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Abstract Empirical researchers often include observed covariates in the Wald-
type implementation of Regression Discontinuity Design (RDD) estimators.
When those included covariates are endogenous, we find that the resulting RDD
estimator suffers from a larger asymptotic bias than the estimator with exoge-
nous covariates but it is still consistent. We further show that the order of bias
increase due to the endogeneity is the same order of bias reduction due to the
inclusion of relevant endogenous covariates.
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1. INTRODUCTION

The Regression Discontinuity (RD) design is a quasi-experimental design
that provides a useful source of identifying effects of a treatment, which is often
exploited in economic and other applications. The RD design has the key feature
of discontinuity in receiving treatment due to one or more underlying variables,
named as forcing variable(s) because it governs the treatment. The earliest appli-
cation of the RD design even goes back to Thistlethwaite and Campbell (1960).
For more recent applications using the RD design see Chay and Greenstone
(2005), Greenstone and Gallagher (2008), and Black (1999) who have exploited
either a discontinuity in the application of a regulation or a structural break due
to a boundary.

Econometric theories on Regression Discontinuity Design (RDD) estimators
typically do not include observed covariates or attributes other than the forcing
variable(s) that governs the discontinuity. However, many empirical researchers
using the RDD often include such covariates and implement the estimator using a
Wald-type regression. This discrepancy between theory and practice arises due
to the nonparametric nature of the RDD estimator. In purely theoretical point
of view, being conditioned on the forcing variable close to the cut off point,
including other covariates in the regression should have little effect on the RDD
estimator since the indicator of having a treatment or not is independent of other
covariates at the cut off. However, in practice, we almost always have to include
data points with values of the forcing variable not being very close to the cut
off. In this case, including other covariates improves the RDD estimator because
it reduces some bias caused by the inclusion of such data points and it reduces
the variance when the covariates are correlated with the potential outcomes (see
Imbens and Lemieux 2008).

Here our main question is about how the positive effects of including co-
variates will change if the covariates are endogenous due to e.g. omitted covari-
ates. In most applications economic agents have superior information which the
agents can utilize for their decisions compared to econometricians. This sug-
gests it is inevitable that some unobserved covariates to researchers but observed
by the economic agents exist. Moreover these unobserved covariates tend to
be correlated with observed covariates and hence endogeneity is the rule rather
than the exception. For example, Chay and Greenstone (2005) exploits quasi-
random variation in EPA air quality attainment status to measure the effect of
air pollution reflected on housing prices. Data sets on housing, however, typi-
cally do not report features such as the curb appeal or home repair status, both
of which may be important to home buyers. Here suppose that the unobserved



322 RDD WITH ENDOGENOUS COVARIATES

covariates (to econometricians) include the curb appeal of a home. Exogeneity
assumption would imply that the expected value of curb appeal is the same for
small homes in low income neighborhoods as it is for very high priced homes
in exclusive neighborhoods. However, it makes more sense to expect desirable
omitted covariates to be positively correlated with desirable observed covariates,
which violates the exogeneity assumption.

Our starting point for analysis is to note that even though the RDD estima-
tor is a nonparametric one by design, empirical researchers typically implement
the estimator using a Wald-type regression (see e.g. Lee and Lemieux 2010 for
detailed discussion and references therein), which becomes nothing but a 2SLS
estimation. This is totally innocuous because two estimators are shown to be
numerically identical when we do not include other covariates (see Hahn, Todd,
and Van der Klaauw (HTV) 2001 and Imbens and Lemieux 2008). However, it
does not mean that two estimators have the same asymptotic properties. A Wald
estimator is unbiased by assumption under standard exogeneity conditions while
the nonparametric RDD estimator such as kernel estimator or local linear estima-
tor has asymptotic biases. This means that even though we implement the RDD
estimation by a Wald regression, inference must be done in the nonparametric
context. Interestingly we find that the equivalence result no more holds if we
include covariates in the RDD estimation. We then provide explicit relationships
between a RDD estimator obtained by a Wald-type regression (we call this esti-
mator as Wald estimator hereafter) and the nonparametric RDD estimator such
as kernel estimator or local linear estimator.

We then show that the RDD estimator is still consistent as long as some con-
tinuity conditions are maintained. We also show that if we include observations
with values of the forcing variable not close to the cut off and do not correctly
handle the endogeneity, then the RDD estimator suffers from a larger asymptotic
bias though it is still consistent. This suggests that unless a chosen bandwidth
of the RDD estimator is small enough, the resulting estimator will suffer from a
considerable bias under endogeneity. Interestingly we find that when we include
other observable covariates, it can potentially reduce the bias of the treatment ef-
fect estimator. However, when those observable covariates are endogenous, the
order of bias due to the endogeneity is the same order of bias reduction. More-
over, we find that the coefficient estimators on endogenous covariates will be
inconsistent although the treatment effect estimator is consistent.
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2. RDD WITH ENDOGENOUS COVARIATES

We focus on the binary treatment with a status indicator, wi of individual
i = 1, . . . ,n. Let yi denote the outcome of the treatment. The treatment status wi

depends on a forcing variable zi. With a sharp RD design, the treatment variable
wi is a deterministic function of the forcing variable zi such as wi = 1{zi ≥ z0}
with the cut off value of zi equal to z0. With a fuzzy RD design, which is our
focus, wi is a random variable given zi and we have p(z) = E[wi|zi = z] such that
p(z) becomes discontinuous at z = z0. When other covariates xi are available,
one can obtain the treatment effects (e.g. E[βi] below) from the equation

yi = α +wiβi + x′iπ +ui

where in our situation an unobservable covariate ui - that affects the outcome -
can be potentially correlated with xi, i.e., xi is endogenous. Note that the rela-
tionship between wi and ui does not need to be specified in the RD design.

