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Abstract This paper reviews the basics of regression discontinuity (RD) de-
sign, whose hallmark is having a treatment determined by an underlying score
(i.e., ‘running variable’) crossing a known cutoff or not. Following the basics,
recent advances in RD are examined, where the topics are grouped into those
related to score and those not. The former topics include multiple scores, mea-
surement errors in score, integer score, and score-density continuity. The latter
topics include regression kink (RK), high-order effects, and extending RD iden-
tification range (i.e., external validity). Detailed empirical examples are pro-
vided for the RD topics, but not for the RD basics which are fairly well-known
these days. RD is simple, which can thus appeal even to lay audiences, and this
review accordingly emphasizes the intuitive nature of RD and its applicability
in practice. Practical and widely applicable techniques are given more cover-
age, whereas theoretically-motivated but less-practically-relevant ones are only
briefly mentioned. The beauty of RD is in its simplicity, and temptation to make
it too sophisticated should be resisted.
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2 BASICS AND RECENT ADVANCES IN REGRESSION DISCONTINUITY

1. BASICS: LOCAL RANDOMIZATION IN RD

In assessing effects of a binary treatment D on a response/outcome variable
Y , randomization is the golden rule of inference in science. In a randomized
experiment with treatment (D = 1) and control (D = 0) groups, randomization of
D ensures that the two groups differ only in the treatment status, otherwise being
“balanced” in all covariates, observed or not. For instance, individuals with
different abilities or genes are assigned to different groups, but the distribution
of ability levels or gene types should be almost the same across the two groups.
Hence the mean difference E(Y |D = 1)−E(Y |D = 0) reveals the mean effect of
D on Y .

If the treatment group (“T group”) and control group (“C group”) systemati-
cally differ in some covariates, then we cannot attribute E(Y |D = 1) ̸= E(Y |D =
0) to the D difference, which is why covariate balance is critical. When individu-
als self-select D = 0,1, the two groups are likely to be unbalanced in covariates,
as individuals with certain traits tend to select D = 0 or 1; e.g., older persons
tend to vote (D = 1) more than younger ones, and the more educated tend to
exercise (D = 1) more than the less educated. Randomization avoids this kind of
problems.

Randomization, however, cannot be done if the treatment is possibly harm-
ful as in smoking or radiation. Also, randomization is unthinkable in most
observational studies, which has been accepted as a fact for a long time. De-
spite this, regression discontinuity (RD), started long time ago by Thistlethwaite
and Campbell (1960), offers ‘local randomization’ using an institutional or legal
break/intervention.

The hallmark of RD is that D is fully (or partly) determined by an underlying
‘running variable’ or ‘score’ S crossing a known cutoff c or not, so that D (or
E(D|S)) has a break at c. Such a break happens because accommodating a partial
qualification/admittance (to a program/treatment) is too costly or infeasible. If
we use only some local observations around c, then the local T group with S
just above c and the local C group with S just below c should be similar in all
aspects except in the treatment status, which is the local randomization with
observational data. An example is entering a college based on a test score S
being at least c—a “partial entry” is hard to imagine here—and those who barely
enter and those who barely fail should be similar in all aspects.

RD local randomization differs from the usual non-local randomization as in
flipping a coin. Because RD uses only local observations around c with observa-
tions far away from c discarded, RD is not efficient. If one does an experiment
as in a medical trial, there is no reason to use RD; i.e., D there does not have to
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be determined by S crossing c or not. The real value of RD is materialized in
observational data.

After the birth of RD by Thistlethwaite and Campbell (1960), RD went
dormant for decades until its revival around the year 2000. Review papers on
RD have appeared in various disciplines: Imbens and Lemieux (2008), Lee and
Lemieux (2010), Bloom (2012), Venkataramani et al. (2016) and Choi and Lee
(2017), among others. Book chapters on RD can be found in Lee (2005, 2016)
and Angrist and Pischke (2009). Cattaneo and Escanciano (2017) and Cattaneo
et al. (2019) are books entirely on RD. See Choi and Lee (2017) for RD stud-
ies in statistics where the main outlet has been Journal of the Royal Statistical
Society (Series A) and Journal of the American Statistical Association. See also
Cook (2008) for a historical account on RD. The goal of this paper is to introduce
recent advances in RD, for which the RD basics are covered as well.

Regarding notation and assumptions, we assume iid observations across i =
1, ...,N. The subscript i as in Di and Yi is often omitted, as has been done already.
We often write E(Y |S = s) just as E(Y |s) for a realized value s of S.

∫
E(Y |s)ds

is often written as
∫

E(Y |s)∂ s to avoid the confusion with d in D = d. Estimates
for a parameter β are denoted with ‘ˆ’, ‘˜’, ‘–’, etc. as in β̂ , β̃ , β̄ , etc. The dis-
tribution or distribution function for W |S is denoted as FW |S(·|s), and its density
as fW |S(w|s). The continuity of various functions at c matters, and we often omit
the qualification “at c”. For simplification, redefine S as S− c so that the cutoff
becomes 0 unless otherwise mentioned, although c is still used when its specific
value may be of interest. The starred sections in this review are relatively more
technical, and may be skipped.

2. BASICS: SHARP RD (SRD)

Suppose D is fully determined by a continuous variable S crossing the cutoff
0: D = 1[0 ≤ S], where 1[A] ≡ 1 if A holds and 0 otherwise. This is ‘sharp RD
(SRD)’, compared with ‘fuzzy RD (FRD)’ where D is only partly determined by
S. S is often called a running/forcing/assignment variable, but we call S a ‘score’
(S from score).

For instance, to enter a competitive college (D = 1), a test score S should be
equal to or greater than a cutoff c. Local randomization is that those who barely
pass the test (the local T group with ‘S = c+’, i.e., S just above c) and those
who barely fail (the local C group with ‘S = c−’, i.e., S just below c) should be
homogeneous in all covariates, observed or not, because a few point difference
in a test (with the maximum score, say, 100) should be a matter of pure luck.
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Another example is that S is age, c = 65 and D is a government-provided health
care. The local T group who are a couple of weeks/months older than 65 should
be almost the same as the local C group a couple of weeks/months younger than
65.

Treatments of the opposite direction also abound; e.g., an income aid pro-
gram with D = 1[S < c] where S is income and c is a poverty threshold. With
little loss in generality, we assume D = 1[c ≤ S] henceforth, neither 1[S < c] nor
1[c < S], unless otherwise necessary. If D = 1[S < c], then we just have to de-
fine the new treatment D′ ≡ 1−1[S < c] = 1[c ≤ S] to switch the T and C group
labels.

2.1. SRD IDENTIFICATION WITH INTERCEPT BREAK

Having seen how the treatment D is determined in RD, now we turn to how
D relates to Y . Suppose D affects Y through

E(Y |S) = β dD+m(S) = β d1[0 ≤ S]+m(S)

= m(S) for S < 0 and β d +m(S) for S ≥ 0

for a parameter β d and an unknown function m(S) continuous at S = 0. As S
changes from just below 0 (i.e., 0−) to just above 0 (i.e., 0+), E(Y |S) changes
from m(0−) to β d +m(0+). The break of size β d in E(Y |S) at S = 0 occurs due
to the break of size 1 in D at S = 0.

Suppose, as S changes from 0− to 0+, we see a break in E(Y |S). Since only
D had a break at S = 0 while everything else did not—this is what the continuity
m(S) at S = 0 essentially means—it must be the D break that caused the break
in E(Y |S). Finding a causal effect of D on Y using a break gives the name RD,
and RD concludes no causal effect of D if E(Y |S) has no break at S = 0 despite
that D has a break. The well-known ‘before-after (BA)’ design is a special case
of RD when S is time.

In E(Y |S) = β dD+m(S), S affects Y directly through m(S) (‘ S → Y ’) and
indirectly through D (‘S → D → Y ’). In the college entrance example, S reflect-
ing ability can affect Y directly, but there is no reason for this effect through m(S)
to be discontinuous at 0. This contrast between the treatment break in D and no
break in m(S) is the source to identify β d .

Let the right and left limits of E(·|S) at c be

E(·|c+)≡ lim
s↓c

E(·|S = s) and E(·|c−)≡ lim
s↑c

E(·|S = s).
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As Lee (2016, p. 102) shows (see also the appendix), the “regression form”
E(Y |S) = β dD+m(S) is not an assumption; rather, it is equivalent to the “dif-
ference form” β d ≡ E(Y |0+)−E(Y |0−). The regression form is not a structural
form (SF) (i.e., data generating process), but it is not a typical reduced form
(RF) either because the SF parameter β d appears there. See Lee (2018, 2021c)
for “reduced structural forms” capturing a SF parameter with a RF.

Let (Y 0,Y 1) be the ‘potential responses’, so that Y = (1−D)Y 0 +DY 1; i.e.,
the untreated response Y 0 is observed when D = 0, and the treated response Y 1

when D = 1. Then

β d ≡ E(Y |0+)−E(Y |0−) = E(Y 1|0+)−E(Y 0|0−)
= E(Y 1|0+)−E(Y 0|0+) = E(Y 1 −Y 0|0+) if E(Y 0|0+) = E(Y 0|0−),

(2.1)

which is the continuity of E(Y 0|S) at 0. This shows that the local mean difference
E(Y |0+)−E(Y |0−) identifies the mean treatment effect on the just treated (i.e.,
those with S = 0+) which is E(Y 1 −Y 0|0+). If we further assume the continuity
of E(Y 1|S) at 0, then β d = E(Y 1 −Y 0|0+) = E(Y 1 −Y 0|0) which is the mean
effect at the cutoff 0.

Interpreting the difference Y 1 −Y 0 requires that differences of Y values be
comparable, which allows continuous or counting Y . Binary Y is allowed too,
because the differences (−1,0,1) are comparable: Y changing 1 to 0, no change
in Y , and Y changing 0 to 1, respectively. However, categorical/multinomial Y is
not allowed which may be ordered or unordered; e.g., Y changing from category
1 to 3 is not comparable to Y changing from category 2 to 4, despite that both
changes result in the same difference ∆Y = 2. For categorical Y , define binary
Yj for category j to use E(Yj|0+)−E(Yj|0−).

The critical identification (ID) condition E(Y 0|0+) = E(Y 0|0−) in (2.1) is
best understood by taking plastic surgery as a BA example. In BA, we compare
Y 0 just before the treatment (i.e., the facial beauty before the surgery) to Y 1 just
after (the facial beauty after) to take E(Y |0+)−E(Y |0−)=E(Y 1|0+)−E(Y 0|0−)
as the effect. For this comparison, it is essential to assume that Y 0 would have
stayed the same, had it not been for the treatment, which is E(Y 0|0+)=E(Y 0|0−);
i.e., the facial beauty would have remained the same if no surgery.

The “opposite” to BA is ‘spatial/geographical’ RD where a boundary line
is drawn abruptly in a region and S is the shortest distance to the boundary.
An example is the African country boundaries drawn by Europeans in the 19th
century, splitting more than 200 ethnicities into different countries. Also, the 38
parallel divided Korea into South and North after World War II, to be governed
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by the U.S. and Russia. Individuals close to such a boundary are homogeneous
to result in local randomization, because the boundary was drawn arbitrarily. For
spatial RD examples, see Bayer et al. (2007), Dell (2010), Michalopoulos abd
Papaioannou (2014), Turner et al. (2014), MacDonald et al. (2016), and Keele
et al. (2017) among many others. Spatial local randomization, however, may
not last long, because effects of different institutions take place over time (see
Henderson et al. (2012) for drastic examples “from above”), and also because
people selectively move around if moving is allowed.

2.2. SRD ESTIMATION WITH OLS

As for estimating β d ≡ E(Y |0+)−E(Y |0−), the simplest approach is using
a sample analog of E(Y |0+)−E(Y |0−): for a small constant h > 0,

β̄ d ≡ Ê(Y |0+)− Ê(Y |0−) where

Ê(Y |0+)≡ 1
N1

∑
i

Yi1[Si ∈ (0,h)], Ê(Y |0−)≡ 1
N0

∑
i

Yi1[Si ∈ (−h,0)],

and N1 and N0 are the numbers of observations with S ∈ (0,h) and S ∈ (−h,0).
Here, h is a ‘bandwidth’ or ‘smoothing/tuning parameter’; how to choose h will
be discussed later.

We can estimate β d also using E(Y |S) = β dD+m(S). As m(S) is continuous
at 0, the simplest approach is replacing m(S) with a constant β 0 to get E(Y |S) =
β 0 +β dD; m(S) = β 0 is a “trivially” continuous function of S. We can estimate
(β 0,β d) with the ordinary least squares estimator (OLS) of Y on (1,D) using
only the observations with Q = 1, where

Qi ≡ 1[Si ∈ (−h,h)].

As well-known, the slope estimand of the OLS of Y on (1,D) is the mean
difference E(Y |D = 1)−E(Y |D = 0) (see, e.g., Lee 2016, p. 19), and when
only the observations with Q = 1 are used, the slope estimand becomes, with
D = 1[0 ≤ S],

E(Y |D = 1,Q = 1)−E(Y |D = 0,Q = 1) = E(Y |0 ≤ S < h)−E(Y |−h < S < 0).

This reveals that the slope of the OLS is also β̄ d . Setting m(S) = β 0 is a ‘Local
Constant regression (LCR)’, and the OLS is a ‘local-constant OLS’.

Going one step further from m(S) = β 0, we can replace m(S) with a lin-
ear function of S continuous at 0, which gives rise to ‘Local Linear Regression
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(LLR)’. Specifically, let m(S) be a ‘linear spline’ (or a piecewise linear function):

m(S) = β 0 +β−(1−δ )S+β+δS = β 0 +β−S+∆β ·δS,

δ i ≡ 1[0 ≤ Si], ∆β ≡ β+−β−.

Here, β 0 is the intercept, β− is the left slope of S at 0, and β+ is the right
slope, or alternatively, β− is the “base” slope and ∆β is the slope change at 0.
Clearly, m(S)= β 0+β−(1−δ )S+β+δS is continuous at 0, because of m(0−)=
m(0+) = β 0 and the terms with S attached becoming 0 at S = 0. Although δ = D
here, RD with D ̸= δ will appear shortly.

‘Local linear OLS’ uses only the Q = 1 observations to estimate

E(Y |S) = β 0 +β dD+β−(1−δ )S+β+δS

which is almost “the industry standard” in RD practice. Despite the linear model
and OLS, RD is a nonparametric approach because the linear model is used only
locally around 0, not globally. The asymptotic inference can be done, using the
usual OLS asymptotic variance estimator.

Biases in LCR can be much larger than those in LLR. Suppose β d = 0 and
Y = β 0 +β 1S with β 1 > 0. As Y is an increasing function of S, the left sample
mean Ê(Y |0−) over S ∈ (−h,0) is smaller than the right sample mean Ê(Y |0+)
over S ∈ (0,h), resulting in β̄ d > β d = 0. Although the bias would disappear
as h → 0, it could be substantial in small samples to explain why LLR is more
popular than LCR. LLR is “boundary-adaptive”.

The word ‘spline’ in linear spline refers to the case where the right and left
slopes at 0 are allowed to differ although the function is continuous at 0. Instead
of the linear spline, we may use the linear β 0 + β sS with the restriction β s ≡
β− = β+. In reality, β− = β+ may hold, but it is still good to allow β− ̸= β+,
because D may cause, not just an intercept break in E(Y |S), but also a change in
the slope of S. It can happen that β d = 0 (no intercept break) but β− ̸= β+ (slope
break), which is called ‘regression kink (RK)’ to be examined in detail later.

Quadratic β 2S2 (same slope) or β 2−(1− δ )S2 + β 2+δS2 (different slopes)
may be used extra for m(S). Gelman and Imbens (2019) recommend a linear or
quadratic m(S), but not higher orders for the following reasons. First, β d can be
written as the difference of weighted averages of (Y 0

i ,Y
1
i )’s, and the weights for

a high order m(S) can be nonsensical. Second, estimates can be sensitive to the
order of m(S). Third, inference with a high order m(S) is often poor. Hence, it is
enough to use LLR or ‘local quadratic regression (LQR)’.
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Instead of OLS, weighed OLS (WLS) may be used with a weighting function
assigning higher weights to observations closer to the cutoff than those far away.
However, WLS hardly differs from the OLS in practice, and thus we do not
consider WLS any further. Compared with WLS, OLS gives the same weight
to all observations regardless how far off they are from the cutoff. That is, OLS
uses the “uniform weight/kernel”.

Using W as regressors in observational data amounts to controlling W in
experiments. Although unnecessary in principle, covariates W may be controlled
in RD; see, e.g., Kim (2013), Calonico et al. (2019) and Frölich and Huber
(2019). First, controlling W pulls W out of the error term to reduce its variance.
Second, if h is large, W may not be balanced to ruin the local randomization,
which is avoided by controlling W . Third, E(W |S) may have a break at 0 to
bias the OLS (see e.g., Urquiola and Verhoogen (2006), which is also avoided
by controlling W .

