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1. INTRODUCTION

Bargaining theory studies the fundamental determinants of price formation
in a decentralized economy. The standard practice in this literature is to assume
that the bargaining parties are fully rational who can therefore work through and
implement potentially very complex computations and behavior. In this paper,
I demonstrate the implications of a small departure from this rationality frame-
work on bargaining behavior in a particular strategic setting.

Specifically, I consider the non-stationary bargaining model analyzed by Che
and Sákovics (2004) in which the size of the surplus increases with the bargain-
ers’ investments. This model was proposed to understand bilateral exchanges
that feature relationship-specific investments and hold-up problems. For exam-
ple, in firm-worker and manufacturer-supplier relationships, the agents often ac-
cumulate capital that disproportionately benefit the surplus from their transaction
with each another.

In contrast to the previous model, the bargaining players in this paper have
a preference for simpler strategies at the margin. The notion of strategic com-
plexity that I invoke is that of state complexity proposed by Abreu and Rubin-
stein (1988), adapted to alternating-offers bargaining setup by Lee and Sabourian
(2007). According to this definition, a strategy is more complex than another
strategy if the former conditions its behavior more on past histories than the lat-
ter.

The introduction of such boundedly rational players results in substantial re-
duction of the Nash equilibrium set of the bargaining game. The main result
of the paper establishes that, with lexicographically complexity-averse players,
the non-stationary bargaining game only admits equilibria in which the players
use Markov strategies that only depend on payoff-relevant aspects of past his-
tory, namely, the level of investments accumulated. In their analysis, Che and
Sákovics (2004) constructed a Markov perfect equilibrium that attains efficiency
asymptotically as common discount factor goes to 1.

Complexity considerations have been invoked in various other dynamic games
to select among multiple equilibria (e.g. see the survey of Chatterjee and Sabourian,
2009). In contrast to most of the previous works in this literature, I consider a
game that features non-stationarity and derive simple Markov behavior in equi-
librium. Also, this paper is related to the recent literature on firm behavior with
bounded rational consumers. In particular, consumer loss aversion has been
shown to generate optimal pricing that is simpler than with standard rational
consumers in various settings (e.g. Heidhues and Kőszegi, 2008; Hahn, Kim,
Kim and Lee, 2014). Albeit in a different bargaining context, the present pa-
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per demonstrates another channel via which price formation results from simple
behavior.

The remainder of the paper is organized as follows. Section 2 describes the
bargaining game with investments. Section 3 formally introduces the notions
of machine game, strategic complexity and equilibrium refinement. Section 4
contains the main results. Section 5 concludes.

2. THE MODEL

The following describes the bargaining game with investments analyzed by
Che and Sákovics (2004). Two players, indexed by i = 1,2, bargain over a sur-
plus that itself is a function of their cumulative relationship-specific investments.
Time horizon is potentially infinite and indexed by t = 1,2, . . .. The common
discount factor is δ ∈ (0,1). The players’ reservation payoffs, which are inde-
pendent of their investments, are normalized to zero.

Let V1 = [0, v̄1] and V2 = [0, v̄2] be the feasible sets of cumulative investments
for players 1 and 2 respectively. Let V ≡ V1×V2 and v = (v1,v2) ∈ V denote a
pair of cumulative investments. If the players trade in period t, with cumulative
investments of v up to, and including, that period, the realized surplus is given
by φ(v) (or δ t−1φ(v) in period 1 terms).

The extensive form is as follows. In period 1, the players first choose in-
cremental investment levels simultaneously. Let wi ∈Vi denote player i’s invest-
ment choice and I assume that this is measured by the associated costs, which
are incurred at the time of investment. The players cannot disinvest. Once the
investments are sunk and observed publicly, player 1 makes a proposal x ∈ 42

where42 ≡ {x = (x1,x2) | x1 +x2 = 1}, i.e. how to split the surplus available in
the period, which player 2 can either accept (Y ) or reject (N). Acceptance ends
the game with trade taking place according to the agreed partition of the avail-
able surplus; rejection takes the game onto the next period in which the same
extensive form is repeated except that player 2 is the proposer.1

Let T denote the end of the game and wt
i player i’s investment choice in

period t. If the players reach an agreement on partition z = (z1,z2) ∈ 42 in
period T < ∞, player i’s (discounted) payoff in the game is δ T−1ziφ(v1,v2)−
∑

T
t=1 δ t−1wt

i , where vi = ∑
T
t=1 wt

i . If an agreement is never reached (I describe
this by setting T = ∞), player i’s corresponding payoff is −∑

∞
t=1 δ t−1wt

i .