To simplify our discussion, we assume the treatment effect βi = β is constant
for all i (when βi is heterogeneous, we can identify e.g. the average treatment
effect instead) and analyze whether β is identified under a similar set of assump-
tions with Hahn, Todd, and Van der Klaauw (2001). We first assume zi is a valid
forcing variable

Assumption 1. (RD): (i) The limits w+≡ limz→z+0
E[wi|zi = z] and w−≡ limz→z−0

E[wi|xi = z] exist and (ii) w+ 6= w−.

This assumption RD means the probability of receiving treatment is discon-
tinuous at z0. Next we assume two conditional mean functions are continuous at
the cut off point.1

Assumption 2. (Continuity) E[xi|zi = z] and E[ui|zi = z] are continuous in z at
z0.

We observe that the treatment effect β is nonparametrically identified as
long as above two conditions hold. Define y+ ≡ limz→z+0

E[yi|zi = z] and y− ≡
limz→z−0

E[yi|zi = z].

Theorem 1. Suppose βi is constant as β and suppose Assumptions 1-2 hold.
Then, we have β = y+−y−

w+−w− .

1Frölich (2007) also studies RDD estimations with covariates where the continuity assumption
on the covariates we make here (Assumption Continuity) may not hold but he does not consider
endogeneity of covariates as we do in this paper.
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This identification result is obvious from the theorem 1 of HTV due to the
continuity assumption imposed on E[xi|zi = z] and E[ui|zi = z] at z = z0. We
provide the following proof for completeness.

Proof. Note that the mean difference in outcomes for individuals above and be-
low the discontinuity becomes

E[yi|zi = z0 + e]−E[yi|zi = z0− e]

= β{E[wi|zi = z0 + e]−E[wi|zi = z0− e]}
+E[x′iπ +ui|zi = z0 + e]−E[x′iπ +ui|zi = z0− e].

Under Assumption Continuity, after we take the limit e→ 0+, we obtain

y+− y− = β{w+−w−}.

Then by Assumption RD, the conclusion follows.

3. ESTIMATION AND ASYMPTOTIC BIAS

The identification result suggests we can consistently estimate the treatment
effect by replacing (y+(−),w+(−)) in β with their consistent nonparametric esti-
mators (ŷ+(−), ŵ+(−)) as

β̂ = (ŷ+− ŷ−)/(ŵ+− ŵ−).

One can estimate (y+(−),w+(−)) using various kernel methods and HTV and Im-
bens and Lemieux (2008) show that the local linear estimators have a better bias
property on boundaries than a kernel estimator. With a bandwidth parameter hn

tending to zero as the sample size n tends to infinity, the local linear estimator has
the asymptotic bias of the order h2

n while a kernel estimator has the asymptotic
bias of the order hn.

Instead of this nonparametric RDD estimator β̂ from the identification result,
empirical researchers often implement the RDD estimator using a Wald regres-
sion based on 2SLS intuition from the equations: for observations i such that zi

is close to the cut off z0,

yi = α +wiβ + x′iπ +ui (1)

wi = αw +δ ·1(zi > z0)+ x′iπw + εi (2)

where, in addition to the potential endogeneity of wi, xi is also endogenous as
E [xiui|zi = z0] 6= 0. Here for transparency we impose that the coefficients on xi
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are constants while allowing for the correlation between wi and xi or between zi

and xi. One can also allow for heterogeneous π by assuming πi and xi are inde-
pendent conditional on zi (at least around z0). Below we analyze the properties
of the Wald estimators of (1)-(2) that are equivalent to the nonparametric RDD
estimators such as kernel estimator and local linear estimator.

3.1. WALD ESTIMATOR EQUIVALENT TO KERNEL RDD ESTIMATOR

Let Z be a set of indices of i denoting the subsample of zi such that z0−hn <
zi < z0 +hn with the bandwidth hn→ 0 and define ci = 1(zi > z0). We first con-
sider the relationship between the Wald estimator equivalent to a kernel estimator
and the kernel RDD estimator. As (1)-(2) the Wald estimator is obtained by two
stage least squares (2SLS) or IV estimation of

yi = α +wiβ + x′iπ +ui

applied to the subsample Z where ci is used as an excluded instrumental variable
(IV) for wi.

This Wald estimator is the most common type in the RDD literature. When
xi is not included in the regression, the Wald estimator is given by

β̃ =
ỹ+− ỹ−

w̃+− w̃−

where ỹ+(−) and w̃+(−) are the uniform kernel conditional mean estimators such
that for r = y or w,

r̃+ =
∑i∈Z ciri

∑i∈Z ci
and r̃− =

∑i∈Z (1− ci)ri

∑i∈Z (1− ci)
. (3)

Therefore, the Wald estimator and the kernel RDD estimator are numerically
identical in this case (see HTV).

