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Seminonparametric Methods for Modeling
Conditional Volatility of Exchange Rate
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Abstract We employ a seminonparametric (SNP) methodology in character-
izing the conditional density of the exchange rate changes. The model selection
procedure based on the BIC is used by moving upward along an expansion path.
We find the semiparametric AR(4)-GARCH(2,2) model for the KRW/USD re-
turns and the semiparametric AR(1)-GARCH(2,2) model for the JPY/USD re-
turns as the BIC preferred SNP models. Simulations from the BIC minimiz-
ing SNP models seem to appropriately mimic the actual data. The time depen-
dent heterogeneity of the actual data is recognized by the simulations from the
semiparametric AR-GARCH-type models and the nonlinear nonparametric AR-
GARCH-type models. We show that it is important to take departures from the
Gaussianity of the data into account in specifying conditional heterogeneity of
the exchange rate returns process. We also provide evidence on the benefits from
using the SNP models in estimating the conditional density function via simula-
tions.
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1. INTRODUCTION

Since the seminal work of Engle (1982), the assumption of conditional nor-
mality has been the norm in modeling the conditional distribution of asset re-
turns. The success of the GARCH model by Bollerslev (1986) is attributed to
the fact that GARCH model and its variant models can be fit to the leptokurtic
data that have a higher peak near zero and fatter tails than a normal distribution
even under the assumption of conditional normality. Furthermore, Bollerslev
(1987) shows the conditional leptokurtosis in the stock market index returns un-
der the assumption of t-distributed disturbances and proves the existence of the
serial dependence in the data. Gallant et al. (1991) uncover the sources of con-
ditional leptokurtosis in the exchange rate changes and use a semiparametric
method to model conditional heterogeneity in the variance and departures from
the normality of the process.

As an alternative approach to conditional heterogeneity of higher moments
in explaining fat-tailed and non-normal distributed asset returns, Bollerslev et
al. (2013) take note of variance risk premium dynamics. This approach has
been taken from the perspective that the variance risk premium is priced at the
aggregate market level and that the dynamics of the variance risk premium is
time dependent. The sources of the time-varying realized market variance lie
in the occurrence of unanticipated market jumps. Therefore, the jumps in the
stochastic volatility and their temporal dependence may induce heavy tails and
non-normal behavior in asset returns. Similarities in this approach can be found
in the SNP methodology of conditional distribution estimation in the sense that
semiparametric modeling procedure has been taken due to the lack of agreement
on the parametric specification for the jumps in the stochastic volatility.

In exercising the numerical optimization to estimate the parameters of the
semiparametric component of nonlinear structural models, it is important to de-
termine a truncation point for a series expansion. Gallant (1981) propose the
Fourier flexible form, a Fourier series expansion with a leading quadratic term,
and Elbadawi, Gallant and Souza (1983) show that the Fourier flexible form
along with deterministic and adaptive rules for choosing the truncation point can
consistently estimate the parameters of an unknown function form. Eastwood
and Gallant (1991) consider deterministic and adaptive procedures for selecting
the truncation point to use a parametric method for estimating a nonlinear mul-
tivariate regression model. Gallant and Tuachen (1989) employ a Hermite ex-
pansion to test for the misspecification of the intertemporal capital asset pricing
model with time separable utility restriction. Gallant, Hsieh and Tauchen (1991)
apply a SNP procedure with a truncated Hermite expansion with an ARCH lead-
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ing term to produce a consistent estimate of the conditional density. Gallant,
Rossi and Tauchen (1992) use a SNP method to investigate the joint dynamics
of stock price changes and volume, and find empirical regularities concerning
the interactions between stock prices and volume. Davidian and Gallant (1993)
propose a maximum likelihood method to estimate the parameters of a truncated
series expansion of the density due to Gallant and Nychka (1987). Coppejans
and Gallant (2002) show efficacy of the hold-out-sample cross-validation strate-
gies compared to maximum likelihood truncation rules such as BIC in locating a
truncation point for the SNP density estimator. Yi (2014) applies nonparametric
realized volatility model to describe discrete jumps in the US stock market.