1For their main analysis, Che and Sákovics (2004) actually present a different extensive form
in which the identity of the proposer is chosen by nature in each period. However, as they note
themselves, their central insights remain unaltered for the alternating-offers case that I assume.
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In specifying the players’ strategies (and later machines) for this game, I for-
mally distinguish between the different roles played by each player every two
periods (beginning with an odd one), or in a “stage”. He can be either the pro-
poser (p) or the responder (r) in a given period. I index a player’s role by k.

In order to define a strategy, I first need to introduce some further notation.
I use the following convention. Whenever superscripts/subscripts i and j both
appear in the same exposition, I mean i, j = 1,2 and i 6= j. Similarly, whenever
I use superscripts/subscripts k and l together, I mean k, l = p,r and k 6= l.

I refer to e as an outcome that can occur within a period, and this belongs to
the set

E = {(w1,w2,xi,Y ),(w1,w2,xi,N)}w1∈V1,w2∈V2,xi∈42,i=1,2,

where i is the identity of the proposer in the period. Let et be the outcome of
period t.

I define a partial history, d, within a period as an element in the set

D = { /0,(w1,w2),(w1,w2,xi)}w1∈V1,w2∈V2,xi∈42,i=1,2,

where, for example, /0 refers to the beginning of the period at which the players
decide how much incremental investments to make and (w1,w2,xi) is the partial
history of investments (w1,w2) by the two players followed by player i’s offer
xi. Also, let us define

Dik ≡ {d ∈ D | it is i’s turn to play in role k after d in the period}.

Thus, I have

Dip = { /0,(wi,w j)}wi∈Vi,w j∈Vj

Dir = { /0,(wi,w j,x j)}wi∈Vi,w j∈Vj,x j∈42 .

I denote the set of actions available to player i in the game by

Ci ≡Vi∪42∪Y ∪N .

Let Cik(v,d) denote the set of actions available to player i given his role k, the
level of cumulative investments v = (v1,v2) ∈ V up to the current date and a
partial history d ∈ Dik within the date. Thus, I have

Cip(v,d) =

{
[0,vi− vi] if d = /0
42 if d = (wi,w j)

Cir(v,d) =

{
[0,vi− vi] if d = /0
Y ∪N if d = (wi,w j,x j).
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Let Ht be the set of all possible histories of outcomes at the beginning of
period t, excluding those that have resulted in an agreement. Thus, Ht ⊆ Et−1

(t−1-fold Cartesian product of E) for any t > 1 and H1 = /0 is the initial empty
(trivial) history. Let H∞ ≡ ∪∞

t=1Ht .
For the analysis, I divide H∞ into two smaller subsets according to the differ-

ent roles that the players take up in each stage. Let Ht
ik be the set of all possible

histories over t periods after which player i’s role is k. Notice that Ht
ik = Ht

jl .
Also, let H∞

ik = ∪∞
t=1Ht

ik. Thus, H∞ = H∞
ip∪H∞

ir (i = 1,2).
The present bargaining game is not stationary since the surplus itself depends

on history. The payoff-relevant aspect of a history amounts to the pair of cumu-
lative investments that the two players have incurred up to the period. Thus, it is
natural to write a strategy for player i, denoted by fi, as

fi : (H∞
ip×V ×Dip)∪ (H∞

ir ×V ×Dir)→Ci

such that for any (h,v,d) ∈ H∞
ik ×V ×Dik I have fi(h,v,d) ∈Cik(v,d). The set of

all strategies for player i is denoted by Fi. Also, I denote by F t
i the set of player

i’s strategies in the game starting with role distribution given in period t.
I define a Markov strategy in the following way.