Next we derive the Wald estimator when xi is included in the estimation
(assuming xi is scalar without loss of generality).

Theorem 2. 1. Let ỹ+(−) and w̃+(−) be the uniform kernel conditional mean
estimators defined in (3). Also let x̃+(−) be the uniform kernel conditional mean
estimators similarly defined as in (3). Then the Wald treatment effect estimator
of (1)-(2), denoted by β̃ ∗, becomes

β̃ ∗ =

ỹ+− ỹ−− ∑i∈Z xiyi

∑i∈Z x2
i
(x̃+− x̃−)− ∑i∈Z xi

∑i∈Z x2
i

(
(ỹ+− ỹ−) x̃−− ỹ− (x̃+− x̃−)

)
w̃+− w̃−− ∑i∈Z xiwi

∑i∈Z x2
i

(x̃+− x̃−)− ∑i∈Z xi

∑i∈Z x2
i

(
(w̃+− w̃−) x̃−− w̃− (x̃+− x̃−)

) .
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2. Let ỹi = α̃+ β̃wi be the fitted value from the Wald estimation of (1)-(2) without
including xi where (α̃, β̃ ) are the resulting Wald estimators. Then we further
obtain

β̃
∗− β̃

=−(x̃+− x̃−)
{

∑i∈Z xi(yi− ỹi)

∑i∈Z x2
i

}
/
(
w̃+− w̃−+Op(hn)

)
(4)

=−(x̃+− x̃−)
{

π +(α− α̃)
∑i∈Z xi

∑i∈Z x2
i
+(β − β̃ )

∑i∈Z xiwi

∑i∈Z x2
i

+
∑i∈Z xiui

∑i∈Z x2
i

}
/
(
w̃+− w̃−+Op(hn)

)
. (5)

See Appendix A for the proof.
The formula (4-5) in Theorem 2 implies several interesting points to note.

We focus on the numerator in the bias terms of (4) because the denominator will
converge to a nonzero term w+−w− 6= 0 under the assumption RD. First, we
can interpret ∑i∈Z xi(yi−ỹi)

∑i=Z x2
i

in (4) as the OLS coefficient from the regression of
yi− ỹi on xi where yi− ỹi is the residual of the regression of yi on wi only. There-
fore, the term (x̃+− x̃−)

{
∑i∈Z xi(yi−ỹi)

∑i=Z x2
i

}
in (4) captures the bias reduction due to

the inclusion of xi. However, this bias reduction becomes negligible as hn→ 0
as long as the continuity condition, limz→z+0

E[xi|zi = z] = limz→z−0
E[xi|zi = z]

holds since x̃+− x̃− = Op (hn). The first term−(x̃+− x̃−)π in (5) dominates the
second term because

−
(
x̃+− x̃−

){
(α− α̃)

∑i∈Z xi

∑i∈Z x2
i
+
(

β − β̃

)
∑i∈Z xiwi

∑i∈Z x2
i

}
= Op(h2

n).

Next note that the last term in (5) captures the bias due to the endogeneity of xi.
When xi is endogenous, we have

(
x̃+− x̃−

) ∑i∈Z xiui

∑i∈Z x2
i

= Op(hn)
E[xiui|z0]

E[x2
i |z0]

+op(hn) and E[xiui|z0] 6= 0.

This implies that the order of the asymptotic bias due to endogeneity is O(hn),
which is the same order of bias reduction, O(hn) when xi is endogenous. This
also suggests that when the included covariates are irrelevant (so π = 0), the bias
due to this inclusion is the order of O(h2

n) while the bias due to the endogeneity
is the order of O(hn). Next note β̃ ∗− β = β̃ − β +Op(hn) = Op(hn) because
β̃ = β +Op(hn) (see HTV), so the Wald estimator is consistent whether or not xi
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is endogenous. We conclude that whether xi is endogenous as E[xiui|z] 6= 0 for
values of z close to the cut off z0 is irrelevant in terms of consistency of the Wald
estimator although it potentially causes a larger asymptotic bias.

3.2. WALD ESTIMATOR EQUIVALENT TO LOCAL LINEAR RDD
ESTIMATOR

Next we show a similar result with the local linear RDD estimator. The Wald
estimator equivalent to the local linear RDD estimator is obtained by 2SLS or IV
estimation of

yi = α +buci(zi− z0)+bl (1− ci)(zi− z0)+wiβ + x′iπ +ui (6)

applied to the subsample Z where ci is used as an excluded IV for wi. When xi

is not included in the regression, the Wald estimator equivalent to the local linear
RDD estimator becomes β̂ = ŷ+−ŷ−

ŵ+−ŵ− where ŷ+(−) and ŵ+(−) are the local linear
conditional mean estimators. Specifically we have

ŷ+ =
∑i∈Z ciyi (zi− z0)∑i∈Z ci (zi− z0)−∑i∈Z ci (zi− z0)

2
∑i∈Z ciyi

(∑i∈Z ci (zi− z0))
2−∑i∈Z ci ∑i∈Z ci (zi− z0)

2 (7)

and others are defined similarly. Therefore the Wald estimator and the local
linear RDD estimator are numerically identical when we do not include xi in
the regression. This numerical equivalence was noted by Imbens and Lemiuex
(2008).