It is generally the case in empirical studies that not enough of precise para-
metric information is specified by the economic theory even though a variety of
parametric estimation procedures are developed. The mathematical procedure
such as a series expansion methodology can be utilized in order to apply an ap-
propriate parametric procedure to estimate a parametric function. The purpose of
this paper is to show a seminonparametric (SNP) methodology in characterizing
the conditional density of exchange rate changes.

This paper aims to model the conditional density function of the two ex-
change rate returns processes, the KRW/USD returns and the JPY/USD returns
process. The SNP conditional density is a nonlinear nonparametric model which
can accommodate not only the Gaussian component of the Gaussian VAR model
and Gaussian ARCH/GARCH model but also deviations from the Gaussianity
of the semiparametric VAR model and semiparametric ARCH/GARCH model
depending on the value of the tuning parameters of the Hermite polynomial.

The results of this paper show that the GARCH model with conditionally
normal, Students t, or the generalized error distribution cannot fully account
for the observed leptokurtosis in the exchange rate returns processes. We in-
vestigate the SNP method to model conditional heterogeneity and nonlinear dy-
namics in the returns process, however, our main concern lies in taking note of
non-normality which proved to be difficult to capture with GARCH model.

The main contributions of the paper are two-fold. First, we show that it is im-
portant to take departures from the Gaussianity of the data into account in speci-
fying conditional heterogeneity of the exchange rate returns process. Second, we
provide evidence on the benefits from using the SNP models in estimating the
conditional density function via simulations. We evaluate the qualitative perfor-
mance of the SNP methodology in approximating conditional density functions
and reproducing statistical characteristics of observed data. We also investigate
whether outliers in returns are observed more frequently than would be implied
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Figure 1: ACF of KRW/USD returns and squared returns
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Figure 2: ACF of JPY/USD returns and squared returns
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by the ARCH/GARCH type models calibrated to the data. This approach is
motivated by the observation that the conditional heterogeneity of time series
processes can be described by the SNP conditional density.

The organization of the article is as follows. Section 2 presents statistical
tests for the data and the modeling strategies for fitting the SNP models. We also
present diagnostic test results on the standardized residuals from the estimated
SNP models in this section. Simulation evidence on mimicking the actual data
is provided in the section. Section 3 concludes the discussion.
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Table 1: Descriptive statistics for the exchange rate changes

KRW/USD JPY/USD
A. Index returns
Mean 0.00 0.00
Standard Deviation 0.01 0.01
Skewness -0.87 -0.37
Kurtosis 121.61 8.71
Minimum -0.20 -0.07
Maximum 0.14 0.05
ARCH(20) LM test 1664.26 (0.00) 361.73 (0.00)
Q(20) on the rate changes 836.35 (0.00) 46.29 (0.00)
B. Squared exchange rate changes
Q(20) on the squared rate changes 4708.22 (0.00) 693.78 (0.00)

Note: The ARCH(20) test reports the Engle (1982) Lagrange multiplier test for
ARCH(q) effects for q lags. The entries in the parentheses are the p-values. The Q(20)
stands for the modified Ljung-Box Q-statistic for up to twentieth-order serial correlation
in the exchange rate changes and the squared exchange rate changes.

2. MODEL AND ESTIMATION RESULTS

2.1. DATA

The data used in the study consist of daily observations of the nominal ex-
change rate (the Korean won per U.S. dollar and the Japanese yen in terms of the
U.S. dollar) and run from August 7, 1991 to January 22, 2013, a total of 5,600
data points. We produce both the autocorrelation functions of the exchange rate
changes and of the squared exchange rate changes in Figures 1 and 2. The dotted
lines in the figures indicate the Bartlett asymptotic standard errors.