2.3. BANDWIDTH CHOICE AND COVARIATE BALANCE CHECK

Choosing the localizing bandwidth h matters greatly, as there is a trade-off in
choosing h: ‘too small’ entails too few observations for low efficiency, and ‘too
large’ entails a bias because local randomization breaks down and covariates get
unbalanced across the two groups. Theoretically optimal or “robust” bandwidths
have been proposed by Imbens and Kalyanaraman (2012), Calonico et al. (2014),
2020, and Arai and Ichimura (2018), but they do not necessarily work well in
reality; see, e.g., Card et al. (2015) and Önder and Shamsuddin (2019) for RK
and RD examples. It is hazardous simply to use a canned “default” bandwidth in
an econometric/statistical software without checking the sensitivity of the effect
estimates to h.

The basic approach is to think of a reasonable bound on h for randomization—
how big h has to be to ruin local randomization—and presents estimates corre-
sponding to different values of h within the bound to show the sensitivity of the
effect estimate to h. With SD denoting standard deviation, a sensible approach
is thus starting from a rule-of-thumb bandwidth h such as SD(S)N−1/5, and then
shrinking/expanding h until the covariate balance is restored/maintained.

If one still desires an automatic choice of h, then ‘cross-validation (CV)’ may
be used: for a kernel K(·) such as the N(0,1) density, minimize with respect to
h,

1
N ∑

i
{Yi − Ê−i(Y |Si,h)}2 where Ê−i(Y |Si,h)≡

∑
N
j=1, j ̸=i K{(S j −Si)/h}Yj

∑
N
j=1, j ̸=i K{(S j −Si)/h}

.
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That is, the value of h that gives the best predictor for Yi without using Yi per
se is chosen by CV. The minimand is nearly convex, and the conventional CV
bandwidth is asymptotically optimal. The reason why this is not often used in
RD is that E(Y |S) has a break, instead of being continuous in S, which makes
Ê−i(Y |Si,h) biased for E(Y |Si) when Si ≃ 0. However, since the goal is finding
a reasonable value for h, not predicting Y per se well, the bias is hardly an issue,
and we recommend CV. See Choi and Lee(2018b, pp. 263-4) on why ‘one-sided
kernel’ to account for the break in E(Y |S) fails in choosing h.

In checking out the balance of covariates W , the simplest way is testing for
E(W |0+) = E(W |0−) as in the LCR for Y . Instead of LCR, however, it is better
to employ the same local model as used for Y ; i.e., if LCR/LLR/LQR is used for
Y , then the same should be used for W . To see why, suppose LLR is used for Y
and a covariate Wk:

E(Wk|S) = ζ 0 +ζ δ δ +ζ−(1−δ )S+ζ+δS.

Then we can take ζ δ ̸= 0 as evidence for Wk imbalance, and ζ δ ̸= 0 would bias
β̂ d in the LLR for Y when Wk is not controlled for. In contrast, any non-zero
ζ 0, ζ− or ζ+ is merged into β 0, β− or β+, not to cause any bias for β̂ d . If we
employ LLR for Y but LCR for Wk as in E(Wk|S) = ξ 0 +ξ δ δ , then ξ δ = 0 may
be rejected despite ζ δ = 0 in the LLR for Wk.

Differently from W , we cannot test for the balance of unobserved ε . How-
ever, there is an an indirect way to test for ε balance: test for the continuity of
S-density fS(s) at c. Although fS(s) continuity tests are widely used, they can
be misleading, not least because the continuity of fS(s) is neither necessary nor
sufficient for ε balance. This issue will be examined later.

2.4. EFFECT HETEROGENEITY AND ITS WEIGHTED AVERAGE*

In reality, most treatment effects are heterogeneous, varying as S or W does.
Since the treatment effect in RD is specific to the cutoff c, RD treatment effect
can be heterogeneous also depending on the value of c. Here, we examine effect
heterogeneity and related issues.

Suppose D and S interacts, so that the ‘interaction’ DS matters with slope
β ds > 0. In the college-entrance (D) and income (Y ) example, as test score S
reflects ability, β ds > 0 is that the effect of D on Y is higher for those with a
higher S. However, DS cannot be used as a separate regressor in RD, because
DS ≃ Dc locally around c, so that c in cD merges into β d in β dD.
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Observe

E(Y |S) = β dD+β dsSD+m(S) = (β d +β dsc)D+β ds(S− c)D+m(S)

= β̇ dD+ ṁ(S) where β̇ d ≡ β d +β dsc and ṁ(S)≡ β ds(S− c)δ +m(S).

Here, β̇ d consists of the ‘direct effect’ β d of D and the ‘indirect effect’ β ds
through S = c. Interestingly in β̇ d , β ds = ∂ β̇ d/∂c shows the effect of raising
c. In the college-entrance and income example, better students are admitted into
the college as c is raised, and consequently, the effect on income goes up by β ds.
A closely related example is a summer remedial class, where S is the spring-
term GPA, D = 1[S < c] and Y is a future GPA: here again, better students attend
the summer class to increase Y as c is raised. Although β d and β ds are not
separately identified, if another cutoff cnew is available in some data, we can find
both β d +β dsc and β d +β dscnew, with which β d and β ds can be derived.

WD with slope β dw may also matter for Y . With WD controlled, both β d
and β dw are identified. With DW not controlled, however, E(WD|S) becomes
part of m(S) that is likely to be discontinuous at c unless W takes the form such
as W = (S− c)M for a covariate M.

Similarly to Lee and Lemieux (2010, p. 298), suppose, for a function β d(·),

Y = β d(W )D+m(S)+error with E{β d(W )|s} and E(error|s) continuous at c

=⇒ E(Y |c+)−E(Y |c−)=E{β d(W )D|c+}−E{β d(W )D|c−}=E{β d(W )|c}−0

=
∫

β d(w)∂FW |S(w|c) =
∫

β d(w)
fS|W (c|w)

fS(c)
∂FW (w) (using the Bayes’ rule).

(2.2)

This is a weighted average of β d(w), where the weight is { fS|W (c|w)/ fS(c)}
∂FW (w), not ∂FW (w), that is higher when fS|W (c|w) is higher. If D is a remedial
class and W is IQ, then the weight is higher for w with S = c more likely. For
instance, w = 120 gets a higher weight than w = 150 because fS|W (c|150) <
fS|W (c|120) as smarter students are less likely to have S ≃ c. Hsu and Shen
(2019, 2021) proposed tests for RD effect heterogeneity.

In two-party elections, we have c = 0.5, but c becomes random in multi-
party elections, because which party wins depends on the vote shares of the other
parties. In this case, the cutoff becomes a random variable C, but RD can still be
done with the normalized score SC ≡ S−C. The identified treatment effect is a
weighted average of E(Y 1 −Y 0|C = c,S = c+) as follows. Suppose fC|S(c|s) is
continuous in s for all c. Then, somewhat differently from Cattaneo et al.(2016,
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p. 1236), the appendix proves

lim
h↓0

{E(Y |SC = h)−E(Y |SC =−h)}= lim
h↓0

{E(Y |S =C+h)−E(Y |S =C−h)}

=
∫

lim
h↓0

E(Y 1 −Y 0|C = c,S = c+h) · fC|S(c|c)∂c (2.3)

under the continuity of E(Y 0|C = c,S = s) in s for all c. The integrand is ‘the c-
heterogeneous effect on the just treated’, the fC|S(c|c)-weighed average of which
is the identified effect. Multi-cutoffs arise also in other contexts, and the treat-
ment effect may be estimated separately at each cutoff. See e.g. Önder and
Shamsuddin (2019) and Bertanha (2020) for more on multi-cutoffs.

3. BASICS: FUZZY RD (FRD)

‘D = δ ≡ 1[0 ≤ S]’ occurs due to laws/regulations. However, often there
are exceptions/loopholes in laws/regulations, which result in ‘fuzzy RD (FRD)’
with D = D(S,ε) ̸= δ ; D in FRD is determined by S and a random variable ε .
In contrast to FRD, D = δ that has been examined so far is called ‘sharp RD
(SRD)’. D may be fully determined by S, yet ‘D ̸= δ ’ can happen as in D = δS
to be seen in RK. FRD includes SRD as a special/limiting case.

3.1. SRD VERSUS FRD

FRD occurs often in college admission, which is hardly ever determined
solely by a test score. Another FRD example can be seen in effects of schooling
(Kan and Lee, 2018): a law stipulates that students with c ≤ S be subject to
more schooling, but not everybody obeys the law, where S is birth date and D
( ̸= δ ) is schooling years. Although there are RD’s with non-binary D as in this
example (see also Angrist and Lavy (1999), Urquiola (2006) and Urquiola and
Verhoogen (2006) for non-binary class size as D, as well as Dong et al. (2021)
for continuous D in general), we consider mostly binary D to deal with “clean”
T and C groups unless otherwise mentioned. We present more SRD and FRD
examples next.

Let S be the vote share in a last election, and Y the vote share in the current
election. Being incumbent in the current election as a treatment takes the form
D = 1[0.5 ≤ Yt−1] where c = 0.5 and S = Yt−1, as winning the previous election
(i.e., being the incumbent in the current election) means 0.5 ≤ Yt−1. Lee (2008)
showed that incumbent advantage in the U.S. house elections is about 8%. A
related example appeared in DiNardo and Lee (2004) for impacts of unionization
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D on productivity, wage, etc., where small effects on most outcome variables
were found, and near zero effect on wage; D = 1 if S ≥ 0.5, with S being the
vote share for unionization.

The above two election cases are SRD’s. Two FRD examples for “double
hurdle” treatment are, with the α’s and γ’s being parameters and (ε,ε0,ε1) er-
rors,

D = 1[0 ≤ S] ·1[0 ≤ α1 +αsS+ ε],

D = 1[S < 0]1[0 ≤ γ1 + γ2S+ ε0]+1[0 ≤ S]1[0 ≤ α1 +αsS+ ε1].

The former appeared in Battistin and Rettore (2008): 1[0 ≤ S] is the legal eli-
gibility for a public treatment and the individual take-up decision is 1[0 ≤ α1 +
αsS+ ε]. The latter appeared in Battistin and Rettore (2002): the first part is a
privately-taken treatment if the subject is rejected by (or does not take) the public
treatment.

3.2. FRD IDENTIFICATION WITH LESSER BREAK

Generalizing the SRD regression form E(Y |S) = β dD+m(S) is the FRD
regression form:

E(Y |S) = β dE(D|S)+m(S). (3.1)

As in SRD identification, the contrast between the break of E(D|S) and no break
of m(S) in (3.1) is the ID source for β d in FRD.

As E(Y |S) = β dD+m(S) for SRD is not a restriction because it is equivalent
to β d ≡ E(Y |S = 0+)−E(Y |S = 0−), (3.1) for FRD is not a restriction either as
it is equivalent to (Lee 2016, pp. 102-103) the “break ratio”

β d ≡ E(Y |0+)−E(Y |0−)
E(D|0+)−E(D|0−)

under E(D|0+) ̸= E(D|0−). (3.2)

This becomes E(Y |S= 0+)−E(Y |S= 0−) for SRD due to E(D|0+)−E(D|0−)=
1. The fact that (3.1) implies (3.2) can be easily seen by taking lims↓0 and lims↑0
on (3.1) to obtain

E(Y |0+) = β dE(D|0+)+m(0+) and E(Y |0−) = β dE(D|0−)+m(0−),

and then solving this for β d while invoking m(0+) = m(0−). The break ratio
reveals that FRD needs a break of E(D|S) at 0, whose size is necessarily smaller
than one.
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For SRD, we showed β d =E(Y 1−Y 0|0+) under the continuity of E(Y 0|S) at
0. In view of this, the natural question is what kind of treatment effect the break
ratio identifies, and under what conditions. For this, define ‘potential treatments’
(D0,D1) corresponding to δ = 0,1; here δ is taken as the “deep/underlying”
treatment, and D as an (intermediate) outcome. Classify individuals as ‘never
taker’ (D0,D1) = (0,0), ‘complier’ (D0,D1) = (0,1), ‘defier’ (D0,D1) = (1,0)
and ‘always taker’ (D0,D1) = (1,1), following Imbens and Angrist (1994). In
words, compliers are those who would get treated iff δ = 1. Under the ‘mono-
tonicity’ D0 ≤ D1 to rule out defiers, Hahn et al. (2001) showed that

β d ≡ E(Y |0+)−E(Y |0−)
E(D|0+)−E(D|0−)

= E(Y 1 −Y 0|0+,complier)

under some conditions; see Choi and Lee (2018c) for the weakest conditions yet.

Figure 1: Break Ratio as Effect in FRD; for SRD, Left Panel is Step with Height
1

Figure ‘Break Ratio as Effect in FRD’ shows the FRD ratio ID graphically:
the treatment effect is the break ratio at S = c of E(Y |S) and E(D|S). Presenting
the treatment effect graphically is a big advantage of RD, compared with other
study designs. In (3.1), unless β d = 0, the break in E(D|S) causes a break in
E(Y |S).

3.3. FRD ESTIMATION WITH IVE

In estimating β d using the FRD regression form E(Y |S)= β dE(D|S)+m(S),
differently from E(Y |S) = β dD+m(S) where we replaced m(S) with a function
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of S, it seems that we need to replace E(D|S) as well with a function of S. How-
ever, this is not the case as the following shows, where the effect of δ on D is
found first within the SRD framework.

With D taken as an outcome of δ , the effect αδ of δ on D can be found with

E(D|S) = αδ δ +mD(S) (mD(S) that is analogous to m(S) is continuous at 0).

Substitute this into E(Y |S) = β dE(D|S)+m(S) in (3.1) to obtain

E(Y |S) = γδ δ +mY (S), γδ ≡ β dαδ

(mY (S)≡ m(S)+β dmD(S) is continuous at 0).

Specifying mD(S) and mY (S), we can estimate αδ and γδ . Then β d can be
found with γδ/αδ , where γδ is the numerator in the break ratio and αδ is the
denominator whose role is to remove αδ lurking in γδ = β dαδ .

This two-step estimation for β d looks cumbersome. Fortunately, the two-
step estimation with OLS is the same as the single-step instrumental variable
estimator (IVE) where D is instrumented by δ ; it goes without saying that only
the Q = 1 observations should be used. The simplest IVE is the ‘local constant
IVE’ for Y = β 0 + β dD+ error with (1,δ ) as the instrument, which appears
when we replace the m(·) functions with constants. As can be seen in Lee (2016,
p. 227), the slope of the local constant IVE is, with Ê(D|0+) and Ê(D|0−)
defined analogously to Ê(Y |0+) and Ê(Y |0−),

β̄ d ≡ Ê(Y |0+)− Ê(Y |0−)
Ê(D|0+)− Ê(D|0−)

{= Ê(Y |0+)− Ê(Y |0−) in SRD}.

Better than the local constant IVE in terms of bias is the local linear IVE for

Y = β 0 +β dD+β−(1−δ )S+β+δS+V

where D is instrumented by δ and V is an error term. As the local linear OLS’s
for δ on D and δ on Y are nonparametric, this local linear IVE is nonparametric
as well.

Specifically, the local linear IVE is (the second element is β̂ d)

β̂ =(∑
i

QiZiX ′
i )

−1
∑

i
QiZiYi, X ≡{1,D,(1−δ )S,δS}′, Z ≡{1,δ ,(1−δ )S,δS}′.

The asymptotic inference can be done with the usual IVE variance estimator

Ω̂ ≡ (∑
i

QiZiX ′
i )

−1 ·∑
i

QiZiZ′
i(Yi −X ′

i β̂ )2 · (∑
i

QiXiZ′
i)
−1;
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β̂ d/
√

ω̂d is the t-value for β d , where ω̂d is the second diagonal element of Ω̂.
In words, β d is the intercept shift due to D, while the base intercept β 0 is picked
up by 1 in X and the possibly different slopes around 0 are accounted for by the
regressors (1−δ )S and δS. The IVE includes the OLS for SRD as a special case
when Z = X , i.e., when δ = D.

Consider OLS for D and Y with only the right-side observations of 0 mini-
mizing

∑
i
(Di − τ0 − τ1Si)

21[Si ∈ (0,h)] and ∑
i
(Yi −ρ0 −ρ1Si)

21[Si ∈ (0,h)]

for (τ0,τ1) and (ρ0,ρ1); let the OLS intercepts be (τ̂+
0 , ρ̂

+
0 ). We can do the same

using only the left-side observations; let the OLS intercepts be (τ̂−
0 , ρ̂

−
0 ). Then

we get

β̂ d =
ρ̂
+
0 − ρ̂

−
0

τ̂
+
0 − τ̂

−
0
.