Next we derive the Wald estimator of (6) when xi is included in the estimation
(assuming xi is scalar without loss of generality). In this case the numerical
equivalence does not hold anymore.

Theorem 3. Let ŷ+(−), ŵ+(−), and x̂+(−) be the local linear conditional mean
estimators similarly defined as (7), respectively. Also let ŷi = α̂ + β̂wi be the
fitted value from the Wald estimation of (6) without including xi where (α̂, β̂ )
are the resulting Wald estimators. Then the Wald treatment estimator of (6)
equivalent to the local linear estimator, denoted by β̂ ∗, can be written as

β̂
∗− β̂ (8)

= −
(x̂+− x̂−) ∑i∈Z xi(yi−ŷi)

∑i∈Z x2
i

(ŵ+− ŵ−) V̂ar[xi|zi=z0]

Ê[x2
i |zi=z0]

− (x̂+− x̂−) Ĉov[xi,wi|zi=z0]

Ê[x2
i |zi=z0]

= −
(x̂+− x̂−)

{
π +(α− α̂) ∑i∈Z xi

∑i∈Z x2
i
+(β − β̂ )∑i∈Z xiwi

∑i∈Z x2
i
+ ∑i∈Z xiui

∑i∈Z x2
i

}
(ŵ+− ŵ−) V̂ar[xi|zi=z0]

Ê[x2
i |zi=z0]

− (x̂+− x̂−) Ĉov[xi,wi|zi=z0]

Ê[x2
i |zi=z0]



328 RDD WITH ENDOGENOUS COVARIATES

where V̂ar[xi|zi = z0], Ĉov[xi,wi|zi = z0], and Ê[x2
i |zi = z0] are consistent esti-

mators of Var[xi|zi = z0], Cov[xi,wi|zi = z0], and E[x2
i |zi = z0], respectively (see

their definitions in Appendix B).

See Appendix B for the proof.
From the result of Theorem 3 we find that as long as the continuity con-

dition limz→z+0
E[xi|zi = z] = limz→z−0

E[xi|zi = z] holds, endogeneity of xi does
not affect the consistency and the order of asymptotic bias. In the local lin-
ear estimation case, the order of asymptotic bias equal to O

(
h2

n
)

and so we
have x̂+− x̂− = Op

(
h2

n
)

when the continuity condition holds. Note the term
(x̂+− x̂−) ∑i∈Z xiui

∑i∈Z x2
i

in (9) reflects the possible bias due to the endogeneity of xi,
i.e., E [xiui|zi = z0] 6= 0. This suggests that when xi is endogenous, the order of
the asymptotic bias (x̃+− x̃−) ∑i∈Z xiui

∑i∈Z x2
i
= Op(h2

n) and it is the same order with

bias reduction. It follows that β̂ ∗ − β = β̂ − β + Op(h2
n) = Op(h2

n) because
β̂ = β +Op(h2

n) (see HTV). Therefore like the kernel estimator case the endo-
geneity of xi is irrelevant in terms of consistency and the order of the asymptotic
bias O

(
h2

n
)

but it can potentially cause an additional asymptotic bias with the
same order of O

(
h2

n
)
.

3.3. COEFFICIENTS ESTIMATES ON ENDOGENOUS COVARIATES

Finally we ask how the estimator of the coefficients on covariates is affected
by the endogeneity. We obtain

Theorem 4. 1. Let ỹ+(−), w̃+(−), and x̃+(−) be the uniform kernel conditional
mean estimators, respectively. Then for the Wald estimation of (1)-(2), we have

π̂ =

(w̃+− w̃−)
∑i∈Z xiyi

∑i∈Z x2
i
− (ỹ+− ỹ−)

∑i∈Z xiwi

∑i∈Z x2
i
− (ỹ−w̃+− w̃−ỹ+)

∑i∈Z xi

∑i∈Z x2
i

(w̃+− w̃−)− (x̃+− x̃−)
∑i∈Z xiwi

∑i∈Z x2
i
− (w̃+x̃−− w̃−x̃+)

∑i∈Z xi

∑i∈Z x2
i

.

2. Further suppose Assumption RD and Assumption Continuity hold. Then we
obtain

π̂−π =
E [xiui|z0]

E
[
x2

i |z0
] +Op(hn).

See Appendix A for the proof.
The results in Theorem 4 show that π̂ becomes inconsistent when xi is en-

dogenous as E [xiui|z0] 6= 0. We conjecture a similar result holds for the Wald
estimator equivalent to the local linear RDD estimator.
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4. CONCLUSION

Empirical researchers often include observable covariates or attributes other
than the forcing variable in the implementation of RDD as the Wald-type estima-
tion. This helps because it reduces some bias caused by inclusion of data points
not very close to the cut off and it reduces the variance when the covariates is cor-
related with the potential outcomes. This note poses a question how the positive
effects of including covariates will change if the covariates are endogenous. We
show that the Wald estimator of the RD design is still consistent as long as the
continuity conditions of the RD design hold. We further show that adding covari-
ates in the Wald estimation can potentially reduce the bias of the RDD treatment
effect estimator. However, when those covariates are endogenous, the order of
bias due to endogeneity is the same order with the bias reduction. Moreover, the
coefficients on covariates will be inconsistent.

