, it appears to be much less known how to effectively deal with trend and
seasonality in panels.

From the past, there have been many concerns on uncareful deseasonalization. For example,
Singleton (1988) noted that seasonally unadjusted data may be preferred depending on cases espe-
cially when economic participants behave based on the seasonally unadjusted economic variables.
Hansen and Sargent (1993) further examined the cases for which seasonal adjustment is recom-
mended or not when estimating rational expectations models. Ghysels and Perron (1993) showed
that seasonally adjusting data can lead to a bias in the unit root test. Recently, it has drawn more
attention in terms of the panel data models. Alvarez (2004) considers a dynamic panel regression
model to control for the individual seasonalities in panel data of short time length. Ucar and Guler
(2010) suggest a modified version of an economic growth model to address the problem of using
individually deseasonalized data. Nieto et al. (2016) point out the drawbacks of using individually
deseasonalized data and propose the use of a dynamic common factor model with an autoregressive
structure to overcome them. Investigating common components has been a major issue in panel data
analysis as noted in Greenaway-McGrevy et al. (2012) and Zhou and Zhang (2016).

In the paper, we propose a methodology to identify and extract common trend and seasonality
in a given panel data set. Our methodology relies on the principal component analysis (PCA) and
the Hodrick-Prescott (HP) filter – the most prevalently used approaches to identify and extract the
common temporal variation in a panel and the trend of a time series, respectively. The reader is
referred to Jolliffe (2002) and Hodrick and Prescott (1997) for more detailed discussions on the PCA
and the HP filter, respectively. We estimate seasonality in a panel by utilizing the linear combination
of the leading principal components (PCs) and the HP filter. For each linear combination of the
leading PCs, its trend is identified by the HP filter, and the seasonality is estimated by minimizing
the trend of the linear combination and subtracting the minimized trend from the linear combination.
The extracted seasonality is then used to obtain the deseasonalized panel, and the HP trend of its
leading PC is defined as our estimated trend. The trend thus extracted can be interpreted as the HP
trend of the linear combination of the leading PCs that is orthogonal to the extracted seasonality and
has the maximum temporal variation.

We illustrate our methodology using food product sales of the Daesang Corporation, one of
the leading food product companies in Korea. The data set shows strong seasonality as well as
conspicuous trend. As expected, the leading PCs contain both noticeable trend and seasonality. We
show how our methodology can be used to disentangle their trend and seasonality. Our methodology
works very effectively and disentangles trend and seasonality rather nicely. The rest of the paper is
organized as follows. In Section 2, we introduce our methodology to identify and extract trend and
seasonality in panels. Section 3 provides empirical illustration of our methodology, and Section 4
concludes the paper.
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2. METHODOLOGY

Let the panel data consisting of observations on (Yit) for i = 1, . . . ,M and t = 1, . . . ,N be avail-
able, where i and t denote individual and time, respectively. We suppose that (Yit) is given by

Yit = αiTt +βiSt +Uit (1)

for i = 1, . . . ,M and t = 1, . . . ,N, where (Tt) and (St) represent common trend and seasonality with
loadings αi and βi for individual i, respectively, and (Uit) is the term including the idiosyncratic
component representing various individual specific effects in (Yit). In model (1), we assume that
there are only two common components in the data: a common trend component which exhibits
smooth long-term fluctuations, and a common seasonal component which consists of more volatile
repeated fluctuations. Other than these two common components, we assume that there are no
common movements residing in all i.1 To identify the common trend and seasonality in the panel
data, we use the criteria used by the PCA and the HP filter, which are the most prevalently used
approaches to find common components and the trend, respectively. The HP filter usually assumes
that the data consists of only trend and cyclical components, and refers to the remainder other than
trend as a cyclical component. However, since the HP filter identifies the trend using a smoothness
measure, the HP filter can be also used to differentiate the trend and seasonal components in model
(1).

Under some circumstances, we may use only the PCA to estimate trend and seasonality in our
model. For instance, if (Yit) has a conspicuous time trend, then we may expect that the leading PC of
(Yit) closely approximates trend. By the same token, if a strong seasonal pattern exists in (Yit) with
no eminent trend, the leading PC of (Yit) is expected to mainly represent seasonality. Obviously,
however, this is not always the case. The data set we will analyze in the paper shows both strong
trend and seasonality, and their two leading PCs include both trend and seasonality entangled in a
complicated manner. This is demonstrated in Figure 1, where we present two leading PCs obtained
from our data set. The PCs of lower orders are not presented, since they are relatively minor in
magnitude and do not seem to have any prominent trend or seasonality.