This equality is natural, because doing OLS separately on either side allows
different intercepts and slopes as LLR with linear spline does above.

The equivalence between two-stage OLS and IVE means that dealing with
SRD is enough in addressing an issue in RD. This is because, if we know how to
estimate a treatment effect in SRD using OLS, then we can always estimate the
treatment effect in the corresponding FRD using IVE with δ as an instrument
for D. The effect found in the IVE is numerically the same as the ratio of the δ ’s
effect on Y (the second OLS) to the δ ’s effect on D (the first OLS), as long as
the same local functional form is used in the two OLS’ for SRD and in the IVE
for FRD.

For some observed covariates W including 1 and an error term U , suppose
that the data are generated by a linear SF model:

Y = β dD+W ′
β w +U.

Taking E(·|S) on this equation, (3.1) holds with m(S) = E(W ′|S)β w +E(U |S),
which shows that it is enough to consider only (S,δ ,D,Y ) in FRD while ignoring
W . Since m(S) can include E(U |S) ̸= 0 as long as E(U |S) is continuous at 0, RD
is robust to the endogeneity of D through S as long as E(U |S) is continuous
at 0. Other than through E(U |S) ̸= 0, D can be endogenous to U also through
COR(ε,U) ̸= 0 when D=D(S,ε), but RD always has an “automatic” instrument
δ for D to apply IVE.
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If D is exogenous to U , we can then apply OLS to Y = β dD +W ′β w +
U . However, this OLS requires the linear SF assumption, differently from the
nonparametric IVE based on the equivalence of E(Y |S) = β dE(D|S)+m(S) to
the break ratio β d . Nevertheless, the linear SF assumption is useful in controlling
W when E(W |S) is discontinuous at 0. If not controlled, such a discontinuous
E(W |S) causes a bias similar to the omitted variable bias in OLS, which can be
seen in Choi and Lee (2017) (2017, p. 1222).

In FRD, E(D|S) should have a break at 0, which can be tested with the OLS
to

E(D|S) = λ 0 +λ δ δ +λ−(1−δ )S+λ+δS

using the local sample; λ δ ̸= 0 indicates a break. If |λ δ | is small, then even if
‘H0 : λ δ = 0’ is rejected, the inference for β d can be tenuous. This is a ‘weak
ID’ problem plaguing IVE, which is addressed by Feir et al. (2016). It is thus
better to test for D exogeneity first as follows, and if no rejection, apply OLS
instead of IVE.

One test for D exogeneity is based on ‘control function approach’: using
only the local sample, obtain the OLS residual ε̂ of D on Z to do the OLS of
Y on (X , ε̂): insignificance of ε̂ means D exogeneity. Closely related to this is
the OLS-IVE equality ‘Hausman’ test. Bertanha and Imbens (2020) also consid-
ered the Hausman test, but they recommended a related test based on an idea in
Angrist (2004).

4. SCORE TOPICS: MULTIPLE-SCORE RD (MRD)

So far, we addressed single-score RD, but there are many RD’s with multi-
ple scores. For instance, to graduate from high school, a student may have to
pass multiple exams. To be eligible for pension, one may have to be at least 60
years old with the pension contribution years of at least 10. Yet another exam-
ple is spatial/geographical RD where longitude and latitude appear as two scores
(Keele and Titiunik, 2015).

In examining multiple-score RD (MRD), as there are SRD and FRD for
single-score RD—we use ‘SRD’ and ‘FRD’ only for single-score RD in this
section—there are also ‘sharp multiple-score RD (SMRD)’ as in Lalive (2008)
and Schmieder et al. (2012), and ‘fuzzy multiple-score RD (FMRD)’ as in Jacob
and Lefgren (2004) and Matsudaira (2008).

For simplicity, we examine only two scores S ≡ (S1,S2)
′ with c ≡ (c1,c2)

′.
Extensions to more-than-two scores is straightforward—at least conceptually—
although the details could be “messy”. Redefine S − c as S so that the cutoff
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becomes (0,0)′. Let

δ j ≡ 1[0 ≤ S j] for j = 1,2.

Differently from single-score RD, SMRD has “AND cases” and “OR cases”
as in

D = 1[0 ≤ S1, 0 ≤ S2] and D = 1[0 ≤ S1 or 0 ≤ S2].

To simplify exposition, we consider only AND cases, because OR cases can
be “flipped” to the AND cases; i.e., switch the labels of the T and C groups.
Specifically, with S′1 ≡−S1 and S′2 ≡−S2, define for the OR case D:

D′ ≡ 1−1[0 ≤ S1 or 0 ≤ S2] = 1[S1 < 0,S2 < 0] = 1[0 < S′1,0 < S′2]

so that Y D=1 −Y D=0 = Y D′=0 −Y D′=1. We can find the effect with D′ as the
treatment and S′ ≡ (S′1,S

′
2)

′ as the score, and then multiply the effect by −1 to
obtain the desired effect.

There are at least two difficulties with MRD. First, we have to deal with two-
, not one-, dimensional continuity in (S1,S2). Second, the “partial effect” of δ 1
or δ 2 may be present due to each score crossing its own cutoff, in addition to the
effect due to D. ‘MRD for a treatment’ differs from one-score RD with multiple
cutoffs as in Van der Klaauw (2002) and Angrist and Lavy (1999). MRD for a
treatment also differs from ‘MRD for multiple treatments’ as in Leuven et al.
(2007) and Papay et al. (2011) where each score dictates one treatment.

4.1. IDENTIFICATION FOR SHARP MULTIPLE-SCORE RD (SMRD)

Consider four potential responses (Y 00,Y 10,Y 01,Y 11) corresponding to δ 1,δ 2
= 0,1. In AND-case two-score SMRD addressed by Choi and Lee (2018b), the
treatment is D = δ 1δ 2; e.g., a student graduates high school by passing two ex-
ams (and Y is lifetime income). Other than through D = δ 1δ 2, δ 1 and δ 2 may
separately affect Y . For instance, to graduate high school, one has to pass both
math (δ 1) and English (δ 2) exams, but failing the math test may stigmatize the
student (“I cannot do math”) to affect Y . The separate effects of δ 1 and δ 2 are
‘partial effects’.

Before we get into the details on SMRD, we summarize the main results
and compare them to SRD in Table ‘SRD (1 Score) versus SMRD (2 Scores)’.
The first line presents the form of difference used: single difference for SRD and
double difference or ‘difference in differences’ (DD) for SMRD. The second line
is for the identified treatment effects. The third line shows for which response
the continuity at 0 is required; in SMRD, there appear three (partly) untreated
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Table 1: SRD (1 Score) versus SMRD (2 Scores)

SRD (1 Score) versus SMRD (2 Scores)
E(Y |0+)−E(Y |0−) E(Y |0+,0+)−E(Y |0+,0−)−E(Y |0−,0+)+E(Y |0−,0−)
E(Y 1 −Y 0|0+) E(Y±|0+,0+) with Y± ≡ Y 11 −Y 10 −Y 01 +Y 00

E(Y 0|S) continuous at 0 E(Y 00|S), E(Y 10|S), E(Y 01|S) continuous at 0
β dδ +m(S) β 1δ 1 +β 2δ 2 +β dD+m(S) with D = δ 1δ 2

responses Y 00,Y 10,Y 01. The fourth line presents the regression form equivalent
to the difference form in the first line. The main point is that we need DD, not a
single difference, for two scores.

Turning to the details, the treatment effect of interest is

E(Y±|0+,0+) where Y± = Y 11 −Y 00 − (Y 10 −Y 00)− (Y 01 −Y 00).

Y 11 −Y 00 is the ‘gross effect’ of D, and Y 10 −Y 00 and Y 01 −Y 00 are the partial
effects of δ 1 and δ 2. The desired ‘net effect’ of D is obtained by subtracting the
partial effects of δ 1 and δ 2 from the gross effect of D. Those familiar with DD
would recognize Y± ≡ (Y 11 −Y 10)− (Y 01 −Y 00) as a DD, which is known to
isolate the interaction effect of two factors by removing their partial effects. See
Lee and Sawada (2020), Lee (2021a) and references therein for DD in general.

Choi and Lee (2018b) showed that the first two lines in the table are the
same:

E(Y±|0+,0+) = β d ≡ DD{E(Y |S)} where

DD(·)≡ E(·|0+,0+)−E(·|0+,0−)−E(·|0−,0+)+E(·|0−,0−),
E(·|0+,0+)≡ lim

s1↓0,s2↓0
E(·|s1,s2), E(·|0+,0−)≡ lim

s1↓0,s2↑0
E(·|s1,s2) and so on,

under the continuity of E(Y 00|S), E(Y 10|S) and E(Y 01|S) at 0. Choi and Lee
(2021) also proved that, for some β 1 and β 2,

β d ≡DD{E(Y |S)}⇐⇒E(Y |S)= β 1δ 1+β 2δ 2+β dδ 1δ 2+mY (S), DD{mY (S)}= 0

where the former is ‘the difference form’ for SMRD, and the latter is ‘the regres-
sion form’.
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4.2. ESTIMATION FOR SMRD

Choi and Lee (2018b) estimate β d by replacing mY (S) with a function contin-
uous at 0; note that if mY (S) is not continuous at 0 while satisfying DD{mY (S)}=
0, then β 1 and β 2 are not identified. The simplest estimation approach is the LCR
with mY (S) = β 0 to have

E(Y |S) = β 0 +β 1δ 1 +β 2δ 2 +β dδ 1δ 2 :

estimate this by the OLS of Y on (1,δ 1,δ 2,δ 1δ 2) with the local sample |S j|< h j

for the bandwidths h j, j = 1,2. The LLR version replaces mY (S) with β 0 +
β s1S1 +β s2S2, or more generally,

m̆Y (S)≡ β 0 +β 11δ
−
1 δ

−
2 S1 +β 12δ

−
1 δ

−
2 S2 +β 21δ

−
1 δ

+
2 S1 +β 22δ

−
1 δ

+
2 S2

+β 31δ
+
1 δ

−
2 S1 +β 32δ

+
1 δ

−
2 S2 +β 41δ

+
1 δ

+
2 S1 +β 42δ

+
1 δ

+
2 S2,

δ
−
j ≡ 1[−h j < S j < 0], δ

+
j ≡ 1[0 ≤ S j < h j].

m̆Y (S) is a piecewise-linear function continuous at 0, because m̆Y (0) = 0 and
the limit of E{m̆Y (S)|S} at 0 is β 0 regardless of from which direction 0 is ap-
proached, but m̆Y (S) allows different slopes across the four quadrants determined
by (δ+

1 ,δ
+
2 ). In practice, β 0+β s1S1+β s2S2 may be preferred to m̆Y (S), because

there are too many terms in m̆Y (S).
Partial effects are not new, as we almost always allow regressors δ 1 and δ 2

when δ 1δ 2 is used as a regressor. Nevertheless, most estimators in the MRD
literature work only when the partial effects are zero. To understand those ap-
proaches, examine Figure ‘AND-Case SMRD, where the continuity of m(S) at 0
is lims→0 m(s) = m(0) regardless of in which direction s approaches 0.

In the figure, the upper right colored area is treated, and the white area is the
control. Two-dimensional localization around 0 gives T group (square 1) and C
group (squares 2,3,4), which were used in our preceding estimation approach.
This is inefficient, however, as there are boundary lines extending vertically or
horizontally from (0,0). Using one-dimensional localization with S1|0 ≤ S2 and
S2|0 ≤ S1 can provide a more efficient estimator. Indeed, along this line, Choi
and Lee (2018a) suggested a ‘minimum distance estimator (MDE)’, which is far
more efficient than the preceding two-dimensional localization, although MDE
is cumbersome to do.

Turning to estimators that are inconsistent when partial effects are present,
suppose we try one-dimensional localization with S1 for those with δ 2 = 1 ⇐⇒
0 ≤ S2 to result in the T group (squares 1 and 1’) and the C group (squares 2 and
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Figure 2: AND-Case SMRD

2’), where a boundary line (not a boundary point) extends from (0,0) upward.
Analogously, we can also do localization with S2|δ 1 = 1. An empirical example
below, however, will show that these approaches fail under partial effects.

Instead of conditioning on δ 2 = 1 or δ 1 = 1, Battistin et al. (2009) used
Smin ≡ min(S1,S2) based on 0 ≤ Smin ⇐⇒ 0 ≤ S1,S2. This approach, however,
gets to approximate mY (·) with mY (Smin) = mY{min(S1,S2)}, not with the more
flexible mY (S) = mY (S1,S2). More importantly, denoting the bandwidth for Smin
as hmin, localization with −hmin < min(S1,S2) < hmin is insufficient because
−hmin < S1,S2 holds, but not necessarily S1,S2 < hmin. Clark and Martorell
(2014) used Smin = min(S1,S2,S3) for math, reading and writing scores. Al-
though problematic, this min-based approach is convenient when there are many
scores, because of 0 ≤ Smin ⇐⇒ 0 ≤ S1,S2,S3, ... Other than the min-based ap-
proach, ‘boundary estimation’ approaches estimate the treatment effects along
the boundary lines to average them (Wong et al., 2013; Keele and Titiunik, 2015).
These approaches also fail when there are partial effects.

4.3. FUZZY MULTIPLE-SCORE RD (FMRD)*

For FMRD, define 4 potential treatments (D00,D10,D01,D11) corresponding
to δ 1,δ 2 = 0,1. We summarize the main results for FMRD and compare them to
FRD in Table ‘FRD (1 Score ) versus FMRD (2 Scores)’. The first line presents
the form of difference ratios used: single difference ratio for FRD, and DD ra-
tio for FMRD under DD{E(D|S)} ≠ 0 which reduces to DD{E(Y |S)} when
DD{E(D|S)} = 1. The second line is for the identified treatment effects. The



JIN-YOUNG CHOI AND MYOUNG-JAE LEE 21

Table 2: FRD (1 Score ) versus FMRD (2 Scores)

FRD (1 Score ) versus FMRD (2 Scores)
{E(Y |0+)−E(Y |0−)}/{E(D|0+)−E(D|0−)} DD{E(Y |S)}/DD{E(D|S)}
E(Y 1 −Y 0|0+, complier) E(Y 1 −Y 0|0+,0+, complier)
D0 ≤ D1 Dab ≤ Dcd ; D10 +D01 ≤ D11 +D00

β dD+m(S) β 1δ 1 +β 2δ 2 +β dD+m(S)

third line shows the requisite monotonicity conditions, where a ≤ b and c ≤ d.
Various continuity conditions are needed, which are omitted in the table though.
The fourth line presents the regression form equivalent to the difference form in
the first line.

Turning to the details now, although the same word ‘complier’ appears for
both FRD and FMRD, their definitions differ. Choi and Lee (2021) defined ‘com-
pliers’ in FMRD as those with

D±
2 ≡ D11−D10−D01+D00 = 1 under the monotonicity condition in the table

which needs some explanations as follows. The first inequality ‘Dab ≤ Dcd’
in the monotonicity is the natural extension of D0 ≤ D1 in FRD. The second
inequality is to ensure that D±

2 takes only 0 or 1, because of D±
2 = 0,1 ⇐⇒ 0 ≤

D±
2 ≤ 1 that is

D10 +D01 ≤ D11 +D00 ≤ D10 +D01 +1.

The second inequality easily holds, but the first inequality that appeared in the
table is restrictive. ‘D10 +D01 ≤ D11 +D00’ is to rule out (D00,D10,D01,D11) =
(0,1,1,1), because this would be an OR case (i.e., the treatment is taken if either
δ 1 = 1 or δ 2 = 1), whereas our FMRD is a fuzzy version of AND-case SMRD.

Choi and Lee (2021) proved that

(i) : DD{E(D|S)}= P(complier|0+,0+),

(ii) :
DD{E(Y |S)}
DD{E(D|S)}

= E(Y 1 −Y 0|0+,0+,complier);

(i) characterizes the denominator in the DD ratio as the complier probability,
which was also the case in the FRD ratio, and (ii) gives a causal meaning to the
DD ratio.

The regression form for SMRD with D as the outcome and δ 1δ 2 as the treat-
ment is, for some α parameters and a function mD(S),

E(D|S) = α1δ 1 +α2δ 2 +αδ δ 1δ 2 +mD(S) with DD{mD(S)}= 0.
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The DD ratio form β d = DD{E(Y |S)}/DD{E(D|S)} for FMRD is equivalent to
the regression form (Choi and Lee, 2021):

E(Y |S) = β dE(D|S)+m(S) with DD{mY (S)}= 0.

Substitute the E(D|S) regression form into this E(Y |S) regression form to obtain

E(Y |S) = γ1δ 1 + γ2δ 2 + γδ δ 1δ 2 +mY (S) where

γ1 ≡ β dα1, γ2 ≡ β dα2, γδ ≡ β dαδ , mY (S)≡ m(S)+β dmD(S).