Definition 1. A strategy fi is Markov if and only if fi(h,v,d)= fi(h′,v,d) ∀h,h′ ∈
H∞

ik , ∀v ∈ V and ∀d ∈ Dik for k = p,r. A strategy profile f is Markov if fi is
Markov ∀i.

The behavior induced by such a strategy may depend on the level of cumula-
tive investments up to the period and the partial history within the current period
but not on the history of the game up to the period.

3. MACHINES, COMPLEXITY AND EQUILIBRIUM

In order to facilitate the complexity approach, I now consider the “machine
game”. Extending the approach of Lee and Sabourian (2007), a strategy in the
game can be equivalently represented by the following machine (or “automa-
ton”) that employs two sub-machines.

Definition 2. For each player i, a machine (automaton), Mi = {Mip,Mir}, con-
sists of two sub-machines Mip = (Qip,q1

ip,λip,µip) and Mir = (Qir,q1
ir,λir,µir)
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where, for any k, l = p,r,

Qik is the set of states;

q1
ik is the initial state belonging to Qik;

λik : Qik×V ×Dik→Ci is the output function such that

λik(qik,v,d) ∈Cik(v,d) ∀qik ∈ Qik,∀v ∈V and ∀d ∈ Dik; and

µik : Qik×V ×E→ Qil is the transition function.

Let Φi denote the set of player i’s machines in the machine game. I also let
Φt

i denote the set of player i’s machines in the machine game starting with role
distribution given in period t.

Each sub-machine in the above machine definition consists of a set of distinct
states, an initial state, an output function enabling a player to play a given role
and a transition function that takes a state from one sub-machine to a state in
the other sub-machine (as roles are reversed). It is straightforward to establish
that machines and strategies are equivalent in this setup; see Lee and Sabourian
(2007) for a formal discussion on this.

I assume that each sub-machine has to have at least one state.2 But, notice
that I do not assume finiteness of a machine; each sub-machine may have any
arbitrary, possibly infinite, number of states. This contrasts with Abreu and Ru-
binstein (1988) and others who consider only finite automata. Assuming that
machines can only have a finite number of states imposes a restriction on the
players’ choice of strategies.

The following defines a minimal machine.

Definition 3. A machine is minimal if and only if each of its sub-machines has
exactly one state.

A minimal machine implements the same actions in every period regardless
of the history of the preceding periods, given the level of cumulative investments
and the partial history (for each role). Thus, it corresponds to a Markov strategy
as in Definition 1. I henceforth refer to a minimal machine (profile) interchange-
ably as a Markov machine (profile).

Let ‖Mi‖ = ∑k |Qik| be the total number of states (or size) of machine Mi.
I now formally define the notion of state complexity in terms of machines, as

2The initial state of the sub-machine that operates in the second period is in fact redundant
because the first state used by this sub-machine depends on the transition taking place betIen the
first two periods of the game. Nevertheless, I endow both sub-machines with initial state for
expositional ease. Also, I could specify a distinct terminal state that a machine enters when an
agreement is reached. This is immaterial.
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adopted in the literature on repeated games played by automata (Abreu and Ru-
binstein, 1988).3

Definition 4 (State complexity). M′i is more complex than Mi if ‖M′i‖> ‖Mi‖.

To wrap up the description of the machine game, let us fix some more
notational convention. If M = (M1,M2) is the chosen machine profile, T (M)
refers to the end of the game; z(M) ∈ 42 is the agreed partition of the final
surplus if T (M) < ∞; xt(M) ∈ 42 is the partition offered in period t < T (M);
vt(M) = (vt

1(M),vt
2(M))∈V is the cumulative investment pair reached at the be-

ginning of period t ≤ T (M); v(M) ∈V is the final surplus available; wt
i(M) ∈Vi

is the (incremental) investment made by i in period t < T (M); and qt
i(M) is the

state of player i’s machine appearing in period t ≤ T (M) (the state of the active
sub-machine in period t).

Similarly, I denote by π t
i (M) player i’s (discounted) continuation payoff at

period t ≤ T (M) when the machine profile M is chosen. Thus, I have

π
t
i (M) =

{
−∑

∞
s=t δ s−tws

i (M) if T (M) = ∞

δ T (M)−tzi(M)φ(v(M))−∑
T (M)
s=t δ s−tws

i (M) if t ≤ T (M)< ∞.