The autocorrelations of the squared returns are significant at least up to lag
24, which indicates that the volatilities of the exchange rate changes are time
varying and serially correlated. That is, we expect the autocorrelation function
is nonconstant. The descriptive statistics of the data are reported in Table 1.
The two returns processes are leptokurtic and negatively skewed, meaning that
they are more likely to have extreme negative returns than positive ones. The
modified Ljung-Box tests for serial correlation in the returns process and the
squared returns process for both exchange rate changes are significant under the
1% significance level, meaning that the statistics indicate first and second order
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Table 2: GARCH(1,1) Model yt = c+ εt ,ht = ω +αε2
t−1 + βht−1 estimation

results

KRW/USD JPY/USD
A. Estimation
ĉ 0.00 (0.30) 0.00 (0.40)
ω̂ 0.00 (0.00) 0.00 (0.00)
α̂ 0.10 (0.00) 0.05 (0.00)
β̂ 0.91 (0.00) 0.93 (0.00)
ω̂/(1− α̂− β̂ ) -0.000002 0.000048
B. Specification test
Jarque-Bera 48581 (0.00) 2169 (0.00)
Q(12) on the standardized residuals 48.47 (0.00) 20.86 (0.05)
Q(12) on the sq. standardized residuals 3.56 (0.99) 8.42 (0.75)
T R2 3.50 (0.99) 8.42 (0.75)

Note: The table shows the GARCH(1,1) model fit to the full sample of data. The en-
tries in parentheses are p-values. The entries in panel A are the estimation results of the
GARCH(1,1) model. ω̂/(1− α̂− β̂ ) is an estimate of the unconditional standard devia-
tion of the GARCH residuals. The Q(12) stands for the modified Ljung-Box Q-statistic
for up to twelfth-order serial correlation in the standardized residuals and the squared
standardized residuals. The diagnostic statistics T R2 to test for the ARCH effects are
reported in panel B.

dependence in the returns process. Engle (1982) Lagrange multiplier test shows
strong evidence of ARCH effects.

The fit of the GARCH(1,1) model to the full sample of data is reported in
Table 2. From the estimation results, we confirm that the GARCH model pro-
vides a good fit to the data. The heterogeneity in the volatility makes a GARCH
specification to be appropriate. However, under a conditional normal density,
α̂ + β̂ is near one, meaning that the processes are persistent in volatility.

If the GARCH model specification with the normally distributed errors is
correct, the estimated standardized residuals and the squared values are serially
uncorrelated. To assess the GARCH model fit, we apply the LM test to the
residuals from a constant conditional mean equation of the spot exchange rate
returns. The Jarque-Bera statistics reject the normality of the standardized resid-
uals. For the KRW/USD returns, the modified Ljung-Box Q-statistics for up to
twelfth-order serial correlation in the standardized residuals are significant at the
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Figure 3: QQ-plot of standardized residuals from GARCH(1,1) with normal er-
rors vs. GARCH(1,1) with Student’s t errors
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1% level, however, the squared standardized residuals are not significant, mean-
ing that first order serial dependence are not fully captured by the GARCH(1,1)
model. For the JPY/USD returns, on the other hand, the statistics indicate any
further first and second order serial dependence left in the standardized residu-
als from the fitted GARCH(1,1) model. However, the normality assumption for
the standardized residuals seems to be inappropriate judging not only from the
Jarque-Bera statistics but from the qq-plots of standardized residuals in Figure 3
which deviate from the normal qq-line in both tails.