With the γ’s found using this equation and the α’s found using the E(D|S) equa-
tion, we have

β d =
γ1

α1
=

γ2

α2
=

γδ

αδ

.

Since α1 and α2 may be zero, we use the last ratio γδ/αδ for β d , not the first
two.

As for estimation, the two-step local OLS estimating the α’s and γ’s with the
observations Q ≡ 1[|S j|< h j, j = 1,2] = 1 to find β d = γδ/αδ is the same as the
single-step local IVE to

Y = β 1δ 1 +β 2δ 2 +β dD+m(S)+ error with δ 1δ 2 as an instrument for D

when mD(S) and mY (S) take the same form as m(S) does; note a slight abuse of
notation, because m(S) here is not the same as m(S) in E(Y |S) = β dE(D|S)+
m(S). We can specify m(S) as a constant, or as a (piecewise) linear function
that appeared for SMRD. Essentially, αδ ̸= 0 is the ‘inclusion restriction’ for the
the instrument δ 1δ 2, and the ‘exclusion restriction’ is DD{mY (S)}= 0 because
DD{mY (S)}= 0 does not hold if δ 1δ 2 lurks in mY (S).

4.4. EXAMPLE: SUMMER SCHOOL EFFECT ON TEST SCORE

Matsudaira (2008) examined the effect of remedial summer school on test
scores, where a student has to attend summer school if he/she fails either math
or reading test; all scores are standardized, and Y is a next year test score. This
is an OR-case FMRD with δ ≡ 1[S1 < 0 or S2 < 0]. Matsudaira (2008) adopted
one-dimensional localization approach, and used a third-order polynomial for
m(S).

Conditioning on passing the reading test (0 ≤ S2), Matsudaira (2008) applied
FRD with math score S1, and part of his Table 2 is in Table ‘Effect of Summer
School on Math Score Given Reading’ for grades 3, 5 and 6. The first column
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Table 3: Effect of Summer School on Math Score Given Reading: SE in (·)

Effect of Summer School on Math Score Given Reading: SE in (·)
(δ ≡ 1[S1< 0 or S2< 0]) αδ : δ on D γδ : δ on Y β d : D on Y

Grade 3: N = 55931 0.383 (0.016) 0.049 (0.020) 0.128 (0.055)
Grade 5: N = 59258 0.385 (0.006) 0.093 (0.015) 0.241 (0.039)
Grade 6: N = 51810 0.320 (0.011) 0.061 (0.014) 0.190 (0.047)

presents the D equation estimates, where αδ is highly significant for the inclu-
sion restriction. The second column is the effect γδ of δ on Y . The third column
is obtained dividing the second column by the first; e.g., 0.128 = 0.049/0.383
for Grade 3. The summer school effect on math score is 0.19 ∼ 0.24 of one SD.

Unfortunately, the one-score conditional approach gives biased estimates. To
see the bias, let δ j = 1 if failing test j, and consider, for errors ε and U ,

D=α0+α1δ 1+α2δ 2+αδ δ 1δ 2+ε and Y = β 0+β 1δ 1+β 2δ 2+β dD+U ;

the D model is “saturated” with four parameters and four cells due to δ 1,δ 2 =
0,1. Rewrite the D equation to have δ ≡ 1[S1 < 0 or S2 < 0] = δ 1 +δ 2 −δ 1δ 2
explicit: due to δ 1δ 2 = δ 1 +δ 2 −δ ,

D = α0 +α1δ 1 +α2δ 2 +αδ (δ 1 +δ 2 −δ )+ ε

= α0 +(α1 +αδ )δ 1 +(α2 +αδ )δ 2 −αδ δ + ε.

Substitute this D equation into the Y equation to get

Y = β 0+β 1δ 1+β 2δ 2+β d{α0+(α1+αδ )δ 1+(α2+αδ )δ 2−αδ δ +ε}+U

= β 0+β dα0+{β 1+β d(α1+αδ )}δ 1+{β 2+β d(α2+αδ )}δ 2−β dαδ δ +β dε+U.

Given passing the reading exam (δ 2 = 0), due to δ = δ 1 given δ 2 = 0 from
δ = δ 1 +δ 2 −δ 1δ 2,

D = α0 +(α1 +αδ )δ 1 −αδ δ 1 + ε = α0 +α1δ 1 + ε,

Y = β 0 +β dα0 +{β 1 +β d(α1 +αδ )}δ 1 −β dαδ δ 1 +(β dε +U)

= β 0 +β dα0 +(β 1 +β dα1)δ 1 +(β dε +U).
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The ratio ‘slope of δ 1 in Y equation over slope of δ 1 in D equation’ is

β 1 +β dα1

α1
=

β 1

α1
+β d ̸= β d unless β 1 = 0

⇐⇒ no partial effect of failing math test.

Since the next year math score would depend positively on the current year math
score, β 1 is likely to be negative. Since α1 should be positive, the effect esti-
mates in the above table under-estimates the true effect by |β 1/α1|.

5. SCORE TOPICS: ERROR-RIDDEN SCORE AND INTEGER
SCORE

So far, we assumed that a continuous S is available to determine D, fully or
partly. Sometimes, however, S is not the true score, but an error-ridden version of
the true score G. Also, S may be discrete, because D is determined by a discrete
score crossing a cutoff, or because a discrete transformation of a true continuous
score is observed. These issues are examined here.

5.1. CONTINUOUS SCORE MEASURED WITH ERROR

Despite that a break of E(D|G) at 0 is expected, sometimes no or a lesser
break is found. In this case, the most likely reason is a measurement error: an
error-ridden score S = G+ error is observed, instead of the genuine score G.
Note that, if S, not G, determines D, then there is no problem in doing RD with
S despite the error in S—a point misunderstood for a while in the RD litera-
ture. That is, we tackle D = 1[0 ≤ G] with S observed, not D = 1[0 ≤ S] with S
observed–the latter poses no problem. Under ‘errors-in-variable’ S = G+ error,
SRD becomes a FRD as the treatment gets “fuzzy”, and thus we examine only
FRD here.

With only S observed, what is available is

“available ratio” :
E(Y |S = 0+)−E(Y |S = 0−)
E(D|S = 0+)−E(D|S = 0−)

.

One question is whether E(D|S) has a break at 0 when E(D|G) does. Another
is whether the available ratio equals the desired ratio with G in the conditioning
events.

Specifically, consider the ‘full errors-in-variable’ case:

S = G+V where G ⊥⊥V and the error V has density fV (v) continuous at 0.
(5.1)
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Lee (2017) showed that RD fails in this case, because E(D|S) has no break at 0.
Also, often the continuity of score density fS at 0 is tested to detect unobserved
confounders, but Lee (2017, p. 3) showed that score density continuity test does
not work, because fS is continuous at 0 even when fG is not as V smooths things
out.

As an example, in Germany, it is possible to opt out of the public insurance
to buy a private insurance instead, if the income exceeds a cutoff. Using this
RD feature, Hullegie and Klein (2010) examined effects of private insurance.
With S being a reported income and D private insurance, however, Hullegie and
Klein found no break in E(D|S); S must be an error-ridden version of the true
income G. Hullegie and Klein thus used a ‘selection-correction’ approach under
normality on V and V ⊥⊥ S. They found negative effects on the number of doctor
visits, no effect on the number of hospital nights, and positive effects on health.
The assumption ‘V ⊥⊥ S’ is implausible though, when S is generated by adding
V to G as in (5.1).

Davezies and Le Barbanchon (2017) addressed the full errors-in-variable set-
ting under P(D = 1|G)> 0 for all G. They presumed availability of an auxiliary
sample on treated subjects where both G and S are observed, and proposed a
“sieve inverse-weighting GMM”.

Now consider a ‘part errors-in-variable’: for an unobserved binary B (‘B’
for binary),

S=BG+(1−B)H for a continuous “hazy score” H and P(B= 1|S= 0)> 0.

The true score G is observed when B = 1, but an error-ridden score H (e.g., H =
G+V ) is observed when B = 0. If the RD break is smaller than expected, then
part errors-in-variable is a highly likely reason. Call those with G = S ⇐⇒ B = 1
“truth-tellers”. ‘P(B = 1|S = 0)> 0’ is that the proportion of the truth-tellers is
not 0 when S equals the cutoff.

For the part errors-in-variable case, Lee (2017, p. 4) showed that the avail-
able ratio becomes

E(Y |G = S = 0+)−E(Y |G = S = 0−)
E(D|G = S = 0+)−E(D|G = S = 0−)

=
E(Y |G = 0+,B = 1)−E(Y |G = 0−,B = 1)
E(D|G = 0+,B = 1)−E(D|G = 0−,B = 1)

:

the “effect on the truthful margin G = S = 0+ ⇐⇒ G = 0+,B = 1” is identified
by the available ratio. As compliers are not observed in FRD, “truth-tellers”



26 BASICS AND RECENT ADVANCES IN REGRESSION DISCONTINUITY

(G = S) are not observed either, but at least we know for which group the effect
is. The truth tellers are not compliers, because they are not necessarily treated iff
δ = 1[0 ≤ G] = 1.

If we assume the ‘no-selection problem assumption’ (D,Y ) ⊥⊥ S|G as in
Battistin et al. (2009), then we can remove S from the last display to obtain the
usual RD ratio. The assumption is, however, unnecessarily strong, because the
effect on the truthful margin is still meaningful without the assumption.

In the right side expression of the ratio in the last display, we have

E(Y |G = 0−,B = 1) = E(Y 0|G = 0−,B = 1)

E(D|G = 0−,B = 1) = E(D0|G = 0−,B = 1)

and ‘G = 0−’ here can be replaced with ‘G = 0+’ under the continuity assump-
tion for E(Y 0|G = g,B = 1) and E(D0|G = g,B = 1) at g = 0. This would then
makes the ratio equal to

E(Y 1 −Y 0|G = 0+,B = 1)
E(D1 −D0|G = 0+,B = 1)

= E(Y 1 −Y 0|G = 0+,B = 1,complier) :

the “effect on the just-treated (G = 0+), truth-telling (B = 1) compliers” is iden-
tified.

With J(g,s) ≡ E(D|G = g,S = s), the break magnitude of E(D|S) at S = 0
is proportional to the truth-teller proportion at S = 0 (Lee 2017, p. 4):

E(D|S = 0+)−E(D|S = 0−) = P(B = 1|S = 0) · {J(0+,0+)− J(0−,0−)}.

For SRD, J(g,s) = 1[0 ≤ g] =⇒ J(0+,0+)− J(0−,0−) = 1: the break size of
E(D|S) at S = 0 is P(B = 1|S = 0). See Schanzenbach (2009) for an empirical
example.

5.2. INTEGER SCORE: GENUINE VERSUS NON-GENUINE INTEGERS

Although scores in RD are supposed to be continuous, often we face integer
scores. Some integer scores are inherently integers, as in the number of students
(Angrist and Lavy, 1999) or events in a given time interval (“counts”), which
we call “genuine integers”. In contrast, some are integer-transformed versions
of continuous scores, which we call “non-genuine integers”. With ⌊G⌋ denoting
‘the integer part of G not greater than G’, let

S ≡ ⌊G⌋.
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Sometimes, ⌊G⌋ is used to denote the rounded-down version of G as in
⌊1.7⌋= 1, but “round-down” can be confusing for negative G (as in ⌊−1.7⌋=−1
or −2?). Hence, we use the expression ‘integer part of G not greater than G’ (so
that ⌊−1.7⌋=−2, not −1). There may be non-integer discrete scores, but scores
should be at least cardinal in RD, so that they are convertible to integers with an
appropriate rescaling.

As long as the observations on the integer support points in a chosen local
neighborhood around c are balanced in all covariates, observed or unobserved,
the integer nature of S does not matter. A problem does occur, however, when
there are not enough observations near c, and thus observations further away
from c should be used than one feels comfortable with for local randomization.
For example, birth date G may be observed only in years S for confidentiality,
and persons years apart are compared. This can make RD biased, as the cohort
and other unobserved differences may creep in. Birth date G may be observed
also in quarters/months, but it can be converted to an integer with the appropriate
rescaling as was just noted. Comparing persons a few quarters/months apart
would not be a problem in RD.

Instead of the usual S− c that may not be an integer, it is better to location
normalize with

S−⌊c⌋= ⌊G⌋−⌊c⌋.

so that S − ⌊c⌋ is an integer; call those with S = ⌊c⌋ the “cutoff sample”. It
helps to consider cases of integer c and non-integer c separately as follows, since
c = ⌊c⌋ only for integer c.

Suppose S is birth year, and c = 1985.67 for Sep. 1st, 1985, which is not an
integer. Then

c = 1985.67, ⌊c⌋= 1985, S−⌊c⌋= S−1985, c−⌊c⌋= 0.67;

0.67 shows how far off the actual cutoff is from the cutoff integer ⌊c⌋ = 1985.
Here, we cannot tell whether an individual in the cutoff sample was born be-
fore/after c, which makes the cutoff sample non-informative for the treatment
D = 1[c ≤ G]. If c is an integer as in c = 1985, then

c = 1985, ⌊c⌋= 1985, S−⌊c⌋= S−1985, c−⌊c⌋= 0.

S is enough to tell whether the person was born before/after c (i.e., whether D= 0
or 1). If the cutoff sample is dropped, then there is no real difference between
integer and non-integer c.



28 BASICS AND RECENT ADVANCES IN REGRESSION DISCONTINUITY

5.3. ESTIMATION WITH GENUINE INTEGER SCORE

For genuine integer score S = G and D = 1[0 ≤ G] with the normalization
G−c, an interpolation of E(Y 0|S =−1) toward S = 0 is needed to find the effect
at 0:

E(Y |S = 0)− ‘interpolated version of E(Y |S =−1) toward S = 0’

= E(Y 1|S = 0)−E(Y 0|S = 0) = E(Y 1 −Y 0|S = 0).

For instance, we may find a linear line α0+α1S going through E(Y |S =−1) and
E(Y |S =−2) to use α0 = α0 +α1 ×0 as E(Y 0|S = 0). More generally, we may
find a quadratic line α0 +α1S+α2S2 going through three points E(Y |S = s),
s =−1,−2,−3 and use α0 as E(Y 0|S = 0).

Analogously to E(Y |G) = β dδ +m(G), Lee and Card (2008; “LC”) consid-
ered E(Y |S) = β dδ +m(S) where S takes on J integer values. Then LC replaced
m(S) with a parametric function m(S;β m) with C−1 parameters. Recall that we
also use parametric functions for m(·) with a continuous score, but the difference
is that the parametric functional form needs to hold only locally around 0 for the
continuous score, whereas it should hold broadly across the J integers for S.

Let ÛR ≡ Y − β̂ dδ −m(S; β̂ m) be the parametric residual, and ŨUR the (non-
parametric) residual with the full set of dummies for J integers. Under H0 :
m(S) = m(S;β m), LC proposed a specification test with

(∑
i

Û2
i,R −∑

i
Ũ2

i,UR)/{∑
i

Ũ2
i,UR/(N − J)}⇝ χ

2
J−C

where J −C is the difference between the numbers of parameters in the full
dummy model and the parametric model.

LC further suggested to use a clustered variance estimator because the obser-
vations with the same S = s are clustered, which has been widely used. However,
Kolesár and Rothee (2018) showed that the resulting confidence intervals (CI’s)
do not make sense and should not be used.

Kolesár and Rothee (2018) recommended using either the usual RD infer-
ence if the number of the support points is not so small, or one of the two differ-
ent CI constructions in their paper. The two CI’s require a bound on the second
derivative |m′′(S)|, or the assumption of the smallest specification error at the
cutoff given h. Since these bring in arbitrariness as h does, sticking to the usual
RD inference seems better.
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5.4. NO BIAS CONDITION DESPITE NON-GENUINE INTEGER SCORE

For SRD, consider a linear spline model for Y :

E(Y |G) = β 0 +β dδ +β 1(G− c)+β 1δ δ (G− c), δ ≡ 1[c ≤ G]. (5.2)

When S is observed, not G, the question is whether we can replace G−c in (5.2)
with S− c (or S−⌊c⌋) to apply OLS to the resulting model. The answer is “no”
in general due to the next two reasons, but “yes” under some condition.

First, depending on whether c is an integer or not, 1[c ≤ G] ̸= 1[c ≤ S] can
happen:

integer c : 1[c ≤ G] = 1[c ≤ S],

non-integer c : 1[c ≤ G] = 1[c ≤ S] if S ̸= ⌊c⌋ and unclear if S = ⌊c⌋.

For instance, when c = 1985, 1[1985 ≤ G] = 1[1985 ≤ S] holds, so that we have
δ ≡ 1[c ≤ G] = 1[c ≤ S]. When c = 1985.67, S = 1984 implies that the subject
is untreated, S = 1986 implies that the subject is treated, but the treatment status
is unclear when S = 1985 = ⌊c⌋.