In a panel data set where none of the trend and seasonality components dominates, we may not
use the PCA directly to extract any of them. In the paper, we propose a methodology to estimate
them using leading PCs. As will be shown in what follows, we extract seasonality (St) and trend
(Tt) sequentially.

To extract (St), we let Fjt , j = 1, . . . ,K for K ≥ 2, be the j-th PC obtained from Yit , and define

Ct(θ) =
K

∑
j=1

θ jFjt , (2)

where θ = (θ j) is a K-dimensional parameter such that ∑
K
j=1 θ 2

j = 1. For the choice of K, we
should include all the leading PCs containing important information to extract seasonal component
correctly. We may utilize the scree plot or the test suggested in Ahn and Horenstein (2013), for

1If our assumption does not hold and some common irregular components exist in the data, then our estimated
seasonal component (Ŝt) in (5) will include the common irregular components.
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Figure 1: Two Leading Principal Components
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Note: Presented are two leading PCs. The first and second PCs are given in the left and right panels, respectively.

which we will explain more in Section 3.1. Next, we let

Rt(θ) = argmin
(Rt)

(
N

∑
t=1

(Ct(θ)−Rt)
2 +λ

N−1

∑
t=2

(
(Rt+1 −Rt)− (Rt −Rt−1)

)2

)
(3)

for t = 1, . . . ,N, where λ is a tuning parameter of our choice. For each θ ,
(
Rt(θ)

)
in (3) is the trend

extracted by the HP filter from
(
Ct(θ)

)
with the penalty parameter λ . Once we obtain

(
Rt(θ)

)
for

each θ , we may find the value θ ∗ of θ given by

θ
∗ = argmin

θ

N

∑
t=1

R2
t (θ), (4)

and define
Ŝt =Ct(θ

∗)−Rt(θ
∗) (5)

for t = 1, . . . ,N, where
(
Ct(θ

∗)
)

is defined as
(
Ct(θ)

)
in (2) with θ = θ ∗. We let (Ŝt) be our

extracted seasonality. Note that θ ∗ defined in (4) is the value of θ which yields the HP trend whose
sum of squares is smallest, and we use this value of θ as the loading for the leading PCs to obtain
our estimate for seasonality (St).2

We may estimate trend (Tt) using our estimate (Ŝt) for seasonality (St). To obtain an estimate
(T̂t) of (Tt), we define

Zit = Yit − δ̂iŜt

for i = 1, . . . ,M and t = 1, . . . ,N, where (Ŝt) is the estimated seasonality introduced in (5), and
δ̂i is the OLS estimate for the regression coefficient in the regression of (Yit)

N
t=1 on (Ŝt) for each

i = 1, . . . ,M. Using the leading PC (Gt) of (Zit), we then let

(T̂t) = argmin
(Tt)

(
N

∑
t=1

(Gt −Tt)
2 +λ

N−1

∑
t=2

(
(Tt+1 −Tt)− (Tt −Tt−1)

)2

)
, (6)

2Ideally, Ct(θ
∗) consists of only the seasonal component and Rt(θ

∗) is negligible because Ct(θ
∗) is a linear com-

bination that yields the smallest trend and Rt(θ
∗) is the trend component of Ct(θ

∗). However, since there may remain
some residual trend in Ct(θ

∗), we obtain our final seasonal component by subtracting Rt(θ
∗) from Ct(θ

∗).
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where again λ denotes the penalty parameter. Our estimate (T̂t) of trend (Tt) is thus defined as the
HP trend of the leading PC (Gt) of (Zit).3

Using (Ŝt) in (5) as our estimate for seasonality is the key novel idea of our method. We find a
linear combination of the leading PCs whose trend is minimal, and define that linear combination
of the leading PCs as our estimate for seasonality net of its HP trend. The leading PCs effectively
summarize common temporal variations in a given panel data, and it is sensible to extract common
seasonality as a linear combination of the leading PCs. Moreover, it is very natural and intuitively
appealing to use the linear combination minimizing trend to estimate seasonality. To make our idea
operational, we use the HP filter to identify and extract trend. As will be demonstrated in the next
section, our approach works well and provides a very satisfactory estimate of seasonality (St).