Since the basic GARCH model assumes the normally distributed conditional
error, other conditional error distributions have to be introduced to reconcile the
diagnostic test results of the standardized residuals from the estimated GARCH
models. We extend the GARCH model to allow for the generalized error dis-
tribution (GED) in equation (1). The GED subsumes the normal, a fatter-tailed
distribution than the normal and a thinner-tailed distribution than the normal as a
special case depending on the value of the tail thickness parameter ν . From the
estimation of the GARCH(1,1) model with the GED, the estimate of ν is 0.93 for
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Figure 4: Exchange rate returns and conditional standard deviation
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the KRW/USD returns and 1.28 for the JPY/USD returns, indicating that the dis-
tribution of zt and therefore the conditional distribution of εt for both series has
significantly fatter tails than the normal. Overall, the fit of the GARCH model
with the GED to the series is not favorable, especially for the KRW/USD returns
process.

f (z) =
ν exp[−(1

2)|z/λ |]ν

λ2(1+1/ν)Γ(1/ν)
, −∞ < z < ∞, 0 < ν < ∞ (1)

where Γ(·) is the gamma function and λ ≡ [2(−2/ν)Γ(1/ν)/Γ(3/ν)]1/2.
We investigate the forecasting performance of the estimated GARCH model

and the cause for the misspecification. In Figure 4, we show the exchange rate
returns with conditional standard deviations superimposed. Throughout the sam-
ple period, the conditional volatility of the GARCH model seems to mimic the
time-varying volatility well. However, there are some outliers that can only
be drawn from the normal or other parametric non-Gaussian error distribution
with extremely low probabilities. From the analysis in this section, we find that
the GARCH model with conditionally normal, Students t, or the generalized
errors cannot fully account for the observed leptokurtosis in the index returns
processes. To resolve this issue, we investigate a nonparametric method in this
paper.
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2.2. THE SNP DENSITY ESTIMATION

In this section, we discuss the SNP methodology based on Galant and Ny-
chka (1987) and Gallant and Tauchen (1989, 2001) to derive the conditional
density. We follow the notations used in this section from Gallant and Tauchen
(1989). We expect the conditional density to successfully model conditional
heteroskedasticity and nonlinear dynamics in the returns process, however, our
main concern lies in taking note of non-normality which proved to be difficult to
capture with GARCH models in the previous section.

The data {yt}n
t=−L+1 are an M-dimensional realization from a stationary and

ergodic random variable {yt}∞
t=−∞ and have the form: yt = µ0 +B · xt−1 +R · zt ,

where µ0 is a column vector of length M, B is a vector of Lu lags of yt , R is an
upper triangular matrix, and zt is a normally distributed disturbance.

The conditional density of yt is a function of L lagged values of yt . We denote
the L-lagged values of yt as the state vector xt−1 = (y′t−L, · · · ,y′t−1) . We set up
the likelihood as follows:

[∏
n
t=1 h(yt |xt−1)]

∫
h(y,x0))dy (2)

where h(yt |xt−1) = h(yt ,xt−1)/
∫

h(yt ,xt−1)dy .
The SNP methodology derives the conditional density f (z) from a truncated

Hermite expansion of a Gaussian density:

f (z) =
[∑

Kz
|α|=0 aαzα ]2φ(z)∫

[∑
Kz
|α|=0 aαzα ]2φ(u)du

, (3)

where z is obtained by a location-scale transformation, zt = R−1(yt − µ0−B ·
xt−1) and zα = ∏

M
j=1(z j)

α j of degree |α| = ∑
M
j=1 |α j|. The SNP density of the

standardized residuals can be expressed as the multiplication of a standard Gaus-
sian density function as the leading term of the expansion and a squared Hermite
polynomial in the standardized residuals z . Also, the SNP density integrates to
1. The SNP density of the standardized residuals nests the Gaussian. If Kz = 0
, the SNP density f (z) is Gaussian. However, if Kz > 0 , then the SNP density
allows for shape departures from the Gaussian density whose shape is modified
by the Hermite polynomial in z.

Further, if we define aα(x) = ∑
Kx
|β |=0 aαβ xβ

t−1 , where xβ = ∏
ML
i=1(xi)

βi of de-
gree |β |= ∑

ML
i=1 |βi| . We obtain an approximating conditional transition density

of a standardized residual as follows:
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fK(zt |xt−1) =
[∑

Kz
|α|=0 aα(xt−1)zα

t ]
2φ(zt)∫

[∑
Kz
|α|=0 aα(xt−1)uα ]2φ(u)du

, (4)

where a polynomial in z of degree Kz has polynomial coefficients of degree Kx

in x, thus is a polynomial in (z,x) of degree Kz +Kx . The number of lags of x on
which the coefficients a depend is Lp.