Second, we cannot obtain the E(Y |S) model by replacing G with S in (5.2);
rather, E(Y |S) should be derived from E(Y |G) using E(Y |S) = E{E(Y |G)|S},
as “G is finer than S”. Let e ≡ G− S ⇐⇒ G = S+ e, and denote the uniform
distribution on [0,1] as ‘Uni[0,1]’. Observe

e∼Uni[0,1]⊥⊥ S =⇒ E(G|S) = E(S+e|S) = S+E(e|S) = S+E(e) = S+0.5.

This shows that only E(e) is to be used, not the full distribution assumption of
e, and that a distribution other than e ∼Uni[0,1] can be used, as long as E(e) is
known.

When c is an integer, δ ≡ 1[c ≤ G] = 1[c ≤ S] holds, as was just noted. We
can then take E(·|S) on (5.2) to obtain, using E(G|S) = S+0.5,

E(Y |S) = β 0 +β dδ +β 1(S+0.5− c)+β 1δ δ (S+0.5− c)

= {β 0 +β 1(0.5− c)}+{β d +β 1δ (0.5− c)}δ +β 1S+β 1δ δS. (5.3)

When c is not an integer, dropping the cutoff sample restores δ ≡ 1[c ≤ G] =
1[c ≤ S], and thus (5.3) still holds with the cutoff sample dropped.

The E(Y |S) model in (5.3) reveals that, if we do the OLS of Y on (1,δ ,S,δS)
ignoring the non-genuine integer score problem, then the slope estimator for δ
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is consistent for β d +β 1δ (0.5− c), not for β d . Hence, this finding gives the ‘no
bias condition’ (Lee and et al., 2021):

β 1δ (0.5− c) = 0. (5.4)

In words, if the slope is symmetric (β 1δ = 0) or the cutoff falls in the middle
(c = 0.5), then the non-genuine integer score problem can be ignored to do the
OLS of Y on (1,δ ,S,δS)—keep in mind the caveat that the cutoff sample should
be dropped if c is not an integer. Even if β 1δ (0.5− c) ̸= 0, still the product can
be small if β 1δ ≃ 0 or c ≃ 0.5.

5.5. ESTIMATION WITH NON-GENUINE INTEGER SCORE AVOIDING
BIAS*

The idea of assuming e ∼Uni[0,1]⊥⊥ S was initiated by Dong (2015). Deal-
ing essentially only with integer c, Dong noted that the symmetry β 1δ = 0 in
(5.4) makes the OLS consistent, and examined polynomial models of a general
order making use of moments other than E(e), going beyond the linear spline
model in (5.2). Based on (5.3), Dong proposed an “indirect” approach to find
β d , followed by bootstrap inference: regardless of (5.4) holding or not, dropping
the cutoff sample if c is not an integer,

β d = {δ slope in E(Y |S)}−{δS slope in E(Y |S)}(0.5− c). (5.5)

Bartalotti et al. (2021) extended the Dong’s (2015) approach to multiple clus-
ters with cluster-specific measurement errors, when either the error distribution
is known or an auxiliary sample is available to provide information on moments
of e. Such a case arises for spatial RD, where G is the individual distance to a
borderline/boundary but what is available is only the distance S to the borderline
from the centroid of a larger region, say, the county of residence for each indi-
vidual. Clustering for RD in general was addressed by Bartalotti and Brummet
(2017).

Lee and et al. (2021) noted that (5.5) is unnecessary, because we can modify
the OLS regressors such that β d can be found as a slope of a modified regressors.
For this, note S+0.5−c = S−⌊c⌋+0.5− (c−⌊c⌋) to redefine S−⌊c⌋ as S and
c−⌊c⌋ as c, and define

δ− ≡ 1[S ≤−1], δ 0 ≡ 1[S = 0], δ+ ≡ 1[1 ≤ S], S0.5c ≡ S+0.5− c.
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Regardless of (5.4) holding or not, for any S including S= 0 for the cutoff sample,

E(Y |S) = β 0 +β d{(1− c)δ 0 +δ+}+β−(−0.5c2
δ 0 +δ−S0.5c)

+β+{0.5(1− c)2
δ 0 +δ+S0.5c}

where β− ≡ β 1 and β+ ≡ β 1 +β 1δ are the left and right slopes around S = 0. If
the cutoff sample with δ 0 = 1 is dropped, then this becomes the usual RD linear
spline model with score S0.5c: E(Y |S) = β 0 +β dδ++β−δ−S0.5c +β+δ+S0.5c.

For estimation, do the OLS of Y on

Wc ≡{1, (1−c)δ 0+δ+, −0.5c2
δ 0+δ−S0.5c, 0.5(1−c)2

δ 0+δ+S0.5c}′ (5.6)

to estimate β d as the slope of the regressor (1−c)δ 0+δ+. Lee and et al. (2021)
also presented estimators for the quadratic model with (G− c)2 and δ (G− c)2

appearing extra in (5.2).

For FRD, instead of (5.2), consider

E(D|G) = α0 +αδ δ +α1(G− c)+α1δ δ (G− c),

E(Y |G) = γ0 + γδ δ + γ1(G− c)+ γ1δ δ (G− c).

Then, recalling (5.3) for SRD with β dδ replaced by β dD, IVE can be applied to

Y = β 0 +β dD+β 1S+β 1δ δS+ error

with δ as an instrument for D, under the no bias condition α1δ (0.5 − c) =
γ1δ (0.5− c) = 0.

Regardless of the no-bias condition holding or not, the generalization of (5.5)
for FRD in Dong (2015) is, again dropping the cutoff sample if c is not an integer,

β d =
{δ slope in E(Y |S)}−{δS slope in E(Y |S)}(0.5− c)
{δ slope in E(D|S)}−{δS slope in E(D|S)}(0.5− c)

. (5.7)

Instead of this, however, it is simpler and more efficient (as the cutoff sample is
always used) to do IVE, using Wc as an instrument for (Lee and et al., 2021)

Xc ≡ {1, D, −0.5c2
δ 0 +δ−S0.5c, 0.5(1− c)2

δ 0 +δ+S0.5c}′.

As an empirical example for FRD, Dong (2015) estimated the effects of re-
tirement on food consumption, using China Urban Household Survey, 1997-
2006. Age G is observed as yearly age S, and c = 60. In Table ‘Effect of Retire-
ment on Consumption’, “Naive” means ignoring the non-genuine integer score
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Table 4: Effect of Retirement on Consumption Y = ln(Food Consumption)

Effect of Retirement on Consumption Y = ln(Food Consumption)
h years (N) δ on Y δ on D Ratio

Naive 6 (12,866) -0.041 (0.016)** 0.19 (0.024)*** -0.21 (0.085)**
10 (22,296) -0.054 (0.013)*** 0.19 (0.022)*** -0.29 (0.078)***

Correct 6 (12,866) -0.029 (0.016)** 0.21 (0.022)*** -0.13 (0.074)*
10 (22,296) -0.045 (0.013)*** 0.21 (0.020)*** -0.22 (0.061)***

problem to use S as if S = G, and “Correct” means not ignoring it; *, ** and
*** denote significance at 10%, 5% and 1% levels. The column ‘Ratio’ is the
desired effect, which is (5.7) for “Correct”: the naive and correct effects differ
much. There are two shortcomings in this analysis. First, covariates may have
breaks at c = 60; e.g., various discounts/benefits may start for seniors at age 60,
which can result in a break in Y just as retirement does. Second, h = 6 and 10
years seem too large, as persons as much as 20 years apart in age are compared.

5.6. HEAPING PROBLEM

When the observed score S has both genuinely continuous score G and a
discrete component (i.e., a discrete transformation τ(G)), there is a “heaping”
problem. Heaping in S can occur due to rounding/grouping, low precision in the
measurement tool, custom/practice (working 40 hours per week,...), etc.; heaps
can occur at any value of S including the cutoff. Also, heaps can occur when
respondents do not know S well. For example, respondents to a survey may
not know the family members’ birthdays, in which case birthdays may heap at
the first day, the 15th day or the last day of each month. Barreca et al. (2016)
showed heaping in birth weight in relation to Almond et al. (2010), (2011) in
birthday/age as in Edmonds et al. (2005) and in income as in Saez (2010); these
variables are often used as S.

The fact that either G or τ(G) is observed for each subject is a ‘selection
problem’: e.g., if heaping is due to low precision in the measurement tool, those
reporting τ(G) may be poorer or less careful. If these covariates (income level
and the degree of carefulness) affect Y , then the heaping is non-random to intro-
duce biases into treatment effect estimates, because those at heaps are systemat-
ically different from those around the heaps. Attention should be paid not just to
the RD cutoff, but also to heap points. That is, whether covariates and S have a
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break or not at heap points as well as at the cutoff should be checked out.
To see if heaping matters in the sense that covariates have breaks at some

heap points as they might do at the cutoff 0, we can do OLS: with heaps at
g1, ...,gJ , apply OLS to a covariate Xk model such as (the former is local around
g j, and the latter is global)

Xk = γ0 + γ11[S = g j]+ γ21[S < g j](S−g j)+ γ31[g j ≤ S](S−g j)+ error;

Xk = γ0 +
J

∑
j=1

γ j1[S = g j]+ γδ 1[0 ≤ S]+ γ−(1−δ )S+ γ+δS+ error.

Recall the part errors-in-variable setting with S = BG+(1−B)H, where the
“truth-teller dummy” B is not observed and H is continuous. Differently from
this, S = BG+ (1−B)τ(G) occurs in heaping, where typically B is observed
and τ(G) is discrete. With B observed, we may apply the Heckman selection
correction approach by explaining B = 1 with G and then using E(Y |G,B = 1)
as follows.

With Cov and Var being covariance and variance, for SRD with D = 1[0 ≤
G], suppose

B= 1[0<α0+α1G+ε], Y = β dD+m(G)+U, E(U |ε,G)=E(U |ε)= Cov(ε,U)

Var(ε)
ε .

Let φ(·) and Φ(·) be the N(0,1) density and distribution function. With Cor
standing for correlation, using the well-known selection correction term E(U |G,B=
1) = ρσuφ{(α0 +α1G)/σ ε}/Φ{(α0 +α1G)/σ ε} where ρ ≡Cor(ε,U), σu ≡
SD(u) and ε ∼ N(0,σ2

ε)⊥⊥ G gives

E(Y |G,B = 1) = β dD+m(G)+ρσu
φ{(α0 +α1G)/σ ε}
Φ{(α0 +α1G)/σ ε}

≡ β dD+ m̃(G),

m̃(G) continuous

because φ(·)/Φ(·) is continuous. Hence we may just use the B = 1 subsample
to do the usual RD analysis around the cutoff.

Barreca et al. (2011) proposed “donut RD” using only the B = 1 group
around heaping points to check out the sensitivity of the treatment effect esti-
mator as more and more observations around the heaping points are removed.
Barreca et al. (2016), however, noted that heaping can bias the effect estimator
even if a heap does not fall near the cutoff 0; e.g., all males with G near 0 may
move out of the local neighborhood to a heap far away. This implies that the
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donut RD idea may not work well, because far away heaps may affect the local
estimation around 0. Related to this problem is that small h’s reduce the bias
in RD while increasing the variance, but when heaping is present, too small a h
may make the bias problem worse because one or two heaps nearby may unduly
influence the effect estimator.

The opposite to using only the B = 1 observations is collapsing G into τ(G).
In trying to use birthday as score, Shigeoka (2014) noticed heaps on the first day
of the month, as well as at the multiples of the fifth and tenth days. Shigeoka
collapsed birthday into birth month to use age-in-months τ(G), instead of age-
in-days G, with c = 70. Differently from using age 60 as c at which concomitant
breaks in Y can happen due to other factors such as discount schemes or lower
tax rates, Shigeoka noted no such problems in Japan at age 70. Shigeoka found
no effect of lower copayment (at age 70) on health measures despite more health
care utilization. Using τ(G) instead of G works if τ(G) is not too coarse so that
D = 1[0 ≤ G] = 1[0 ≤ τ(G)].

Instead of using only G or τ(G), we may estimate the effect using the two
groups (B = 1 and B = 0) separately—the usual estimation with the B = 1 group
and the estimation with integer score for the B = 0 group—to test if the two es-
timates are the same or not. If yes, combine the two estimates. If not, something
went awry.

6. SCORE TOPICS: SCORE DENSITY BREAK

The unknown function m(S) in E(Y |S) = β dD+m(S) for SRD consists of
E(W |S) and E(U |S) where W is (observed) covariates and U is an error term
(i.e., an unobserved covariate). Since W can be controlled, there is little loss of
generality in regarding m(S) as E(U |S). Alternatively, since Y = (Y 1 −Y 0)D+
Y 0 with D = 1[0 ≤ S] gives

E(Y |S) = E(Y 1 −Y 0|S)D+E(Y 0|S)≃ β dD+E(Y 0|S) locally around S = 0,

we may regard m(S) also as E(Y 0|S) that consists of E(W |S) and E(U |S).
In the following, first, we consider m(S) = E(U |S) to examine the issue of

‘S manipulation’ and fS continuity. Then, to provide counter-examples against
the misguided belief that the continuity of fS is equivalent to the continuity of
m(S), we consider m(S) = E(Y 0|S), which is convenient in constructing counter-
examples.
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6.1. PERFECT MANIPULATION AND INFORMATIVE DENSITY BREAK

For m(S) = E(U |S), observe, using the Bayes’ rule,

E(U |S = s) =
∫

u fU |S(u|s)du =
∫

u
fS|U(s|u)

fS(s)
fU(u)du.

This shows that the continuity of fS|U(s|u)/ fS(s) at 0 is necessary for the conti-
nuity of E(U |S). Since fS|U(s|u) involves the unobserved U , only the continuity
of fS(s) is to be checked out.

Suppose S is a test score, D = 1[0 ≤ S] is entry to college, Y is lifetime
income after age 30, U is binary with U = 1 for socializing well and U = 0
otherwise, p ≡ P(U = 1) with 0 < p < 1, and persons with U = 0 try extra hard
to get D = 1 as a way to make up for their low lifetime income due to U = 0.
Assume first (Kim and Lee, 2016)

fS|U(s|0) = 1[0 ≤ s < 1] and fS|U(s|1) = φ(s) : (6.1)

those with U = 0 have their S in [0,1] whereas those with U = 1 have their S
well spread around 0 with φ(·). Then

fS(s) = fS|U(s|0)(1− p)+ fS|U(s|1)p = 1[0 ≤ s < 1](1− p)+φ(s)p

=⇒ fS(0+)− fS(0−) = {(1− p)+φ(0)p}−φ(0)p = 1− p.

This break in fS occurs because those with U = 0 manipulated their S to perfec-
tion, and the break size reveals the proportion 1− p = P(U = 0) of the “manip-
ulators”.

Since U is binary, using the Bayes’ rule again,

E(U |s) = P(U = 1|s) =
fS|U(s|1)P(U = 1)

fS(s)
=

φ(s)p
1[0 ≤ s < 1](1− p)+φ(s)p

=⇒E(U |0+)−E(U |0−)= φ(0)p
1− p+φ(0)p

− φ(0)p
φ(0)p

̸= 0 as long as 1− p ̸= 0.

Hence the break in fS ( fS(0+)− fS(0−) = 1− p) is informative for the break in
E(U |S).

Urquiola and Verhoogen (2006) showed an example of fS break at c with
class size D, the number of enrolled students S, and a test score Y . As S crosses
c, D drops because a law dictates that the maximum number of students in a class
be c, but household income and mother schooling jump at c to cause a break in
fS at c.
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To check out the fS continuity at c, we may simply draw a histogram around
c with c as a histogram boundary point to see if the histogram has a break at
c or not. A more advanced way is to draw fS using a ‘one-sided LCR kernel
estimator’ as in Choi and Lee (2017, p. 1229), or using an ‘one-sided LLR
kernel estimator’ as will be seen shortly.

6.2. IMPERFECT MANIPULATION AND INTENT-TO-TREAT EFFECT

Suppose that, differently from (6.1), fS|U(s|0) is a continuous density, say
ψ(s), that is tilted heavily to the right of 0, which means that those with U = 0
could not perfectly manipulate their S, although they could to a large extent. In
this case,

fS(s)= fS|U(s|0)(1− p)+ fS|U(s|1)p=ψ(s)(1− p)+φ(s)p (continuous at 0);

E(U |S= s)=
fS|U(s|1)P(U = 1)

fS(s)
=

φ(s)p
ψ(s)(1− p)+φ(s)p

(also continuous at 0).