I use the abbreviation πi(M)≡ π1
i (M).

For ease of exposition, the argument in M will sometimes be dropped when I
refer to one of these variables that depends on the particular machine profile. For
example, π t

i will mean π t
i (M). Unless otherwise stated, the abbreviated variable

will refer to the machine profile in the claim.
I now introduce an equilibrium notion that captures the players’ preferences

for less complex machines at the margin. Complexity enters each player’s pref-
erences lexicographically.

Definition 5. A machine profile M∗ = (M∗1 ,M
∗
2) constitutes a Nash equilibrium

of the machine game (NEM) if ∀i

(i) πi(M∗i ,M
∗
j )≥ πi(M′i ,M

∗
j ) ∀M′i ;

(ii) 6 ∃ M̃i such that πi(M̃i,M∗j )≥ πi(M′i ,M
∗
j ) ∀M′i and ‖M∗i ‖> ‖M̃i‖.

Under this definition, the complexity consideration only enters a player’s
choice of strategy when there are multiple best responses to his opponent’s strat-
egy. By definition, any NEM profile is a Nash equilibrium of the underlying
bargaining game. The cost of complexity is in implementation, rather than com-
putation, of a strategy.

3Kalai and Stanford (1988) established a formal equivalence between the state complexity
notion and the number of continuation strategies of the underlying strategy of a machine.
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4. NEM RESULTS

Let us present the implications of complexity requirements in the model. The
results below are all independent of the discount factor δ .

First, suppose that there exists a state in some player’s equilibrium (NEM)
machine that never appears on the equilibrium path. Unless the machine is mini-
mal, however, this cannot be possible because this state can be “dropped” by the
player to reduce the complexity of his behavior without affecting the outcome
and payoff, thereby contradicting the NEM assumption. That is, there exists an-
other machine identical to the original equilibrium machine except that it has
one less state which, given the other player’s equilibrium machine, will generate
the same outcome/payoffs. This argument immediately leads to the following.

Lemma 1. Suppose that M∗ = (M∗1 ,M
∗
2) is a NEM. Then, I have the following:

(i) If T (M∗) ≥ 2, then every state in each player’s machine appears on the
equilibrium path;

(ii) If T (M∗)≤ 2, then M∗1 and M∗2 are minimal.

Second, if an equilibrium induces perpetual disagreement, the equilibrium
machines must also be minimal. The reasoning is straightforward. Such an
equilibrium generates at most zero payoff and, hence, if an equilibrium machine
was not minimal, the corresponding player could adopt another minimal machine
which never invests and always demands the whole surplus while rejecting any
offer that gives him less than the whole surplus. This deviation guarantees him
at least zero payoff while involving less complexity.

Lemma 2. Suppose that M∗ = (M∗1 ,M
∗
2) is a NEM such that T (M∗) = ∞. Then,

M∗ is minimal.

Next, since any NEM profile M∗= (M∗1 ,M
∗
2) is a Nash equilibrium of the un-

derlying game, I have πi(M∗i ,M
∗
j ) = max fi∈Fi πi( fi,M∗j ) for any i, j, where, with

some abuse of notation, πi( fi,M∗j ) refers to i’s payoff in the game played by i and
j according to fi and M∗j , respectively. More generally, NEM machines must be
best responses (in terms of payoffs) along the equilibrium path. Formally, for
any M = (Mi,M j), let vτ ≡ vτ(M) and qτ

j ≡ qτ
j(M); define M j(vτ ,qτ

j) as the ma-
chine identical to M j except that it plays the game with cumulative investments
vτ , starting with the sub-machine that would operate in period τ and initial state
qτ

j . Also, with some further abuse of notation, let πi( fi,M j(vτ ,qτ
j)) be i’s pay-

off in the game that begins with cumulative investments vτ and role distribution
as in period τ , and is played by i and j according to fi ∈ Fτ

i and M j(vτ ,qτ
j),

respectively. I then obtain the following.
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Lemma 3. Suppose that M∗ = (M∗1 ,M
∗
2) is a NEM. Then, ∀i, j and ∀τ ≤ T (M∗),

πτ
i (M

∗) = max fi∈Fτ
i

πi( fi,M∗j (v
τ ,qτ

j)).