When Kz > 0,Kx > 0 under the above normalization, the conditional density
for the residuals is a nonlinear nonparametric function which can approximate
the conditional heterogeneity. If Kx = 0, then the innovation density does not
depend on xt−1 and is conditionally homogeneous. And if Kz = 0 at the same
time, then the conditional innovation density fK(zt |xt−1) is a Gaussian VAR.
Further, if Kz > 0,Kx = 0, the conditional density is a semi-parametric VAR
whose first moment is linearly dependent on xt−1 and whose shape is constant
with respect to variation in xt−1. We can express the conditional density of yt

given xt−1 as:

hK(yt |xt−1,θ) = fK [R−1(yt −µ0−Bxt−1)|xt−1]/det(R)

=
[∑

Kz
|α|=0 aα(xt−1)R−1(yt −µ0−Bxt−1)

α ]2nM(yt |µ0 +Bxt−1,RR′)∫
[∑

Kz
|α|=0 aα(xt−1)uα ]2φ(u)du

(5)

where nM(yt |µ0 +Bxt−1,RR′) denotes the Gaussian density of dimension M. A
vector of SNP model parameters θ contains the Hermite polynomial coefficients,
the conditional mean µ0, and the parameters in the location-scale transformation
B, R and are estimated by θ̂ that minimizes the sample objective function

sn(θ) = (−1/n)∑
n
t=1 ln hK(yt |xt−1,θ). (6)

The SNP conditional density hK(yt |xt−1,θ) has the flexibility of allowing
the shape departures from linearity and Gaussianity to vary with changes in
the state vector xt−1 = (y′t−L, · · · ,y′t−1). The changes in the state vector xt−1 =

(y′t−L, · · · ,y′t−1) result in changes in aα(x) = ∑
Kx
|β |=0 aαβ xβ

t−1 and, in turn, approx-
imations in the SNP conditional density hK(yt |xt−1,θ) arbitrarily accurately. The
SNP conditional density accommodates the conditional heterogeneity.
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The polynomial terms in the aα(x) are to approximate deviations from the
leading term. If the conditional mean µ is a linear function µx of past observa-
tions x, then the leading term is a vector autoregression. If, in addition, R is set
to a linear function Rx of the absolute values of past deviations from µx, then the
leading term is an ARCH model with dimension Lr or a GARCH model with
dimension Lg. Kz controls shape departures from a Guassian VAR and Kx con-
trols conditional nonlinearities. We also define the number of lags in the xt−1 of
the Hermite polynomial as Lp. While the tuning parameters Lu,Lg and Lr deter-
mine the location and scale characteristics of the leading term of the expansion,
Lp,Kz and Kx determine the characteristics of the polynomial expansion of the
conditional innovation process.

We estimate the SNP model with a variety of combinations of tuning param-
eters Lu,Lg,Lr, Lp,Kz and Kx and choose the model based on the BIC criterion.
In moving upward along an expansion path, we initialize the SNP model using a
Gaussian autoregressive model. We use 31 pairs of starting values in performing
25 random perturbations of the starting values per each pair of the starting value.
Starting from the initial SNP model, we expand the model along the tuning pa-
rameters of Lu,Kz and Kx. For the ARCH/GARCH leading term of the series ex-
pansion, we consider a GARCH(1,1) along with the GARCH(1,2), GARCH(2,1)
and GARCH(2,2) models. We additionally include tuning parameters, Iz and Ix

to suppress interactions of specified degree or higher in the Hermite polynomial.
For example, if we set Iz = 1, we suppress the interaction terms of the highest
degree in z of the polynomial.