The required computation to obtain the estimated seasonality (Ŝt) becomes more convenient if
we utilize the linearity of the HP filter. To show this, we let θ , C(θ) and R(θ) be the N-dimensional
vectors defined from (θ j),

(
Ct(θ)

)
and

(
Rt(θ)

)
, respectively, and F be the N×K matrix whose j-th

column is the (Fjt)
N
t=1. Then we may write C(θ) = Fθ , and

R(θ) = HFθ ,

where H = (λM+ IN)
−1, M is an N-dimensional square matrix given as

M =



1 −2 1 0 · · · · · · 0
−2 5 −4 1 0 · · · · · · 0

1 −4 6 −4 1 0 · · · · · · 0
0 1 −4 6 −4 1 0 · · · · · · 0
...

. . .
...

0 · · · · · · 0 1 −4 6 −4 1 0
0 · · · · · · 0 1 −4 6 −4 1
0 · · · · · · 0 1 −4 5 −2
0 · · · · · · 0 1 −2 1


,

and IN is the N-dimensional identity matrix (Kim, 2004). Therefore, θ ∗ is just given by the normal-
ized eigenvector of F ′H ′HF associated with its smallest eigenvalue. Note that Ŝ defined from (Ŝt)
similarly as above may also be obtained by Ŝ = (I −H)Fθ ∗.

As for the trend estimate (T̂t) obtained in (6), (T̂t) is the extracted HP trend obtained from the
leading PC (Gt) of the deseasonalized panel (Zit). Note that (Zit)

N
t=1 is orthogonal to (Ŝt) for all

i = 1, . . . ,N and (Gt) is defined as a linear combination of (Zit)
N
t=1 across i = 1, . . . ,M. We may

therefore see that (Gt) is orthogonal to (Ŝt). In fact, we may define (Gt) as a factor of (Yit) obtained
by taking a linear combination of (Yit)

N
t=1 across i = 1, . . . ,M such that it is orthogonal to (Ŝt) and

at the same time has the largest temporal variation.
The procedure to obtain the estimated seasonal and trend components is summarized below.

Step 1 Calculate the K leading PCs of (Yit), and let F be the resulting N ×K matrix.

Step 2 Calculate the HP trend components for each column of F for a given λ . Let R
be the resulting N ×K matrix.

3For the trend estimation, it is natural to let

(T̂t) = (F1t)− (Ŝt) (7)

when K = 1, with which our trend estimate does not coincide. However, the trend estimation in (7) cannot be generalized
in the case of K ≥ 2.
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Step 3 Let θ ∗ be the eigenvector associated with the smallest eigenvalue of R′R.
Step 4 Let Ŝ = Fθ ∗−Rθ ∗. Then, Ŝ is our estimated seasonal component.
Step 5 Regress each time series (for each i) on Ŝ and obtain the residuals. Let Z be the

resulting N ×M matrix of residuals.
Step 6 Let T̂ be the leading PC of Z. Then, T̂ is our estimated trend component.

3. EMPIRICAL ILLUSTRATION

3.1. DATA

To illustrate our methodology, we analyze weekly sales of the Daesang Corporation for the
period of the first week of January 2015 to the fourth week of May 2021. Daesang Corporation is
a general food company located in Korea, which produces, packages and distributes a wide variety
of food and ingredient products. It was the second largest among general food companies in Korea
in terms of total sales in 2020.4 Our data set includes the number of units of food products sold to
the retailers in a week, from Monday to Sunday, for each product. The items included in the data
set are very heterogeneous. There are total 4,126 products that are produced by the company, out of
which we select 497 products, excluding items discontinued or newly listed during the period of our
study. Our data set shows some strong and complex seasonal patterns, as well as an obvious overall
upward trend. There are two reasons for its strong and complex seasonality. The company deals
with many seasonal products whose sales mainly or often exclusively occur in specific seasons.
Moreover, there are conspicuous calendar effects in the sales of the company. The sales of many
products the company carries show big surges in a couple of weeks before some traditional holiday
weeks, followed by abrupt drops during the actual weeks of the holidays.