Proof. Suppose not. Then, for some i and τ ≤ T (M∗), there exists another ma-
chine M̃i ∈Φτ such that

π
τ
i (M

∗)< πi(M̃i,M∗j (v
τ ,qτ

j)).

Consider player i using at the outset of the game another machine M′i =
{M′ip,M′ir} where, for k = p,r, M′ik = (Q′ik,q

1′
ik ,λ

′
ik,µ

′
ik). This machine is con-

structed as follows.
Let et be the outcome in period t when M∗ is chosen. Also, as usual, let

vt ≡ vt(M∗) and qt
i ≡ qt

i(M
∗). Then, for every t < τ and k = p,r, fix a distinct

state q′i(t) ∈ Q′ip∪Q′ir such that

λ
′
ik(q

′
i(t),v,d) = λ

∗
ik(q

t
i,v,d) ∀v ∈V,d ∈ Dik.

The transition function of the new machine is such that

µ
′
ik(q

′
i(t),v

t ,et) =

{
q′i(t +1) ∀t < τ−1

q̃ for t = τ−1,

where q̃ is another distinct state such that M′i(v
τ , q̃) = M̃i.

Thus, M′i played against M∗j replicates the same outcome path as M∗i up to
τ , followed by activation of M̃i at period τ . It then follows that πi(M′i ,M

∗
j ) >

πi(M∗i ,M
∗
j ). But this contradicts the NEM assumption.

Now it follows that if a state belonging to a player’s equilibrium machine
appears twice on the outcome path then the cumulative investments reached at
the beginning of the two corresponding periods must be different (and hence the
continuation games differ across the two periods); otherwise, the other player’s
continuation payoffs must be equal to zero at both periods.

Lemma 4. Suppose that M∗ = (M∗1 ,M
∗
2) is a NEM. Then, for any i and any

t, t ′ ≤ T (M∗), if qt
i(M

∗) = qt ′
i (M

∗), I have either (i) vt(M∗) 6= vt ′(M∗) or (ii)
vt(M∗) = vt ′(M∗) and π t

j(M
∗) = π t ′

j (M
∗) = 0.

Proof. Suppose that, for some i and t, t ′ ≤ T (M∗), I have that qt
i(M

∗) = qt ′
i (M

∗)
and vt(M∗) = vt ′(M∗). Let t ′ > t.

Then, by Lemma 3, it follows that π t
j(M

∗) = π t ′
j (M

∗) , or

π
t
j = δ

t ′−t
π

t ′
j −

t ′−1

∑
s=t

δ
s−tws

j = π
t ′
j .
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But, since vt = vt ′ , ws
j = 0 for every integer s ∈ [t, t ′− 1] and, therefore, with

δ < (0,1), it must be that π t
j = π t ′

j = 0.

The next Lemma establishes that, if one of the sub-machines of a NEM ma-
chine employs only one state, every other equilibrium sub-machine must also
employ only one state.

Lemma 5. Suppose that M∗ = (M∗1 ,M
∗
2) is a NEM. Suppose also that, for some

i and k, |Q∗ik|= 1. Then, M∗ is minimal.

Proof. Suppose not. Given Lemmas 1 and 2, I restrict attention to the case of
2 < T < ∞. Suppose that i plays role k in T , |Q∗ik| = 1 and M∗j is not mini-
mal. (The other cases can be treated similarly to below.) Also, define tik = {t ≤
T | i plays role k}.