We put the leading term of the expansion nM(yt |µ0 +Bxt−1,RR′) to a Gaus-
sian GARCH in order to capture conditional heteroskedasticity in the data while
we keep the tuning parameter Kz small. The strategy in estimating the SNP con-
ditional densities is to restrict the model with the tuning parameters to improve
the computational stability. All of the following computations are implemented
with the S-PLUS 8.1.

Table 3 reports the optimized model selection results based on the BIC, AIC
and the HQ criterion for the KRW/USD returns. Gallant and Tauchen (2010)
suggest using the BIC criterion by moving upward along an expansion path. We
choose the AR order Lu of the conditional mean equation of the SNP model with
up to maximum lag orders Lu = 4. For example, we estimate the SNP model
from (Lu,Lg,Lr,Lp,Kz, Iz,Kx, Ix) = (10010000) to (40010000) and choose the
Gaussian AR(4) model (40010000) to minimize the BIC. We then expand the
SNP model for the ARCH and GARCH orders Lr andLg with maximum or-
ders up to 2 for each term. Based on the BIC, we choose the Gaussian AR(4)-
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GARCH(2,2) model (42210000) as the optimal model. In expanding the SNP
model, we follow the recommendation by Gallant and Tauchen (2010) and es-
timate the semiparametric GARCH model from (42214000) to (42219000). In
this step of the procedure, we do not consider the SNP models with Kz < 4, fol-
lowing the recommendation by Gallant and Tauchen (2010). The BIC is known
to prefer parsimonious models and has a tendency to choose sparsely param-
eterized SNP models with the tuning parameter Kx = 0. We confirm that the
BIC minimizing semiparametric GARCH model is the semiparametric AR(4)-
GARCH(2,2) model with the tuning parameter Kz = 8. However, if we base
our decision on the AIC or HQ criterion, the nonlinear nonparametric AR(4)-
GARCH(2,2) model with the tuning parameters Kz = 8 and Kx = 1, (42218010)
minimizes the information criteria.

We then apply the model selection procedure to the JPY/USD returns and
report the results in Table 4. We choose the AR order Lu of the conditional
mean equation of the SNP model with maximum lag order Lu = 4. For exam-
ple, we estimate the SNP model from (Lu,Lg,Lr,Lp,Kz, Iz,Kx, Ix) = (10010000)
to (40010000) and choose the Gaussian AR(1) model (10010000) as the BIC
preferred AR specification. We then expand the SNP model for the ARCH and
GARCH leading terms of orders Lr and Lg with maximum orders up to 2 for each
term. Based on the BIC, we choose the Gaussian AR(1)-GARCH(2,2) model
(12218010) as the optimal model. We expand the SNP model and estimate the
semiparametric GARCH model from (12214000) to (12219000). The BIC and
HQ criterion minimizing semiparametric GARCH model is the semiparametric
AR(1)-GARCH(2,2) model with the tuning parameter Kz = 8. However, if we
base our decision on the AIC, the nonlinear nonparametric AR(1)-GARCH(2,2)
model (12218010) with the tuning parameters Kz = 8 and Kx = 1, minimizes the
information criterion.

When we expand the SNP model to obtain the optimal model, we use the es-
timated coefficients of the model in the previous step as the starting values. We
also implement the random restart procedure proposed by Gallant and Tauchen
(2010) to get rid of the possibility of getting local minima. Coppejans and Gal-
lant (2002) suggest using the BIC in model selection procedure due to the fact
that integrated squared error falls dramatically at a point where we would like to
truncate in SNP methodology. Therefore, we choose the optimal model based
on the BIC, however, we also consider the HQ criterion or the AIC minimizing
models in the simulation experiment below.
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Table 3: Optimized likelihood and information criteria: KRW/USD returns