APPENDIX

A. WALD ESTIMATOR EQUIVALENT TO THE KERNEL ESTIMATOR
(PROOF OF THEOREM 2 AND THEOREM 4)

First consider the Wald estimator without xi from the regression:

yi = α +βwi + vi. (9)

The Wald estimator is obtained by IV estimation with ci as the excluded IV for
wi, applied to the subsample Z such that

[
α̃

β̃

]
=

[
∑i∈Z 1 ∑i∈Z wi

∑i∈Z ci ∑i∈Z ciwi

]−1[
∑i∈Z yi

∑i∈Z ciyi

]
=

[
∑i∈Z ciwi ∑i∈Z yi−∑i∈Z ciyi ∑i∈Z wi
∑i∈Z 1∑i∈Z ciwi−∑i∈Z ci ∑i∈Z wi
∑i∈Z 1∑i∈Z ciyi−∑i∈Z ci ∑

n
i=1 yi

∑i∈Z 1∑i∈Z ciwi−∑i∈Z ci ∑
n
i=1 wi

]
.

Now note

ỹ+− ỹ− =
∑i∈Z ciyi

∑i∈Z ci
− ∑i∈Z (1− ci)yi

∑i∈Z (1− ci)
(10)

=
∑i∈Z (1− ci)∑i∈Z ciyi−∑i∈Z ci ∑i∈Z (1− ci)yi

∑i∈Z ci ∑i∈Z (1− ci)

=
∑i∈Z 1∑i∈Z ciyi−∑i∈Z yi ∑i∈Z ci

∑i∈Z ci ∑i∈Z (1− ci)
.
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Similarly we obtain

w̃+− w̃− =
∑i∈Z 1∑i∈Z ciwi−∑i∈Z wi ∑i∈Z ci

∑i∈Z ci ∑i∈Z (1− ci)
.

By rearranging terms, we conclude[
α̃

β̃

]
=

[
ỹ−− w̃−β̃

(ỹ+− ỹ−)/(w̃+− w̃−)

]
.

Now the Wald estimator including xi as an additional regressor is obtained by
the IV estimator of the following regression

yi = α +βwi +πxi +ui

with ci as the excluded IV for wi for the subsample Z . We have

 α̃∗

π̃∗

β̃ ∗

=

 ∑i∈Z 1 ∑i∈Z xi ∑i∈Z wi

∑i∈Z xi ∑i∈Z x2
i ∑i∈Z xiwi

∑i∈Z ci ∑i∈Z cixi ∑i∈Z ciwi

−1 ∑i∈Z yi

∑i∈Z xiyi

∑i∈Z ciyi

 .

We obtain

β̃
∗ =



∑i∈Z yici ∑i∈Z x2
i −∑i∈Z yi ∑i∈Z xi ∑i∈Z cixi

+

(
n ∑

i∈Z
cixi− ∑

i∈Z
ci ∑

i∈Z
xi

)
∑

i∈Z
xiyi

+

((
∑

i∈Z
xi

)2

−n ∑
i∈Z

x2
i

)
∑

i∈Z
ciyi



∑i∈Z wi ∑i∈Z ci ∑i∈Z x2
i −∑i∈Z wi ∑i∈Z xi ∑i∈Z cixi

+

(
n ∑

i∈Z
cixi− ∑

i∈Z
ci ∑

i∈Z
xi

)
∑

i∈Z
xiwi

+

((
∑

i∈Z
xi

)2

−n ∑
i∈Z

x2
i

)
∑

i∈Z
ciwi


.

(11)

We first consider the numerator. By rearranging terms, we obtain the numerator
equals to

∑
i∈Z

x2
i ∑

i∈Z
ci ∑

i∈Z
(1− ci)

{
∑i∈Z 1∑i∈Z ciyi−∑i∈Z yi∑i∈Z ci

∑i∈Z ci ∑i∈Z (1− ci)

}
(12)

− ∑
i∈Z

x2
i ∑

i∈Z
ci ∑

i∈Z
(1− ci)

{
∑i∈Z xiyi

∑i∈Z x2
i

(∑i∈Z 1∑i∈Z cixi−∑i∈Z ci∑i∈Z xi)

∑i∈Z ci ∑i∈Z (1− ci)

}
− ∑

i∈Z
x2

i ∑
i∈Z

ci ∑
i∈Z

(1− ci)

{
∑i∈Z xi

∑i∈Z x2
i

(∑i∈Z ciyi∑i∈Z xi−∑i∈Z cixi∑i∈Z yi)

∑i∈Z ci ∑i∈Z (1− ci)

}
.
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Similarly with (10) we note

x̃+− x̃− =
∑i∈Z 1∑i∈Z cixi−∑i∈Z xi ∑i∈Z ci

∑i∈Z ci ∑i∈Z (1− ci)
.