Here, the continuity of fS at 0 is informative for that of E(U |S). This exam-
ple illustrates that, even if individuals can manipulate S, this will not make fS

discontinuous at 0, so long as they cannot do it perfectly.
Score S is not subject to manipulation if S is given as in age, or if c is un-

known. For instance, in Van der Klaauw (2002) for college scholarship amount
D, S and c are known to admission officers, but never to students to prevent
manipulation. In Malamud and Pop-Eleches (2011), a fixed proportion of appli-
cants get a voucher for PC purchase, depending on income rank S which in turn
depends on who applied: S and c unknown to everybody beforehand.

A related case, which is not a genuine RD though, appeared in Card et al.
(2008) for “tipping point”: whites’ exodus out of city center may suddenly in-
crease at a certain point, where S is the neighborhood minority share. Here, S
is known to everybody but c is unknown; c is estimated to be 5 ∼ 20%. Hansen
(2017) examined effects of debt-GDP ratio on economic growth, because eco-
nomic growth was hypothesized to falter after the debt-GDP ratio crosses an
unknown cutoff; this example pertains to RK though, as the slope break is at
stake, not an intercept break. Porter and Yu (2015) estimated c along with the
treatment effect to show that the estimated c is as good as the true c.

Suppose that a medicine D in a randomized clinical trial is hard to take, as it
causes nausea. Then some subjects would not comply to the group assignment,
say δ = 0,1. One effect of interest is E(Y |D = 1)−E(Y |D = 0) where D is the
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actual treatment taken, but as important as this is the ‘intent-to-treat (ITT) effect’
E(Y |δ = 1)−E(Y |δ = 0) which includes the ‘noncompliance effect’. ITT effect
is informative because many patients also will not comply when D is prescribed
in the real world.

An example analogous to ITT can be seen in a summer remedial course
D newly starting, based on a pre-summer score. Let G be the score before D
started. With D in place newly, some teachers manipulate G so that a new score
S emerges: the score of students who would benefit from the summer course is
lowered if it is above c, and the score of those who would be harmed is raised
if below c. Observing S instead of G, three choices appear: (i) trying to identify
the no-manipulation effect E(Y 1 −Y 0|G = c+), (ii) identifying the manipulated
effect E(Y 1 −Y 0|S = c+) analogous to ITT, and (iii) redesigning D to weaken
manipulation as the following illustrates (Lee and Choi, 2021).

For an income-supporting program D, instead of D = 1[income−c < 0], we
may set D = 1[‘income rank among the applicants’−c < 0]: as it is unclear who
would apply to the program, there is a lesser room for manipulation. For a school
graduation D ≡ 1[c ≤ S] with a test score S, we may use the class standing as S
to make manipulation hard.

Gerard et al. (2020) proposed a “manipulation-robust” bounding approach
for treatment effect, when manipulation is done by a proportion of subjects lo-
cating themselves deliberately on one side of c. Although these manipulators are
not identified individually, their proportion 1− p can be found with the break
magnitude of fS as was illustrated above.

6.3. INDECISIVE DENSITY BREAK

The continuity of fS is informative, but contrary to the common perception,
the fS continuity is neither necessary nor sufficient for the continuity of m(S) =
E(Y 0|S)—the basic ID assumption in (2.1) for SRD. Indeed, McCrary (2008)
provided two counter-examples to make this point, which seem to be ignored by
most practitioners though. The two examples are just verbal, and we provide two
formal counter-examples next, drawing on Lee and Choi (2021).

Suppose Y = 1 is working in a tech sector at age 30, S is a test score, D =
1[0 ≤ S] is high school graduation, and p ≡ P(Y 0 = 1); Y 0 = 1 means working
in a tech sector without high school graduation, and Y 1 = 1 with high school
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graduation. Observe

fS(s) = fS|Y 0(s|0)P(Y 0 = 0)+ fS|Y 0(s|1)P(Y 0 = 1),

E(Y 0|s) = P(Y 0 = 1|s) =
fS|Y 0(s|1)

fS(s)
P(Y 0 = 1) (using the Bayes’ rule).

First, suppose

p = 0.5, fS|Y 0(s|0) = 2×1[−0.5 ≤ s < 0], fS|Y 0(s|1) = 2×1[0 ≤ s < 0.5].

In the last term fS|Y 0(s|1), those ‘working in a tech sector without a high school
diploma’ (i.e., Y 0 = 1) have the test scores on [0,0.5], which is higher than
[−0.5,0] for those ‘not working in any tech sector without a high school diploma’
(i.e., Y 0 = 0) in fS|Y 0(s|0), as the Y 0 = 1 group tend to be smarter than the Y 0 = 0
group. In this example, there is no break in fS but there is a break in E(Y 0|S),
illustrating that a break in fS is not necessary for the E(Y 0|S) break:

fS(s) = fS|Y 0(s|0)0.5+ fS|Y 0(s|1)0.5 = 1[−0.5 ≤ s < 0.5]

=⇒ fS(0−) = 1 = fS(0+);

E(Y 0|S = s) =
fS|Y 0(s|1)

fS(s)
P(Y 0 = 1) =

2×1[0 ≤ s < 0.5]
1[−0.5 ≤ s < 0.5]

0.5 = 1[0 ≤ s < 0.5]

=⇒ E(Y 0|0+)−E(Y 0|0−) = 1−0 = 1.

Since E(Y 0|S) is discontinuous at S = 0, the RD identification fails despite the
fs continuity.

Second, turning to ‘ fS break but no break E(Y 0|S) at 0’, an example in Mc-
Crary (2008) is: for a summer school attendance D determined by S falling below
0, “Teachers give bonus points to some of those who just barely fail the exam
(perhaps to reduce the size of summer school classes), and subtract points from
no student. Then the density test would suggest a failure of ID. However, if
teachers select at random which students receive bonus points, then an ATE (av-
erage treatment effect) would be identified.”

To mathematically formalize this example, the bonus point should be spec-
ified, which is not straightforward however, because questions such as “is the
bonus point infinitesimally small?” and “is it the same or different across stu-
dents” arise. Lee and Choi (2021) thus replaced the bonus point with ‘sign
reversal’: randomly selected subjects (A = 1) who would be treated have their
score sign-reversed not to be treated. Then Lee and Choi (2021) proved that
both E(Y 1 −Y 0|G = 0+) and E(Y 1 −Y 0|S = 0+) are identified, despite a break
in fS of size −2 fG(0)P(A = 1) ̸= 0.
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6.4. SCORE DENSITY CONTINUITY TESTS*

So far, we showed that fS continuity is informative, but neither necessary
nor sufficient for RD validity. Hence, it seems adequate to simply compare his-
tograms around c, with c as a histogram boundary point, without doing anything
further for fS continuity. Despite this, fS continuity tests have been applied rou-
tinely in practice, and RD studies with fS continuity rejected are hard to find.
There can be two reasons for this. First, the tests have low power, and the RD
local sample size is small. Second, there is a “selection problem” that RD studies
with the fS continuity rejected are driven out of the academic community.

In this section, we review the popular McCrary’s (2008) LLR test for fS

continuity, and then a recent test in Cattaneo et al. (2020). Although the two tests
look differ much, a modified, possibly improved, version of the latter becomes
similar to the former. Other tests are available in the literature as well, although
hardly used: Otsu et al. (2013) based on empirical likelihood, Frandsen (2017)
for non-manipulation of integer S, and Bugni and Canay (2021) for a sign test
using order statistics.

The idea of the McCrary (2008) test is applying the local linear density esti-
mator of Cheng et al. (1997) separately to the negative and positive sides. First,
estimate a histogram for fS with a bandwidth. Then the midpoint of each his-
togram interval is taken as an independent variable, and a normalized histogram
height at the midpoint is taken as the dependent variable, to which LLR is ap-
plied with another bandwidth. Then the test uses the difference between the two
density estimators at the cutoff.

Specifically, let h1 be the interval size for the first-stage histogram. Let G j,
j = 1...n, be the midpoints of n intervals in the histogram, and R j the histogram
height at G j divided by Nh1 (i.e., the relative frequency divided by h1). McCrary
(2008, p. 705) suggested h1 = 2SD(S)N−1/2. The second stage is a test with the
logarithm of the intercept ratio θ̂ ≡ ln(ϕ̂0/ψ̂0) = ln ϕ̂0 − ln ψ̂0, where (ϕ0,ϕ1)
and (ψ0,ψ1) minimize the positive and negative side minimands, respectively:

n

∑
j=1

(R j−ϕ0−ϕ1G j)
2K(

G j

h2
)1[0<G j],

n

∑
j=1

(R j−ψ0−ψ1G j)
2K(

G j

h2
)1[G j < 0];

K(t) = (1−|t|)1[|t| ≤ 1] is the triangular kernel and h2 is a second bandwidth.
Then, √

Nh2(θ̂ −θ)⇝ N{0,
24
5
(

1
ϕ0

+
1

ψ0
)}. (6.2)

Using ln(·) in the test is, however, undesirable for two reasons. First, if
ϕ̂0 = 0 or ψ̂0 = 0, then the test statistic does not exist. Second, even if ϕ̂0 ̸= 0 and
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ψ̂0 ̸= 0, still small values of ϕ0 or ψ0 would blow up the asymptotic variance, as
they appear in the denominators. The latter can diminish the test power much,
which nonetheless may “please” the researcher, as the research would pass the
McCrary test. The following test without ln(·) should work better:

√
Nh2{ϕ̂0 − ψ̂0 − (ϕ0 −ψ0)}⇝ N{0,

24
5
(ϕ0 +ψ0)}. (6.3)

The asymptotic variance follows from ln ϕ̂0−ln ψ̂0−(lnϕ0−lnψ0)≃ϕ
−1
0 (ϕ̂0−

ϕ0)−ψ
−1
0 (ψ̂0 −ψ0); ϕ0 +ψ0 in (6.3) is due to ϕ̂0 ⊥⊥ ψ̂0 and multiplying ϕ

−1
0

in (6.2) by ϕ2
0 and ψ

−1
0 by ψ2

0.

A local-linear approximation of f (s) implies a quadratic approximation of
F(s):

f (s)≃ b1 +b2s =⇒ F(s)≃ b0 +b1s+
b2

2
s2 (dropping the subscript S).

(6.4)
The quadratic form allows estimating F(s) with the empirical distribution func-
tion F̂(s) ≡ N−1

∑i 1[Si ≤ s]. Using this idea, Cattaneo et al. (2020) propose to
minimize

∑
i
{F̂(Si)−b0 −b1(Si − s)−b2(Si − s)2}K(

Si − s
h

)

with respect to (wrt) (b0,b1,b2), and take the slope as the density estimator:
f̂ (s) = b̂1(s). The solution b̂(s) ≡ {b̂0(s), b̂1(s), b̂2(s)}′ is a WLS: with r(t) ≡
(1, t, t2)′,

b̂(s) = {∑
i

r(Si − s)r(Si − s)′K(
Si − s

h
)}−1 ·∑

i
r(Si − s)F̂(Si)K(

Si − s
h

).

Cattaneo et al. (2020) showed that, for a bias term Bias and constant Vs > 0,

√
Nh{ f̂ (s)− f (s)−Bias}⇝ N(0,Vs), V̂s →p Vs where Ssh

i ≡ Si − s
h

,

V̂s ≡ (0,1,0) · Â(s)−1Ĝ(s)Â(s)−1 ·(0,1,0)′, Â(s)≡ 1
Nh ∑

i
r(Ssh

i )r(Ssh
i )′K(Ssh

i ),

Ĝ(s)≡ 1
N3h3

N

∑
i, j,k=1

r(Ssh
j )r(S

sh
k )′K(Ssh

j )K(Ssh
k ){1[Si ≤ S j]−F̂(S j)}{1[Si ≤ Sk]−F̂(Sk)};
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Ĝ(s) requires triple sums. Based on this, a test statistic for the f continuity at the
cutoff 0 is

{N1

N
f̂+(0) − N0

N
f̂−(0)}/(

N1

N
1

Nh
V̂+ +

N0

N
1

Nh
V̂−)

where N0 ≡ ∑i 1[Si < 0], N1 ≡ N −N0, and ( f̂+, f̂−) and (V̂+,V̂−) are the density
and asymptotic variance estimators using the positive and negative side observa-
tions only.

Cattaneo et al. (2020) suggest an elaborate choice of h, noting that an ad-hoc
choice would not work. Relative to the McCrary test, their test is better in using
only one h, but seems less robust to the choice of h. Cattaneo et al. (2020) allow
different bandwidths on the negative and positive sides, but this would negate
the advantage of using only one bandwidth; in their empirical analysis, their
data-driven bandwidths on the two sides differ much. Also, Ĝ(s) in the above
asymptotic variance estimator involves a time-consuming triple sum.

For (6.4), using a smooth estimator such as F̃(s)≡N−1
∑i Φ{(s−Si)/hd} for

a bandwidth hd seems better, because the eventual goal is estimating f , not F ;
∂ F̃(s)/∂ s is the usual kernel density estimator. However, F̃(s) requires choosing
the extra bandwidth hd , which makes the Cattaneo et al.’s test similar to the Mc-
Crary test. A detailed study is called for, comparing the McCrary and Cattaneo
et al. tests in their performance and sensitivity to bandwidth choice.

7. OTHER TOPICS: REGRESSION KINK (RK)

In RD, we identify the effect of a treatment D, using an intercept break.
Sometimes, however, we may identify the effect using a slope break, not an
intercept break. This is ‘RK’, which is examined here. A slope break may occur
with or without any intercept break, and D can be binary or continuous as a
function of S. For continuous D, RK is the natural way of effect identification,
as there is no intercept break.

7.1. RK IDENTIFICATION

In nonparametrics, estimating ∇E(·|s) ≡ ∂E(·|s)/∂ s is more difficult than
estimating E(·|s), because the estimation error ∇̂E(·|s)−∇E(·|s) converges in
probability to zero as N → ∞ at the rate

√
Nh2 that is slower than

√
Nh for

Ê(·|s)−E(·|s). Derivative estimation requires “finer” information than the mean
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estimation. Define the right and left derivatives at c as

∇+E(·|c)≡ lim
ξ↓0

E(·|c+ξ )−E(·|c)
ξ

and ∇−E(·|c)≡ lim
ξ↓0

E(·|c)−E(·|c−ξ )

ξ
.

Now recall for FRD:

E(Y |S) = β dE(D|S)+m(S)⇐⇒ β d =
E(Y |0+)−E(Y |0−)
E(D|0+)−E(D|0−)

.

Suppose the break in E(D|S) at the cutoff 0 is small: the “ID power” is weak
in RD. Then one may identify β d using the difference of derivatives instead of
the difference of means. This may provide a better ID power despite the slower
convergence rate, if the derivative difference is greater enough than the mean
difference to overcome the convergence rate disadvantage.

Specifically, suppose ∇E(D|s) has a break at 0, but ∇m(s) including ∇E(W |s)
for covariates W is continuous. Then we can identify β d with the ‘derivative
difference ratio’ instead of the mean difference ratio, because differentiating
E(Y |S) = β dE(D|S)+m(S) from right and left at the cutoff and solving it for β d
renders the derivative difference ratio:

∇+E(Y |0)= β d∇+E(D|0)+∇+m(0) and ∇−E(Y |0)= β d∇−E(D|0)+∇−m(0)

=⇒ β d =
∇+E(Y |0)−∇−E(Y |0)
∇+E(D|0)−∇−E(D|0)

{as ∇+m(0) = ∇−m(0)}.

Bear in mind that β d is the effect of D on Y , not the derivative of the effect.
Using a slope break instead of an intercept break entails restrictive condi-

tions, however, such as the continuity of ∂ fS|W (s|w)/∂ s at 0. Card et al. (2015)
proposed to test for the continuous differentiability (i.e., no kink) of fS, which is
stronger than the continuity (i.e., no break) of fS for RD. They further suggested
to test for the continuous differentiability of E(W |s), which is stronger than the
continuity of E(W |s).

In Figure ‘RK Effect’, the treatment effect at c can be seen visibly as the
slope difference in the right panel divided by the slope difference in the left
panel. If D exerts a causal effect on Y and there is a “kink relation” between D
and S at 0, then there should be a kink relation between Y and S at 0. As there are
SRD and FRD, there are Sharp RK (SRK) with D determined solely by S, and
fuzzy RK (FRK) with D determined by S and a random variable ε . An example
of SRK is a non-binary treatment D = αδ sδS = αδ s1[0 ≤ S]S for a constant αδ s,
which has E(D|0+) = E(D|0−) = 0 but ∇+E(D|0)−∇−E(D|0) = αδ s (Nielsen
et al., 2010), because

∇+E(D|0) = lim
s↓0

αδ s1[0 ≤ s] = ααs and ∇+E(D|0) = lim
s↑0

αδ s1[0 ≤ s] = 0.
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Figure 3: RK Effect: Right Slope Difference Divided by Left Slope Difference

7.2. CONTINUOUS VERSUS NON-CONTINUOUS TREATMENT*

One controversy in RK is whether D can be binary or not; whereas Card et al.
(2015), (2017) examined continuous treatments, Dong (2018) looked at binary
treatments. Recall, for FRD,

E(Y |S) = β dE(D|S)+m(S)

⇐⇒ β d =
E(Y |0+)−E(Y |0−)
E(D|0+)−E(D|0−)

= E(Y 1 −Y 0|0+, complier).