First, it must be that vt 6= vt ′ for any t, t ′ ∈ tik. Otherwise, by Lemma 4 above,
I have π t

j = π t ′
j = 0 and, hence, π j ≤ 0. Then, by the same arguments as those

behind Lemma 2, M∗j must be minimal.
Second, since vt 6= vt ′ for any t, t ′ ∈ tik, it immediately follows that vs 6= vs′

for any s,s′ ∈ t jk = {t ≤ T | j plays role k}.
Now, instead of M∗j , consider j using a minimal machine, M′j, constructed in

the following way. The two sub-machines, M′jk and M′jl , each employ one state,
qk and ql , such that

• λ ′jk(qk,vt ,d)= λ ∗jk(q
t
j,v

t ,d) ∀t ∈ t jk,d ∈D jk and λ ′jl(ql,vt ,d)= λ ∗jl(q
t
j,v

t ,d)
∀t ∈ t jl,d ∈ D jl;

• µ ′jk(qk,vt ,et) = ql ∀t ∈ t jk and µ ′jl(qk,vt ,et) = qk ∀t ∈ t jl .

Since vt is distinct along the original equilibrium path for every t ≤ T , the new
machine replicates exactly the same outcome as M∗j played against M∗i . But,
‖M∗j ‖> ‖M′j‖. This contradicts NEM.

I am now ready to present this paper’s main result on NEM and Markov
behavior. Given Lemmas 1 and 2, it suffices to consider the case in which a
NEM induces an agreement in a finite time after the first two periods. My proof
uses the following arguments case by case. If the last period occurs beyond the
first stage of the game and the NEM profile is not minimal, by Lemma 5, every
sub-machine in the profile must itself employ more than one state. Then, one of
the two players must be able to drop a state in one of his sub-machines and find
another state in that sub-machine to condition his behavior in periods where this
dropped state would operate such that the outcome of the game is not affected.
This however reduces complexity of the machine.
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Proposition 1. Every NEM profile M∗ is minimal and, hence, Markov.

Proof. Suppose not. So, suppose that M∗ is not minimal. Given Lemmas 1 and
2, I focus on the case of 2 < T < ∞. Let i be the proposer, j the responder and
z ∈ 42 the accepted partition in period T . Also, as before, define tik = {t ≤
T | i plays role k}. Given Lemma 5, assume that M∗jr has more than one state.

I consider the following cases in turn.

Case A: qT
j 6= qt

j for any t ∈ tip.
Case A1: vT 6= vt ∀t ∈ tip.
But then, consider j using another machine M′j = {M′jp,M

′
jr} where, for k =

p,r, M′jk = (Q′jk,q
1′
jk,λ

′
jk,µ

′
jk) which is identical to M∗j except that:

• qT
j is dropped (i.e. Q′jr = Q∗jr\{qT

j });

• the transition function is such that µ ′jp(q
T−1
j ,vT−1,eT−1) = q j 6= qT

j for
some arbitrary but fixed q j ∈Q′jr (such q j exists since I have |Q∗jr|> 1 and
qT

j is distinct by assumption);

• the output function is such that λ ′jr(q j,vT ,(wT
i ,w

T
j ,z)) = Y .

Since qT
j is distinct and the cumulative investment pair vT is not reached at

any period before T on the original equilibrium path when i proposes, playing
the new machine against M∗i does not affect the outcome and payoff. But, qT

j is
dropped and therefore I have ‖M∗j ‖> ‖M′j‖. This contradicts NEM.

Case A2: vT = vτ for some τ ∈ tip.
In this case, first notice that (wτ

1,w
τ
2,x

τ) 6= (wT
1 ,w

T
2 ,z). Otherwise, since

δ < 1, j could improve his payoff by accepting the offer at τ .
Now, let τ∗ be the earliest period in tip at which vτ∗ = vT . Consider j using

another machine M′j = {M′jp,M
′
jr}, which is identical to M∗j except that:

• qT
j is dropped (i.e. Q′jr = Q∗jr\{qT

j });

• the transition function is such that µ ′jp(q
T−1
j ,vT−1,eT−1) = qτ∗

j ;

• the output function is such that λ ′jr(q
τ∗
j ,v

T ,(wT
1 ,w

T
2 ,z)) = Y .

Since qT
j is distinct and (wτ∗

1 ,wτ∗
2 ,xτ∗) 6= (wT

1 ,w
T
2 ,z), playing the new ma-

chine against M∗i does not affect the outcome and payoff. But, qT
j is dropped and

therefore I have ‖M∗j ‖> ‖M′j‖. This contradicts NEM.
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Case B: qT
j = qτ

j for some τ ∈ tip.