For the third term in (12), we note

(∑i∈Z ciyi ∑i∈Z xi−∑i∈Z cixi ∑i∈Z yi)

∑i∈Z ci ∑i∈Z (1− ci)

=
∑i∈Z ciyi ∑i∈Z (1− ci)xi−∑i∈Z (1− ci)yi ∑i∈Z cixi

∑i∈Z ci ∑i∈Z (1− ci)

= ỹ+x̃−− ỹ−x̃+ =
(
ỹ+− ỹ−

)
x̃−−

(
x̃+− x̃−

)
ỹ−

Combining the above results, we conclude the numerator in (11) equals to

∑i∈Z x2
i ∑i∈Z ci ∑i∈Z (1− ci)

{
ỹ+− ỹ−− ∑i∈Z xiyi

∑i∈Z x2
i
(x̃+− x̃−)− ∑i∈Z xi

∑i∈Z x2
i
(ỹ+x̃−− x̃+ỹ−)

}
.

Similarly we can show that the denominator in (11) equals to

∑i∈Z x2
i ∑i∈Z ci ∑i∈Z (1− ci)

{
w̃+− w̃−− ∑i∈Z xiwi

∑i∈Z x2
i

(x̃+− x̃−)− ∑i∈Z xi

∑i∈Z x2
i
(w̃+x̃−− x̃+w̃−)

}
.

Therefore, we conclude

β̃
∗ =

ỹ+− ỹ−− ∑i∈Z xiyi

∑i∈Z x2
i
(x̃+− x̃−)− ∑i∈Z xi

∑i∈Z x2
i
((ỹ+− ỹ−) x̃−− (x̃+− x̃−) ỹ−)

w̃+− w̃−− ∑i∈Z xiwi

∑i∈Z x2
i
(x̃+− x̃−)− ∑i∈Z xi

∑i∈Z x2
i
((w̃+− w̃−) x̃−− (x̃+− x̃−) w̃−)

.

Now define

ϕ̂y =
∑i∈Z xiyi

∑i=Z x2
i

(
x̃+− x̃−

)
+

∑i∈Z xi

∑i∈Z x2
i

((
ỹ+− ỹ−

)
x̃−− ỹ−

(
x̃+− x̃−

))
and

ϕ̂w =
∑i∈Z xiwi

∑i∈Z x2
i

(
x̃+− x̃−

)
+

∑i∈Z xi

∑i∈Z x2
i

((
w̃+− w̃−

)
x̃−− w̃−

(
x̃+− x̃−

))
and obtain

β̃
∗ =

ỹ+− ỹ−

w̃+− w̃−
−

(w̃+− w̃−) ϕ̂y− ϕ̂w (ỹ+− ỹ−)
(w̃+− w̃−− ϕ̂w)(w̃+− w̃−)

= β̃ −
(w̃+− w̃−) ϕ̂y− ϕ̂w (ỹ+− ỹ−)
(w̃+− w̃−− ϕ̂w)(w̃+− w̃−)

= β̃ −
ϕ̂y− ϕ̂wβ̃

(w̃+− w̃−− ϕ̂w)
.
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Further note that

ϕ̂y− ϕ̂wβ̃

=
(
x̃+− x̃−

){∑i∈Z xiyi

∑i=Z x2
i
− ∑i∈Z xi

∑i∈Z x2
i

ỹ−− ∑i∈Z xiwi

∑i∈Z x2
i

β̃ +
∑i∈Z xi

∑i∈Z x2
i

w̃−β̃

}
+x̃−

∑i∈Z xi

∑i∈Z x2
i

{(
ỹ+− ỹ−

)
−
(
w̃+− w̃−

)
β̃

}
=

(
x̃+− x̃−

){∑i∈Z xiyi

∑i=Z x2
i
− ∑i∈Z xi

∑i∈Z x2
i

ỹ−−
(

∑i∈Z xiwi

∑i∈Z x2
i

β̃ − ∑i∈Z xiw̃−

∑i∈Z x2
i

β̃

)}
.

To interpret the term
{

∑i∈Z xiyi

∑i=Z x2
i
− ∑i∈Z xi

∑i∈Z x2
i
ỹ−−

(
∑i∈Z xiwi

∑i∈Z x2
i

β̃ − ∑i∈Z xiw̃−

∑i∈Z x2
i

β̃

)}
, define

the fitted value of yi from the IV regression of (9) as ỹi ≡ α̃ + β̃wi and note

ỹi ≡ α̃ + β̃wi = ỹ−+ β̃
(
wi− w̃−i

)
.

After plugging in ỹ− = ỹi− β̃
(
wi− w̃−i

)
and rearranging terms we obtain

ϕ̂y− ϕ̂wβ̃

=
(
x̃+− x̃−

){∑i∈Z xiyi

∑i=Z x2
i
− ∑i∈Z xi

∑i∈Z x2
i

ỹ−−
(

∑i∈Z xiwi

∑i∈Z x2
i

β̃ − ∑i∈Z xiw̃−

∑i∈Z x2
i

β̃

)}
=

(
x̃+− x̃−

) ∑i∈Z xi(yi− ỹi)

∑i=Z x2
i

.

Combining results above we obtain

β̃
∗ = β̃ −

(
x̃+− x̃−

){∑i∈Z xi(yi− ỹi)

∑i=Z x2
i

}
/
(
w̃+− w̃−− ϕ̂w

)
.