Figure 2 presents the logs of weekly sales, and the proportions of the total temporal variation
explained by the leading 10 PCs of the demeaned logs of weekly sales. The first three PCs are
eminent. They explain 22%, 14% and 10% of the total variation, respectively, and 46% of the total
variation jointly. The test of Ahn and Horenstein (2013), both of their ER and GR statistics, also
yields the presence of three factors unambiguously. Therefore, we may use up to three leading PCs
to identify and extract common trend and seasonality. In our analysis, however, we only use the two
leading PCs, since our main objective is to disentangle trend and seasonality and the third PC has
no meaningful seasonality. As will be shown later, the detrended third PC yields a spectral density
that has a main peak at an obscure frequency. This is in sharp contrast with the seasonality extracted
from the two leading PCs whose spectrum has an unambiguously strong seasonal pattern. In fact,
the third PC indeed has neither any notable seasonality nor conspicuous trend. The trend of the third
PC is almost negligible, and the estimated spectral density of the detrended third PC does not have
any interpretable seasonal pattern.

3.2. EXTRACTED SEASONALITY AND TREND

The extracted seasonality and trend are presented in Figure 3. For the presented results, we use
the two leading PCs, and set the penalty parameter λ at λ = 6.25×524 as suggested by Ravn and

4See Food and food service statistics 2020, published by the Ministry of Agriculture, Food and Rural Affairs, and
Korea Agro-Fisheries and Food Trade Corporation (in Korean).
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Figure 2: Logs of Weekly Sales and Scree Plots
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Note: The logs of weekly sales are presented in the left panel. In the right panel, the proportions and their cumulative
values of the total temporal variation explained by the 10 leading principal components are presented.

Uhlig (2002) for weekly observations. The results here demonstrate that our methodology is very
effective in disentangling trend and seasonality in our panel data including both strong seasonal and
trending patterns as demonstrated earlier in Figure 1. The extracted seasonality has no trend, and
exhibits roughly the seasonal pattern that existed commonly in the two leading PCs. The extracted
trend is virtually linear, which suggests a linear growth in the quantities of product sales. As ex-
pected, it does not show any seasonal pattern. Our methodology to identify and extract trend seems
to annihilate all seasonal fluctuations in our data set rather completely.

The spectral density of the extracted seasonality is provided in Figure 4. Here we also present
the spectral density of the detrended third PC to check whether it has any left-over seasonality.
This is necessary, since we only use the two leading PCs to extract seasonality as discussed ear-
lier. The spectral density estimates of the extracted seasonality and the detrended third PC are
computed using the signal processing toolbox in Matlab, which utilizes the Kaiser window.5 As
expected, the estimated spectral density of the extracted seasonality has sharp picks at all major
seasonal frequencies, whereas that of the detrended third PC shows no such sign of the presence
of seasonality. The spectral density of the extracted seasonality has major peaks at the frequencies
2π/52,2π/26,2π/17 and 2π/13 corresponding to the cycles of 52,26,17 and 13 weeks, which are
approximately one year, half-year, 4 months and 3 months, respectively. Amongst them, the half-
year cycle is dominant. It also has other minor peaks at the frequencies 2π/7.4,2π/5.8,2π/4.72
and 2π/4 corresponding to the cycles of 7.4,5.8,4.72 and 4 weeks, which are roughly one or one
and half months. In contrast, the spectral density of the detrended third PC has a main peak at
2π/10.4 representing the cycle of 10.4 weeks, which is hard to interpret as any seasonal cycle. It
also has a wide spread of nonnegligible spectral masses in high frequency regions. Although there
are some notable peaks at some seasonal frequencies, it seems evident that overall the third PC is
devoid of any meaningful seasonality.

5See, for example, Oppenheim and Schafer (2009).
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Figure 3: Extracted Seasonality and Trend
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Note: The extracted seasonality and trend are presented in the left and right panels, respectively.

Figure 4: Estimated Spectral Densities
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Note: The logs of weekly sales are presented in the left panel. In the right panel, the proportions and their cumulative
values of the total temporal variation explained by the 10 leading principal components are presented.

4. CONCLUSION

In this paper, we develop a methodology to disentangle trend and seasonality in a panel data
set, which has strong seasonality as well as noticeable trend. For such a data set, leading PCs are
expected to show both trending behavior and seasonal fluctuations, and we need to further analyze
them to separate them from each other. Our methodology relies on the PCA and the HP filter. Both
are used extensively in the economic data analysis. We use the PCA to find the common temporal
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fluctuations in a panel, and apply the HP filter to find the linear combination of them which yields
minimal trend. The resulting linear combination of leading PCs, net of its HP trend, is proposed as
the extracted seasonality. The extracted trend is defined sequentially as the HP trend of the leading
PC of the given data set after being deseasonalized using the extracted seasonality. We use the panel
data set of food product sales and show that our methodology truly works well in disentangling
trend and seasonality.
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