Case B1: vT = vτ .
In this case, by Lemma 4, πT

i = πτ
i = 0. Then, I must also have πi ≤ 0 and,

therefore, M∗i must be minimal. The claim follows immediately from Lemma 5.

Case B2: vT 6= vτ .
Let qT

j = qτ
j = q∗. There are further two sub-cases to consider.

First, consider the case in which there exists some s ∈ tip such that q∗ 6=
qs

j ∈ Q∗jr and I have either vs 6= vτ or es 6= eτ . Consider j using another machine
M′j = {M′jp,M

′
jr}, which is identical to M∗j except that:

• qT
j is dropped (i.e. Q′jr = Q∗jr\{q∗});

• the transition function is such that

µ
′
jp(q

T−1
j ,vT−1,eT−1) = µ

′
jp(q

τ−1
j ,vτ−1,eτ−1) = qs

j

µ
′
jr(q

s
j,v

τ ,eτ) = qτ+1
j ;

• the output function is such that

λ
′
jr(q

s
j,v

T ,(wT
1 ,w

T
2 ,z)) = Y

λ
′
jr(q

s
j,v

τ ,(wτ
1,w

τ
2,x

τ)) = λ
∗
jr(q
∗,vτ ,(wτ

1,w
τ
2,x

τ)).

It is straightforward to verify that M′j generates the same outcome path against
M∗i as M∗j but it is less complex. This is a contradiction.

Second, consider the remaining case in which, for any s ∈ tip with qs
j 6= q∗, I

have vs = vτ and es = eτ . In this case, it must be that for all t ≤ τ , wt
i = wt

j = 0
and vt = 0. Moreover, since vT 6= vτ , it must be that, for some τ < t ′ < T , either
wt ′

i > 0 or wt ′
j > 0.

Without loss of generality, suppose that i is such a player and his role in t ′ is
k. By Lemma 5, |Q∗ik|> 1. Then, since λ ∗ik(q

t ′
i ,v

t ′ , /0) = wt ′
i > 0, there must exist

some s′ ∈ tik such that qs′
i 6= qt ′

i ∈ Q∗ik while vs′ 6= vt ′
i or es′ 6= et ′ .

Now, consider i deviating from M∗i . The deviating machine, M′j, is identical
to M∗i except that:

• qt ′
i is dropped (i.e. Q′ik = Q∗ik\{qt ′

i });

• the transition function is such that, for any s ∈ tik such that qs
i = qt ′

i ,

µ
′
il(q

s−1
i ,vs−1,es−1) = qs′

i

µ
′
ik(q

s′
i ,v

s,es) = qs+1
i ;
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• the output function is such that, for any s ∈ tik such that qs
i = qt ′

i and for
any d ∈ Dik,

λ
′
ik(q

s′
j ,v

s,d) = λ
∗
ik(q

s
j,v

s,d).

It is straightforward to verify that M′i generates the same outcome path against
M∗j as M∗i but it is less complex. This is a contradiction.

5. CONCLUDING DISCUSSION

In this paper, I have invoked complexity considerations to justify Markov
behavior in a particular non-stationary environment where two players bargain
over a surplus which is itself a function of their investments. Adopting the no-
tion of state complexity, players’ preferences for less complex strategies only at
the margin, namely, lexicographic preferences, yield the result that every Nash
equilibrium of the game must be Markov.

Multiple equilibria may still exist among Markov strategies, however. The
set of such equilibria will in general depend on the precise structure of how
the players’ investments affect the level of surplus, although the derivation of
Markov behavior is not affected in any way by this. Che and Sákovics (2004)
demonstrated a Markov perfect equilibrium that attains efficiency asymptotically
as δ goes to 1.

Several potential research questions remain. In particular, one would like to
learn if refinements based on complexity arguments will select Markov behavior
also in other non-stationary games. In the bargaining game considered in this pa-
per, a crucial feature is that the players cannot disinvest. This restricts the paths
of how the continuation game can evolve and, hence, allows only marginal com-
plexity requirements to deliver the result. Tackling other non-stationary dynamic
games, such as the bargaining models of Merlo and Wilson (1995) and Lee and
Liu (2013), for instance, poses an interesting direction for future research.
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