Without loss of generality, we can let E[xi|zi = z0] = 0. Then we obtain

ϕ̂w =
∑i∈Z xiwi/n
∑i∈Z x2

i /n

(
x̃+− x̃−

)
+

∑i∈Z xi/n
∑i∈Z x2

i /n

((
w̃+− w̃−

)
x̃−− w̃−

(
x̃+− x̃−

))
= Op(hn)

because each sample means converge to their corresponding population means
and because x̃+− x̃− = Op(hn) due to the continuity condition and the order
of bias of kernel estimators equal to O(hn). We therefore conclude β̃ ∗ = β̃ −
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(x̃+− x̃−)
{

∑i∈Z xi(yi−ỹi)

∑i=Z x2
i

}
/(w̃+− w̃−+Op(hn)) . This proves (4). Then (5) fol-

lows by plugging in yi = α +wiβ +x′iπ +ui and ỹi = α̃ + β̃wi and after rearrang-
ing terms.

Now we turn to the coefficient estimator of the covariate. First, define

Ψ̃w,x = w̃+− w̃−− ∑i∈Z xiwi

∑i∈Z x2
i

(
x̃+− x̃−

)
− ∑i∈Z xi

∑i∈Z x2
i

(
w̃+x̃−− x̃+w̃−

)
and observe that

α̃
∗ =

(w̃+ỹ−− ỹ+w̃−)− ∑i∈Z xiyi

∑i∈Z x2
i
(w̃+x̃−− w̃−x̃+)− ∑i∈Z wixi

∑i∈Z x2
i
(x̃+ỹ−− x̃−ỹ+)

Ψ̃w,x

β̃
∗ =

(ỹ+− ỹ−)− ∑i∈Z xiyi

∑i∈Z x2
i
(x̂+− x̂−)− ∑i∈Z xi

∑i∈Z x2
i
(ŷ+x̂−− x̂+ŷ−)

Ψ̃w,x

π̃
∗ =

(w̃+− w̃−) ∑i∈Z xiyi

∑i∈Z x2
i
− (ỹ+− ỹ−) ∑i∈Z xiwi

∑i∈Z x2
i
− ∑i∈Z xi

∑i∈Z x2
i
(ỹ−w̃+− w̃−ỹ+)

Ψ̃w,x
.

We obtain

α̃
∗ = α̃ +Op(hn)

β̃
∗ = β̃ +Op(hn)

π̃
∗ =

∑i∈Z xiyi

∑i∈Z x2
i
− β̃

∑i∈Z xiwi

∑i∈Z x2
i

+Op(hn).

It follows that

π̃
∗−π =

∑i∈Z xi

∑i∈Z x2
i

α +
(

β − β̃

)
∑i∈Z xiwi

∑i∈Z x2
i

+
∑i∈Z xiui

∑i∈Z x2
i
+Op(hn)

=
(

β − β̃

)
∑i∈Z xiwi

∑i∈Z x2
i

+
∑i∈Z xiui

∑i∈Z x2
i
+Op(hn).

Therefore we conclude

plimn→∞ (π̃∗−π) = plimn→∞

∑i∈Z xiui

∑i∈Z x2
i

and so π̃∗ is inconsistent when xi is endogenous, i.e. E [xiui|zi = z0] 6= 0.
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B. WALD ESTIMATOR EQUIVALENT TO THE LOCAL LINEAR
ESTIMATOR (PROOF OF THEOREM 3)

Without loss of generality, we let z0 = 0. First we note the local linear esti-
mators of the conditional means of y+(−) are given by

ŷ+ =
∑i∈Z ciyizi ∑i∈Z cizi−∑i∈Z ciz2

i ∑i∈Z ciyi

(∑i∈Z cizi)
2− (∑i∈Z ci)∑i∈Z ciz2

i

ŷ− =
∑i∈Z (1− ci)yizi ∑i∈Z (zi− cizi)−∑i∈Z (1− ci)yi ∑i∈Z

(
z2

i − ciz2
i
)

(∑i∈Z (zi− cizi))
2−
(
∑i∈Z

(
z2

i − ciz2
i

))
∑i∈Z (1− ci)

and the local linear estimators of other conditional means are obtained similarly.
The Wald estimator equivalent to the local linear estimator is obtained by IV or
2SLS estimation of

yi = α +bucizi +bl (1− ci)zi +βwi +πxi +ui

with ci being the excluded IV for wi. We let

yi = Z′iθ +πxi +ui

where Z′i = (1 cizi (1− ci)zi wi), Z̃i = (1 cizi (1− ci)zi ci)
′, and θ = (α bu bl β ).

We obtain [
θ̂ ∗

π̂∗

]
=

[
A11 A12
A21 A22

]−1[ q1
q2

]
where

[
A11 A12
A21 A22

]
=

[
∑i∈Z Z̃iZ′i ∑i∈Z Z̃ixi

∑i∈Z xiZ′i ∑i∈Z x2
i

]
and

[
q1
q2

]
=

[
∑i∈Z Z̃iyi

∑i∈Z xiyi

]
.