BIC HQ AIC Log likelihood
(10010000) 1.4168 1.4156 1.4150 -7899.887
(20010000) 1.4174 1.4159 1.4150 -7898.980
(30010000) 1.4044 1.4025 1.4015 -7822.231
(40010000) 1.4006 1.3983 1.3970 -7796.411
(41010000) 0.9258 1.3983 1.3970 -5140.436
(41110000) 0.6404 0.6373 0.6357 -3542.152
(42010000) 0.8389 0.8358 0.8342 -4650.782
(42110000) 0.6387 0.6353 0.6334 -3528.556
(42210000) 0.6248 0.6209 0.6188 -3446.227
(42214000) 0.5453 0.5399 0.5370 -2985.324
(42215000) 0.5460 0.5402 0.5371 -2984.492
(42216000) 0.5348 0.5287 0.5253 -2918.063
(42217000) 0.5372 0.5306 0.5271 -2927.024
(42218000) 0.5302 0.5232 0.5195 -2883.347
(42219000) 0.5311 0.5237 0.5198 -2883.974
(42218010) 0.5346 0.5242 0.5186 -2869.209
(42218020) 0.5871 0.5732 0.5658 -3123.855
(42218030) 0.5823 0.5649 0.5556 -3057.934
(42218040) 0.6078 0.5869 0.5757 -3161.386

Note: The table reports the estimation results of the SNP model. Each SNP model is
denoted in the first column as (Lu,Lg,Lr,Lp,Kz, Iz,Kx, Ix). The boldface numbers denote
the preferred models based on each information criteria or the information criteria values
minimized in each category of the SNP models.
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Table 4: Optimized likelihood and information criteria: JPY/USD returns

BIC HQ AIC Log likelihood
(10010000) 1.4220 1.4208 1.4202 -7928.650
(20010000) 1.4226 1.4211 1.4202 -7928.071
(30010000) 1.4234 1.4214 1.4204 -7927.930
(40010000) 1.4240 1.4217 1.4205 -7927.337
(11010000) 1.4008 1.3992 1.3984 -7806.162
(11110000) 1.3681 1.3662 1.3652 -7619.427
(12010000) 1.3952 1.3932 1.3922 -7770.451
(12110000) 1.3688 1.3665 1.3653 -7618.981
(12210000) 1.3667 1.3640 1.3625 -7602.673
(12214000) 1.3317 1.3275 1.3252 -7390.271
(12215000) 1.3317 1.3271 1.3246 -7385.802
(12216000) 1.3326 1.3276 1.3249 -7386.407
(12217000) 1.3329 1.3275 1.3246 -7384.093
(12218000) 1.3305 1.3248 1.3216 -7366.406
(12219000) 1.3314 1.3252 1.3219 -7366.569
(12218010) 1.3340 1.3247 1.3197 -7346.634
(12218020) 1.3403 1.3276 1.3207 -7343.351
(12218030) 1.3467 1.3305 1.3218 -7340.306
(12218040) 1.3523 1.3326 1.3221 -7332.768
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2.3. DIAGNOSTICS

We perform diagnostic analysis on the estimated SNP density function. From
the analysis in the previous section, we find that the GARCH model with condi-
tionally normal, Students t, or the generalized errors distribution cannot fully
account for the observed characteristics in the exchange rate returns such as
leptokurtosis, conditional heteroskedasticity and higher peak than the normal
near zero. To resolve this misspecification, we investigate a SNP method in this
paper. We expect the conditional density to successfully model conditional het-
eroskedasticity and nonlinear dynamics in the returns process, however, our main
concern lies in modeling non-normality which proved to be difficult to capture
with GARCH models.

A nonparametric BDS test for independently and identically distributed lin-
earity (hereafter, i.i.d.-linearity) is applied to the standardized residuals from the
estimated SNP models to test for the goodness of fit and omitted dynamics. If
the null hypothesis of i.i.d.-linearity is rejected when tested on the standardized
residuals from the fitted SNP model, we can conclude that the series is from
non-i.i.d.-linear data generation process and that the SNP model is misspecified.
Since the BDS test does not specify the alternative hypotheses to the null, it has
good power against a wide variety of alternatives.