As far as the equivalence between the regression and difference forms goes here,
D does not have to be binary, but the rightmost causal interpretation with (Y 0,Y 1)
requires D to be binary.

When D is binary in SRD, looking at the difference E(Y |0+)−E(Y |0−) =
E(Y 1|0+)−E(Y 0|0−) is natural as it leads to the familiar E(Y 1 −Y 0|0+) under
the continuity of E(Y 0|s) at 0. When D = d(S) in SRK is continuous (e.g.,
αδ sδS) with its realized version d(s), there are infinitely many potential re-
sponses, and we may look at the ‘per d-unit change’ in Y measured by E(Y d −
Y 0|0+)/d. Letting d → 0+ provides a “d-free” effect, taking the form of a deriva-
tive. That is, for continuous D, RK is a natural starting point.

More formally, suppose D = d(S) and Y = y(D,S,U) for an error term U ,
which includes separable models such as Y = β dD+m(S)+U as special cases.
Then a natural effect to look at in SRK with (S,U) fixed at (0,u) is

∇1y{d(0),0,u} where ∇1y(d∗,s,u)≡ ∂y(d,s,u)
∂d

|d=d∗ .
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Card et al. (2015) proved that, using the Bayes’ rule,

∇+E(Y |0)−∇−E(Y |0)
∇+E(D|0)−∇−E(D|0)

= τ{d(0),0} ≡ E[∇1y{d(0),0,u}|S = 0]

=
∫

∇1y{d(0),0,u}∂FU |S(u|0) =
∫

∇1y{d(0),0,u}
fS|U(0|u)

fS(0)
∂FU(u) :

the causal interpretation of SRK effect is a weighted average of the effect ∇1y{d(0),
0,u} at S = 0 and U = u, where values of u with a high fS|U(0|u)—that is, close
to the cutoff—receive a relatively higher weight. An analogous weighted average
holds for FRK. Recall that we also saw analogous weighted averages when RD
effect heterogeneity was discussed in (2.2) and (2.3).

So far we considered binary or continuous D in SRK, but there can be mixed
types such as

D = αδ δ +αδSδS = αδ 1[0 ≤ S]+αδ s1[0 ≤ S]S = (αδ +αδ sS)1[0 ≤ S].

There is a constant effect αδ of δ and a S-interacting effect αδ s. For instance, D
may be tax amount where αδ is the base tax rate as the normalized income S−c
exceeds 0 and αδ s is the tax proportional to the income exceeding c (i.e., S− c).

In D = αδ δ +αδSδS, there are breaks in both E(D|S) and ∇E(D|S). If the
effect β d of D on Y in E(Y |S) = β dE(D|S)+m(S) is the target, asymptotically
there is no gain in using both RD and RK to estimate β d , because RD estimators
are asymptotically more efficient than RK estimators. However, as was men-
tioned above, the RK break can be greater than the RD break, greater enough
to overcome the disadvantage in the

√
Nh2 versus

√
Nh convergence rates. This

means that, in small samples, we may estimate β d with either RD or RK, and
combine them if desired. Indeed, Dong (2018) suggested IVE with both δ and
δS as instruments for D.

7.3. RK ESTIMATION AND EXAMPLES

A simple RK estimator for FRK is IVE (Card et al. (2012) to

Y = η0 +η1S+η
∆
1 D+ error (7.1)

with δS as an instrument for D; for SRK with D = δS, this IVE reduces to OLS.
In this Y equation, there is no intercept break allowed as S crosses 0.
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An alternative estimator allowing an intercept break is a LQR minimizing
wrt (τ0,τ1,τ2) and (ρ0,ρ1,ρ2):

∑
i
(Di−τ0−τ1Si−τ2S2

i )
21[Si ∈ (0,h)], ∑

i
(Yi−ρ0−ρ1Si−ρ2S2

i )
21[Si ∈ (0,h)].

The minimizers are (τ̂+
0 , τ̂

+
1 , τ̂

+
2 ) and (ρ̂+

0 , ρ̂
+
1 , ρ̂

+
2 ); define (τ̂−

0 , τ̂
−
1 , τ̂

−
2 ) and (ρ̂−

0 , ρ̂
−
1 ,

ρ̂
−
2 ) analogously with S ∈ (−h,0). The LQR estimator for RK is the slope dif-

ference ratio:

β̂ d ≡ ρ̂
+
1 − ρ̂

−
1

τ̂
+
1 − τ̂

−
1

If τ2 = ρ2 = 0, then the LLR estimator obtains, which differs from the IVE to
(7.1), because the intercept continuity (τ+

0 = τ
−
0 ) is not imposed in LLR. LQR

tends to be numerically unstable, and thus LLR is recommended.

In Dahlberg et al. (2008) with local government expenditure/tax Y , the cen-
tral government grant amount D is proportional to S−2 when emigration share
S is at least 2%, and D is a fuzzy version of αδ 1[2 ≤ S](S−2). In Kim and Lee
(2016), Y is work hours, S is the previous year income, and D is the previous
year average tax rate. As the marginal tax rate has jumps, its “integral” average
rate D is kink-continuous. See also Simonsen et al. (2016) for a RK example on
price sensitivity of demand for prescription drugs in Denmark.

Lee and Wie (2020) examined the effect of legal entitlement on women’s
empowerment in South Korea, where foreign brides have to wait two years be-
fore they become South Korean citizens. S is the duration of residence in months
with c = 24, D is the dummy for obtaining South Korean citizenship, and several
variables are used for Y , such as labor market participation, living with mother-
in-law, etc. This is a FRK, because there were exceptions to the residence re-
quirement. Figure ‘Proportion of Vietnamese Brides with Korean Citizenship’
plots E(D|S) versus S to show that there is no intercept break at c but the slope
becomes steeper after c. Using only the Vietnamese brides in the National Sur-
vey of Multicultural Family in 2009 with N = 8903, Lee and Wie found a signifi-
cantly negative effect of D on experiencing discrimination (about −35∼−55%);
also the relationship with the parents-in-law significantly improved.

Card et al. (2015) examined the RK effect of unemployment insurance bene-
fit D on unemployment duration Y in Austria, where S is the average earnings in
a base yea and N ≃ 275,000. Card et al. (2015) tried various bandwidth-choice
and bias-correction schemes. They obtained better results with a relatively large
h without bias correction. Card et al. concluded that, first, optimal bandwidth
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Figure 4: Proportion of Vietnames Brides with Korean Citizenship

selectors choose a relatively small h, which leads to imprecise estimates. Sec-
ond, LQR tends to be quite noisy. Third, the bias-corrected estimates from LLR
do not differ much from the uncorrected estimates, but the correction adds much
imprecision. “Optimal bandwidths” and “bias corrections” in RK (and RD)
should be taken with a grain of salt.

With RK, Iwasaki et al. (2019) verified ‘prospect theory’ with natural ex-
perimental data from the Fukushima Nuclear Disaster in 2011, Japan. The two
main tenets of prospect theory are reference dependence and loss aversion: util-
ity functions due to income, health, family size, house size, etc. change the slope
around a reference point where the left side (i.e. loss from the reference point) is
steeper than the right side (i.e., gain). The disaster provides a natural experiment,
where losses/gains are randomized, not self-selected. Based on survey data on
displaced residents, Iwasaki et al. (2019) found a kink in the utility due to health
(and income).

8. OTHER TOPICS: HIGH-ORDER EFFECTS

We have seen a break in intercept for RD and a break in slope for RK. This
raises the question: are there higher-order breaks? We address this question
here with a focus on second-order effect, drawing on Lee (2020). Sharp cases
are dealt with first, followed by fuzzy cases.
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8.1. HIGH-ORDER EFFECT IDENTIFICATION

For SRD with D = δ ≡ 1[0 ≤ S], take E(·|S) on the observed Y = (Y 1 −
Y 0)δ +Y 0 to get

E(Y |S) = β (S)δ +m(S) where m(S)≡ E(Y 0|S) and

β (s)≡ E(Y 1 −Y 0|S = s) are assumed to be continuous at 0.

As any continuous function can be approximated well around 0 with a power
function, let

β (S) =
R

∑
r=0

β rδ Sr = β 0δ +β 1δ S+, ...,+β Rδ SR.

The S-conditional effect of the binary treatment δ is β (S), which is decomposed
into effects β 0δ , β 1δ , , ..., β Rδ of various orders. Call β rδ the ‘RDr effect’ of the
binary treatment δ .

For example, suppose S is time, a lower speed limit law δ goes into effect on
day S = 0, and Y is traffic fatality. The treatment δ may result in an immediate
intercept break β 0δ < 0, or its effect may be gradual with β 0δ = 0 and β 1δ < 0.
The effect may be even more gradual with β 0δ = β 1δ = 0 and β 2δ < 0, which is
a “deceleration” compared with the decrease β 1δ < 0.

Substituting the β (S) power function into E(Y |S) = β (S)δ +E(Y 0|S) gives

E(Y |S) =
R

∑
r=0

β rδ Sr
δ +m(S) = β 0δ δ +β 1δ Sδ+, ...,+β Rδ SR

δ +m(S). (8.1)

If m(s) is continuously differentiable up to order R ≥ 2, then β 0δ ,β 1δ ,β 2δ , ...
are the breaks of order-0, order-1, order-2, etc.. The effects of various orders
emerge because δ gets attached to each term in β (S). Using second-order power
functions for both β (S) and m(S) renders E(Y |S) = ∑

2
r=0 β rδ Srδ +∑

2
r=0 β rS

r;
R = 0,1,2 gives LCR, LLR and LQR, respectively.

For a function G(s), denote its right and left limits at c as

∇
0
+G(c)≡ G(c+)≡ lim

λ↓0
G(c+λ ) and ∇

0
−G(c)≡ G(c−)≡ lim

λ↓0
G(c−λ ).

Then define the order-r right and left derivatives at c for r = 1,2, ...,R iteratively
as

∇
r
+G(c)≡ lim

ξ↓0

∇
r−1
+ G(c+ξ )−∇

r−1
+ G(c)

ξ

and ∇
r
−G(c)≡ lim

ξ↓0

∇
r−1
− G(c)−∇

r−1
− G(c−ξ )

ξ
.
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The ID assumption for RDr with r ≤ R is that β (S) = ∑
R
r=0 β rδ Sr holds and

m(s) is at least r-times continuously differentiable at 0 so that m(s) drops out
when we take the difference between the right and left order-r derivatives of
E(Y |s) at 0. Due to ∇

r
+E(Y |0)−∇

r
−E(Y |0) = r!β rδ then, the RDr identification

finding is

β rδ =
1
r!
{∇

r
+E(Y |0)−∇

r
−E(Y |0)}, r = 0,1,2, ...

For r = 0, this is the RD identification β 0δ =∇
0
+E(Y |0)−∇

0
−E(Y |0)=E(Y |0+)−

E(Y |0−).
In SRD, the treatment D= δ ≡ 1[0≤ S] jumps from 0 to 1 at S = 0; the break

in δ results in a break in E(Y |S) as long as δ affects Y . In SRK, the treatment
D = D(S) changes its slope at S = 0; the kink in D results in a kink in E(Y |S)
as long as D affects Y . In E(Y |S) = β 0δ δ +β 1δ Sδ +β 2δ S2δ +∑

2
r=0 β rS

r, if we
regard the non-binary Sδ as the RK treatment, then the “order-0” RK effect (say,
“RK0”) is β 1δ , whereas β 1δ is the order-1 RD effect (RD1) when we consider
the binary δ as the treatment. As RD1 with treatment δ is closely related to RK
with treatment Sδ , RD2 with treatment δ is closely related to a causal framework
with treatment S2δ (“Regression Acceleration”?).

8.2. HIGHER-ORDER EFFECT ESTIMATION

Consider a local polynomial regression (LPR) of order R minimizing, wrt
(ρ+

0 ,ρ
+
1 , ...,ρ

+
R ),

N

∑
i=1

(Yi −ρ
+
0 −ρ

+
1 Si−, ..., −ρ

+
R SR

i )
21[0 < Si];

a kernel K(Si/h) may be attached, if desired. Denote the minimizer as (ρ̂+
0 , ρ̂

+
1 , ..., ρ̂

+
R ).

Define (ρ̂−
0 , ρ̂

−
1 , ..., ρ̂

−
R ) analogously with 1[0 < Si] replaced by 1[Si < 0]. Due to

∇
r
+E(Y |0)−∇

r
−E(Y |0)= r!(ρ+

r −ρ−
r ), an estimator for β rδ =(1/r!){∇

r
+E(Y |0)−

∇
r
−E(Y |0)} is

β̂ rδ ≡ ρ̂
+
r − ρ̂

−
r .

The LPR applied separately to the positive and negative sides is equal to the
OLS to

Y = β 0δ δ +β 1δ Sδ+, ...,+β Rδ SR
δ +

R

∑
r=0

β rS
r +U (8.2)
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using only the local subsample with Q = 1, because different slopes are allowed
in this OLS. Once the OLS is obtained, do the inference with the usual OLS
asymptotic variance estimator:

ΩN ≡ (∑
i

X ′
i XiQi)

−1 ·∑
i
(XiX ′

i Û
2
i Qi) · (∑

i
XiX ′

i Qi)
−1

where Xi ≡ (1,δ i, Si,Siδ i, ..., SR
i ,S

R
i δ i)

′ and Ûi ≡ Yi −X ′
i β̂ .

Since the nonparametric dimension is one, the most practical way to choose h
is by nonparametrically estimating a graph for ∇

rE(Y |s) and then “eye-balling”:
choose h such that that the graph is neither too jagged nor too smooth. In esti-
mating such a graph, the often-used rule-of-thumb bandwidth h = SD(S)N−1/5

can serve as a lower bound for h, because order-r derivative estimation for r ≥ 1
requires a bandwidth larger than the bandwidth for E(Y |s). Of course, various
estimates corresponding to different h’s should be presented in practice.

As is discussed in the next section, Dong and Lewbel (2015) proposed a
linear approximation approach to extend the SRD identification range at c to
cnew ̸= c using

E(Y 1 −Y 0|cnew)≃ E(Y 1 −Y 0|c)+β 1δ (cnew −c) = β 0δ +β 1δ (cnew −c). (8.3)

Our second-order effect provides a generalization of this:

E(Y 1 −Y 0|cnew)≃ β 0δ +β 1δ (cnew − c)+β 2δ (cnew − c)2. (8.4)

For FRD, we can imagine the E(D|S) equation with the β ’s replaced by α’s
in (8.1), and the E(Y |S) equation with the β ’s replaced by γ’s. Then Lee (2020)
showed that the second-order approximation to E(Y 1 −Y 0|S,complier) is

γ0δ

α0δ

+(
γ1δ

α0δ

− γ0δ

α0δ

α1δ

α0δ

)S+(
γ2δ

α0δ

− γ0δ

α0δ

α2δ

α0δ

− γ1δ

α0δ

α1δ

α0δ

+
γ0δ

α0δ

α2
1δ

α2
0δ

)S2. (8.5)

The slope of S is the same as “π̂
′
f (c)” in Dong and Lewbel (2015, equation

19). That is, (8.5) includes the first-order approximation for FRD in Dong and
Lewbel (2015) as a special case. Both α and γ parameters can be estimated as
in the OLS to (8.2), and the asymptotic inference for the slopes in (8.5) can be
done with bootstrap.



50 BASICS AND RECENT ADVANCES IN REGRESSION DISCONTINUITY

8.3. EMPIRICAL EXAMPLE: DRUNK-DRIVING LAW ON FATALITY

An under-age drunk drinking law for people aged below 21 went into effect
in January 1994 in California. Figure ‘Traffic Fatalities in California’ plots traffic
fatality in California for people below age 21 (circles) and people of age 22-
24 (plus signs) per 10 million persons, based on the monthly data used in Kuo
(2012) over 1984-2002. Persons of age 22-24 serve as a control group, because
they are not subject to the law. Although the cutoff (January 1994) is c = 121,
there is no apparent break at c = 121; rather, the fatality seems to have decreased
steadily first and then picked up in 1999 (181∼192). Kuo (2012) attributed this
lack of break to the lack of ‘awareness of the law’, which must have spread to
affect traffic fatality gradually.

Figure 5: Traffic Fatalities in California (for Ages below 21 and 22-24)

Let Y be the “proportional treatment effect” Lee and Kobayashi (2001):

Y ≡ (treatment group traffic fatality)− (control group traffic fatality)
(control group traffic fatality)

.