Using the inverse of the partitioned matrix, we obtain[
θ̂ ∗

π̂∗

]
=

[
A−1

11 +A−1
11 A12C22A21A−1

11 −A−1
11 A12C22

−C22A21A−1
11 (A22−A21A−1

11 A12)
−1

][
q1
q2

]
with C22 = (A22−A21A−1

11 A12)
−1 and that

θ̂
∗ = A−1

11 q1 +A−1
11 A12C22

(
A21A−1

11 q1−q2
)

.

Denote the estimator of θ by θ̂ when we do not include xi in the estimation and
observe that θ̂ = A−1

11 q1 by construction. It follows that

θ̂
∗ = θ̂ +A−1

11 A12C22

(
A21θ̂ −q2

)
.
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Now we consider the term A−1
11 A12. Note that

A−1
11 A12 =

(
∑

i∈Z
Z̃iZ′i

)−1

∑
i∈Z

Z̃ixi

which is the IV regression coefficient of xi on Zi with the instrumental variables
Z̃i. Define Z′1i = (1 cizi (1− ci)zi) and observe

A−1
11 A12 =

[
∑i∈Z Z1iZ′1i ∑i∈Z Z1iwi

∑i∈Z ciZ′1i ∑i∈Z ciwi

]−1[
∑i∈Z Z1ixi

∑i∈Z cixi

]
.

We let
[

a11 a12
a21 a22

]
=

[
∑i∈Z Z1iZ′1i ∑i∈Z Z1iwi

∑i∈Z ciZ′1i ∑i∈Z ciwi

]
,
[

d1
d2

]
=

[
∑i∈Z Z1ixi

∑i∈Z cixi

]
,

and using again the inverse of the partitioned matrix, we obtain that

A−1
11 A12 =

[
a−1

11 d1−a−1
11 a12

(
x̂+−x̂−
ŵ+−ŵ−

)
x̂+−x̂−
ŵ+−ŵ−

]

where x̂+(−) and ŵ+(−) are the local linear estimators of x+(−) and w+(−), re-
spectively. Now note

A21A−1
11 q1−q2 = A21θ̂ −q2

= α̂ ∑
i∈Z

xi + b̂u ∑
i∈Z

cixizi + b̂l ∑
i∈Z

(1− ci)xizi + β̂ ∑
i∈Z

xiwi−
n

∑
i=1

xiyi

=− ∑
i∈Z

xi(yi− ŷi)

where ŷi is the fitted value of yi in the Wald estimation equivalent to the local
linear estimation without including xi.

Next consider

C−1
22 = A22−A21A−1

11 A12

= ∑
i∈Z

x2
i − ∑

i∈Z
xiZ′1i

(
a−1

11 d1−a−1
11 a12

(
x̂+− x̂−

ŵ+− ŵ−

))
−
(

x̂+− x̂−

ŵ+− ŵ−

)
∑

i∈Z
xiwi

= ∑
i∈Z

x2
i − ∑

i∈Z
xiZ′1ia

−1
11 d1−

(
x̂+− x̂−

ŵ+− ŵ−

)(
∑

i∈Z
xiwi− ∑

i∈Z
xiZ′1ia

−1
11 a12

)
.
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Now observe that

∑i∈Z x2
i −∑i∈Z xiZ′1ia

−1
11 d1

∑i∈Z 1

=
∑i∈Z x2

i

∑i∈Z 1
− ∑i∈Z xiZ′1i

∑i∈Z 1

(
∑i∈Z Z1iZ′1i

∑i∈Z 1

)−1
∑i∈Z Z1ixi

∑i∈Z 1

is a consistent estimator of Var[xi|zi = z0] and also observe that

∑i∈Z xiwi−∑i∈Z xiZ′1ia
−1
11 a12

∑i∈Z 1

=
∑i∈Z xiwi

∑i∈Z 1
− ∑i∈Z xiZ′1i

∑i∈Z 1

(
∑i∈Z Z1iZ′1i

∑i∈Z 1

)−1
∑i∈Z Z1iwi

∑i∈Z 1

=
∑i∈Z xiwi

∑i∈Z 1
− ∑i∈Z xiZ′1i

∑i∈Z 1

(
∑i∈Z Z1iZ′1i

∑i∈Z 1

)−1(
∑i∈Z Z1iZ′1i

∑i∈Z 1

)(
∑i∈Z Z1iZ′1i

∑i∈Z 1

)−1
∑i∈Z Z1iwi

∑i∈Z 1

is a consistent estimator of Cov[xi,wi|zi = z0].
We therefore conclude

β̂
∗ =β̂ −

(
x̂+−x̂−
ŵ+−ŵ−

)
∑i∈Z xi(yi− ŷi)

∑i∈Z x2
i −∑i∈Z xiZ′1ia

−1
11 d1−

(
x̂+−x̂−
ŵ+−ŵ−

)(
∑i∈Z xiwi−∑i∈Z xiZ′1ia

−1
11 a12

)
=β̂ −

(x̂+− x̂−) ∑i∈Z xi(yi−ŷi)

∑i∈Z x2
i

(ŵ+− ŵ−) V̂ar[xi|zi=z0]

Ê[x2
i |zi=z0]

− (x̂+− x̂−) Ĉov[xi,wi|zi=z0]

Ê[x2
i |zi=z0]

where Ê[x2
i |zi = z0] = ∑i∈Z x2

i /∑i∈Z 1. This proves (9).
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