This is to control for the common multiplicative time trend (e.g., exp(β 0S)) be-
tween the treatment and control groups, because exp(β 0S) gets cancelled out
in the ratio form of Y . Let S be a month in 1984-2002 divided by 100, so that
c = 1.21.
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Figure 6: RD0 (dotted), RD1 (dashed) and RD2 (solid) Breaks at 1.21

Figure ‘RD0 (dotted), RD1 (dashed) and RD2 (solid) Breaks at 1.21’ shows
the RD0, RD1 and RD2 estimated with one-sided LQR. Four bandwidths h0 =
2,3,4,5 are used for h = h0SD(S)N−1/6. The figures reveals almost no RD0
(dotted line), but a positive RD1 (dashed) and a negative RD2 (solid). As it is
hard to imagine the law increasing traffic fatality (i.e., a positive RD0 or RD1),
the figure demonstrates the importance of considering RD2.

Using h= 4, OLS with only (β 0δ ,β 1δ ) gives the order 0 and 1 effects, which
leads to the long-run effects at cnew (2, 4, 6, 8 years from c) using (8.3) as in Dong
and Lewbel (2015). Also, OLS with (β 0δ ,β 1δ ,β 2δ ) gives the order 0, 1 and 2
effects, which leads to the long-run effects using (8.4). The actual long-run effect
estimates are (Lee, 2020):

Effects after 2, 4, 6, 8 years based on order 0,1 effects : 0.92, 1.37, 1.83, 2.28;

Effects after 2, 4, 6, 8 years based on order 0,1,2 effects : 0.30, -0.29, -1.59, -3.60.

The first-order approximation finding based on (8.3) is that the under-age drink-
ing law increases traffic fatality, which does not make sense, whereas the second-
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order approximation finding based on (8.4) is the opposite, which is more sen-
sible. Essentially, this is because of the negative RD2 effect in Figure ‘RD0
(dotted), RD1 (dashed) and RD2 (solid) Breaks at 1.21’.

9. OTHER TOPICS: EXTENDING IDENTIFICATION RANGE

One critical shortcoming in RD is that the effect ID is local, only at the cutoff
c, and the effect is only on compliers for FRD. Hence there appeared a couple
of ways to extend the effect ID range away from c or from compliers, which
are reviewed next; extending the ID range of RD effect also goes by the ex-
pression“increasing external validity”. Other than the two approaches reviewed
below, Angrist (2015) proposed a way to identify effects away from c as briefly
reviewed in Choi and Lee (2017, p. 1236), but their approach is a matching, not
a RD. Also, Wing and Bello-Gomez (2018) provided a review on extending RD
identification range, adding one more approach with a control group. This addi-
tional approach is, however, just a DD which identifies effects far away from c,
using a control group.

9.1. APPROACHES BASED ON DERIVATIVES

As was mentioned already, Dong and Lewbel (2015) showed that the SRD
effect at cnew ̸= c can be found with the effect at c using (8.3), and Lee (2020)
generalized the linear approximation in (8.3) using high-order terms, a special
case of which is the second order approximation in (8.4). For FRD, (8.5) is
the second order approximation for E(Y 1 −Y 0|S, complier), which includes the
first-order approximation in Dong and Lewbel (2015, equation 19) as a special
case.

Dong and Lewbel presented an empirical example for SRD, where S is a
test score in Massachusetts (MA) and D is a scholarship program which waives
tuition at in-state public colleges if c < S. Part of their results for Y being ‘at-
tending 4-year public college in MA’ or ‘attending 4-year private college’ with
h = 10 is in Table ‘Effects of Scholarship Program’. The table shows that D
increased the probability of attending 4-year public college in MA by 8.1%. The
effect −8.0% on 4-year private college is the “mirror image” of that on 4-year
public college; i.e., D just switched students from private to public colleges.

Turning to finding the effect at cnew, Dong and Lewbel set cnew = c−2 (1%
decrease in c), and the last row of the table shows the effect at cnew:

E(Y 1−Y 0|S= cnew)≃E(Y 1−Y 0|S= c)+ β̂ 1δ ×(−2)=⇒ 0.12= 0.081+0.019×2.
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Table 5: Effects of Scholarship Program

Effects of Scholarship Program
N = 18456 4 yr. public college 4 yr. private college

effect β̂ 0δ at c (SD) 0.081 (0.015) -0.080 (0.015)
β̂ 1δ (SD) -0.019 (0.003) 0.018 (0.002)

effect at cnew (SD) 0.12 (0.015) -0.12 (0.015)

9.2. APPROACHES BASED ON SUBJECT-TYPE INDEPENDENCE IN
FRD*

The subject types in FRD are {a,comp,n} which stands for {always taker,
complier, never taker}, along with the usually ruled-out defier. The identified
FRD effect is E(Y 1 −Y 0|S = c+, complier). This ID range can be extended
across the subject types and across S values, which is explored here, drawing on
Bertanha and Imbens (2020).

Examine E(Y |S, D = 0) around S = c to see if the ‘untreated compliers
who constitute part of (S = c−,D = 0) = (δ = 0,D = 0)’ differ from the never
takers (S = c+,D = 0) = (δ = 1,D = 0), which was first proposed by Battistin
and Rettore (2008). An analogous examination of E(Y |S, D = 1) around S = c
reveals the difference between the always takers (S = c−,D = 1) = (δ = 0,D =
1) and the ‘treated compliers who constitute part of (S = c+,D = 1) = (δ =
1,D = 1)’.

If no difference found around S = c in the D = d group, d = 0,1, then the
‘complier’ in E(Y 1 −Y 0|S = c+, complier) may be dropped to establish the ex-
ternal validity across the subject types. Formalizing this idea in the following,
first, we show that E(Y 1 −Y 0|s) for s ̸= c is identified under the “subject-type
independence” assumption T ⊥⊥ (Y 0,Y 1)|S with T ∈ {a,comp,n}. Second, we
explain how this assumption can be verified.

Observe

T ⊥⊥ (Y 0,Y 1)|S =⇒ E(Y 1 −Y 0|S = c+,T ) = E(Y 1 −Y 0|S = c+). (9.1)
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Because (Y 0,Y 1) are indexed by D = 0,1, we have

(i) s < c ⇐⇒ δ = 0 : E(Y |D = 1,s) = E(Y 1|T = a, s) = E(Y 1|s);
(ii) s < c ⇐⇒ δ = 0 : E(Y |D = 0,s) = E(Y 0|T = n or comp, s) = E(Y 0|s);
(iii) c ≤ s ⇐⇒ δ = 1 : E(Y |D = 0,s) = E(Y 0|T = n, s) = E(Y 0|s); (9.2)

(iv) c ≤ s ⇐⇒ δ = 1 : E(Y |D = 1,s) = E(Y 1|T = a or comp, s) = E(Y 1|s).

Hence E(Y 0|s) and E(Y 1|s) are identified for all s using E(Y |D = 0,s) and
E(Y |D = 1,s) under (9.1), and thus we can identify E(Y 1−Y 0|s) for all s. Since
D = (D1 −D0)δ +D0 consists of (δ ,D0,D1), under the usual δ ⊥⊥ (Y 0,Y 1)|S,
‘T ⊥⊥ (Y 0,Y 1)|S ⇐⇒ (D0,D1) ⊥⊥ (Y 0,Y 1)|S’ implies D ⊥⊥ (Y 0,Y 1)|S. Then
E(Y d |D,S) = E(Y d |S) follows, which is essentially (9.2).

Turning to verifying T ⊥⊥ (Y 0,Y 1)|S, take lims↑c on E(Y |D= 0,s) =E(Y 0|s)
in (9.2)(ii), and take lims↓c on E(Y |D = 0,s) = E(Y 0|s) in (9.2)(iii) to obtain,
respectively,

E(Y |D = 0,c−) = E(Y 0|c−) and E(Y |D = 0,c+) = E(Y 0|c+). (9.3)

This implies the continuity of E(Y |D = 0,s) at c because E(Y 0|s) is continuous
at c. Therefore, T ⊥⊥ (Y 0,Y 1)|S in (9.1) can be verified with the continuity of
E(Y |D = 0,s) at c.

Specifically, do the OLS of Y on (1,δ ,S,δS) with the subsample D = 0, and
test for zero slope of δ as δ captures the discontinuity of E(Y |D = 0,s). If not
rejected, then we may adopt (9.1) and extend E(Y 1 −Y 0|S = c+, complier) to
E(Y 1 −Y 0|S = c+), which further leads to E(Y 1 −Y 0|s) for all s as in (9.2).
Bertanha and Imbens also allowed for covariates in the test, so that the test can
avoid being misled due to covariate differences across the subject types.

Take lims↑c on E(Y |D= 1,s)=E(Y 1|s) in (9.2)(i), and take lims↓c on E(Y |D=
1,s) = E(Y 1|s) in (9.2)(iv) to obtain, analogously to (9.3),

E(Y |D = 1,c−) = E(Y 1|c−) and E(Y |D = 1,c+) = E(Y 1|c+).

This implies the continuity of E(Y |D = 1,s) at c under the extra assumption
that E(Y 1|s) is continuous at c. Therefore, T ⊥⊥ (Y 0,Y 1)|S can be verified also
with the continuity of E(Y |D = 1,s), which can be done by the OLS of Y on
(1,δ ,S,δS) with the subsample D = 1.
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10. REMAINING TOPICS

We have covered many topics for RD up to this point. Yet there still remain
some topics. Here we briefly examine them in no particular order.

First, instead of looking at the mean effect, Frandsen et al. (2012) and Qu and
Yoon (2019) examined quantile RD effects with binary treatment. Chiang and
Sasaki (2019) looked at quantile RK effects with continuous treatment, and Chen
et al. (2020) with binary treatment. Quantile effects would enrich RD and RK
studies, but as pointed out in Lee (2021b) among others, there is a fundamental
difficulty in quantile treatment effect: Qα(Y 1 −Y 0) ̸= Qα(Y 1)−Qα(Y 0) unlike
E(Y 1 −Y 0) = E(Y 1)−E(Y 0), where Qα(Y ) denotes the α quantile of Y . This
problem has been addressed by Lee (2000) to an extent, but it remains difficult
to overcome, thus limiting the use of quantile effects in general.

Second, we typically do asymptotic inference, i.e., the inference under N →
∞, which may not be, however, appropriate, as RD uses only a local sample
around the cutoff. When the local sample size is too small, instead of asymptotic
inference, we may do the following ‘randomization/permutation’ inference. As-
sess how unlikely zero effect is, based on the p-value computed by comparing
the actual effect estimate to the “pseudo effect estimates” obtained by reassign-
ing randomly each subject to the local C or T groups because all subjects are
‘exchangeable’ under the no effect hypothesis. See Cattaneo et al. (2015, 2017)
and Canay and Kamat (2018); see also Ganong and Jäger (2018) for RK permu-
tation test.

Third, a break in E(D|s), E(Y |s) or fS(s) at a point other than c suggests
something wrong. Equations (5.3) and (5.4) in Choi and Lee (2017) show simple
LCR type one-sided kernel estimators for E(Y |s) and fS(s) to visually locate
breaks, with an empirical example in Choi and Lee (2017, pp. 1240-1241). Of
course, a LLR version can be used as well. For instance, to find breaks in E(Y |s)
at s ̸= 0, obtain ρ̂

+
0 (s) along with ρ̂

+
1 (s) for s > 0 minimizing

∑
i
{Yi −ρ

+
0 −ρ

+
1 (Si − s)}21[Si ∈ (s,s+h)].

Analogously, obtain the intercept estimator ρ̂
−
0 (s) along with ρ̂

−
1 (s) for s< 0 and

1[Si ∈ (s− h,s)]. Then plot ρ̂
−
0 (s) for s < 0, and ρ̂

+
0 (s) for s > 0 to find breaks

in E(Y |s).
Fourth, RD can be applied to limited dependent variables, using a local sam-

ple. For instance, censored MLE can be applied to Y = max(0,Y ∗) for a la-
tent continuous response Y ∗, using the regressors (1,δ ,S,δS) for LLR. Berk
and de Leuuw (1999) applied logit to binary Y with regressors (1,δ ,S). When
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Y is categorical/multinomial, convert the multinomial Y into binary responses
(one binary response for each category) to apply the usual RD approach. In-
stead of this “multi-dimensional” approach, we may apply multinomial logit
with (1,δ ,S,δS) as the regressors, although nonparametric approaches can be
devised; see Koch and Racine (2016) and Xu (2017) for more. Xu (2018) ad-
dressed discrete duration Y while allowing for censoring.
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APPENDIX

Proof for E(Y |S) = β dD+m(S)⇐⇒ β d = E(Y |S = 0+)−E(Y |S = 0−) in
SRD

First, take E(·|0+) and E(·|0−) on E(Y |S) = β dD + m(S) to get, as
m(0+) = m(0−),

E(Y |0+) = β d +m(0+), E(Y |0−) = m(0−) =⇒ β d = E(Y |0+)−E(Y |0−).

Hence ‘E(Y |S) = β dD+m(S)’ implies ‘β d = E(Y |0+)−E(Y |0−)’. Second, for
the reverse, define m(S) ≡ E(Y |S)− β dD using the local mean difference β d ,
and take E(·|0+) and E(·|0−):

m(0+)≡ E(Y |0+)−β d , m(0−)≡ E(Y |0−)
=⇒ m(0+)−m(0−) = E(Y |0+)−E(Y |0−)−β d .

‘β d ≡ E(Y |0+)−E(Y |0−)’ implies m(0+)−m(0−) = 0, which is the continuity
of m(S) at 0, and thus E(Y |S) = β dD+m(S) with m(S) continuous at 0 follows
from the definition of m(S).

Weight-Averaged Effect for Random Cutoff
Due to the continuity of fC|S(c|s) in s for all c and of E(Y 0|C = c,S = s)

in s for all c,

lim
h↓0

E(Y |S =C+h) = lim
h↓0

∫
E(Y 1|C = c,S = c+h) · fC|S(c|c+h)∂c

=
∫
{lim

h↓0
E(Y 1|C = c,S = c+h} · fC|S(c|c)∂c;

lim
h↓0

E(Y |S =C−h) =
∫
{lim

h↓0
E(Y 0|C = c,S = c−h)} · fC|S(c|c−h)∂c

=
∫
{lim

h↓0
E(Y 0|C = c,S = c−h)} fC|S(c|c)∂c

=
∫
{lim

h↓0
E(Y 0|C = c,S = c+h)} fC|S(c|c)∂c.

Then limh↓0 E(Y |S =C+h)− limh↓0 E(Y |S =C−h) gives (2.2).
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Grant Rule to Identify the Effect of Grants on Local Taxes and Spending,”
Journal of Public Economics 92(12), 2320-2335.

Davezies, L. and T. Le Barbanchon (2017). “Regression Discontinuity Design
with Continuous Measurement Error in the Running Variable,” Journal of
Econometrics 200(2), 260-281.

Dell, M. (2010). “The Persistent Effects of Peru’s Mining Mita,” Econometrica
78(6), 1863-1903.

DiNardo, J.E. and D.S. Lee (2004). “Economic Impacts of New Unionization
on Private Sector Employers: 1984–2001,” Quarterly Journal of Economics
119(4), 1383-1441.

Dong, Y. (2015). “Regression Discontinuity Applications with Rounding Errors
in the Running Variable,” Journal of Applied Econometrics 30(3), 422-446.

Dong, Y. (2016). “Jump or Kink? Regression Probability Jump and Kink Design
for Treatment Effect Evaluation,” unpublished paper.

Dong, Y., Lee, Y., and M. Gou (2021). “Regression Discontinuity Designs with a
Continuous Treatment,” Journal of the American Statistical Association forth-
coming.

Dong, Y. and A. Lewbel (2015). “Identifying the Effect of Changing the Policy
Threshold in Regression Discontinuity Models,” Review of Economics and
Statistics 97(5), 1081-1092.

Edmonds, E., K. Mammen, and D.L. Miller (2005). “Rearranging the Family?
Income Support and Elderly Living Arrangements in a Low-income Country,”
Journal of Human Resources 40(1), 186-207.

Feir, D., T. Lemieux, and V. Marmer (2016). “Weak Identification in Fuzzy Re-
gression Discontinuity Designs,” Journal of Business and Economic Statistics
34(2), 185-196.

Frandsen, B.R. (2017). “Party Bias in Union Representation Elections: Testing
for Manipulation in the Regression Discontinuity Design when the Running
Variable is Discrete,” in Regression Discontinuity Designs: Theory and Ap-
plications eds. M.D. Cattaneo and J.C. Escanciano, Emerald Publishing, 281-
315.



JIN-YOUNG CHOI AND MYOUNG-JAE LEE 63
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