We implement the BDS nonlinearity test on the daily KRW/USD returns.
We instruct the BDS test to use the embedding dimensions, m = 2,3,4 and 5
and specifies in 0.5, 1.0, 1.5 and 2.0 units of sample standard deviations the
distance threshold in setting up the correlation integral at each embedding di-
mension m, respectively. In Table 5, the distance threshold values of ε/σ =
(0.5,1.0,1.5,2.0) are used in the test. The null hypotheses that the data are
independently and identically distributed are strongly rejected for all combina-
tions of m and ε at the 1% significance level for all the SNP models. Since
the null hypothesis of i.i.d.-linearity is rejected when tested on the standardized
residuals from the fitted SNP model, we can conclude that the estimated stan-
dardized residuals are from non-i.i.d.-linear data generation process and that the
SNP models are misspecified.

The conditional normality is rejected based on the sample moments of the
standardized residuals in Table 6. The LM test for ARCH effects and the modi-
fied Ljung-Box test for serial correlation show that the estimated residuals seem
to have no further heteroskedasticity. As can be seen from Table 7, the con-
ditional coefficients of kurtosis are 29.30 and 29.14 from the (42218000) and
(42218010) models, meaning that the standardized residuals from the SNP mod-
els are still leptokurtic. However, they are significantly lower than the condi-
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tional coefficient of kurtosis of 92.52 from the Gaussian AR(4) model. The
conditional distributions of the standardized residuals of these seimiparametric
and nonlinear nonparametric models are positively skewed and leptokurtic. The
plots of these conditional densities are given Figure 5 and are compared to the
standard normal distribution. The first two plots of the SNP conditional densities
are the same as those of the standard normal density because the SNP densities
with correspond to the Gaussian AR(4) and the Gaussian AR(4)-GARCH(2,2)
model, respectively. On the other hand, the SNP conditional densities from the
(42218000) and (42218010) models have tails fatter than the normal and higher
peak near zero, which reflects leptokurtosis and non-normality observed in the
exchange rate returns processes.

In summary, the semiparametric AR(4)-GARCH(2,2) model with the tuning
parameter Kz = 8 model, (42218000) and the nonlinear nonparametric model
with the tuning parameter Kz = 8 and Kx = 1 model, (42218010) fit the data
relatively well. However, we have to note that conditional leptokurtosis of the
observed data is not fully captured in the semiparametric GARCH or nonlinear
nonparametric GARCH model.

We apply the BDS nonlinearity test on the daily JPY/USD returns and report
the results in Table 8. On the contrary to the results when we apply the BDS
nonlinearity test on the KRW/USD returns, the null hypotheses that the data are
independently and identically distributed are strongly rejected for all combina-
tions of m and ε at the 1% significance level for the Gaussian GARCH model,
the semiparametric GARCH and the nonlinear nonparametric GARCH model.
Since the null hypothesis of i.i.d.-linearity is rejected when tested on the stan-
dardized residuals from the fitted SNP model, we can conclude that the estimated
standardized residuals are from i.i.d.-linear data generation process and that the
SNP models are appropriate model for the data.

The LM test for ARCH effects and the modified Ljung-Box test for se-
rial correlation show that the estimated residuals seem to have no further se-
rial correlation and heteroskedasticity. As can be seen from Table 10, the con-
ditional coefficients of kurtosis are 5.79 and 5.56 from the (12218000) and
(12218010) model, meaning that the standardized residuals from the SNP mod-
els are still leptokurtic but significantly lower than those from the Gaussian AR
model and Gaussian GARCH model. The conditional distributions of the stan-
dardized residuals of these seimiparametric and nonlinear nonparametric models
are slightly negatively skewed and slightly leptokurtic. The plots of these con-
ditional densities are given Figure 6 and are compared to the standard normal
distribution. Again, the first two plots of the SNP conditional densities are the
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Table 5: BDS statistic for standardized residuals from SNP models: KRW/USD
returns

SNP ε m=2 m=3 m=4 m=5
(40010000) ε = 0.5σ 35.03 (0.00) 44.26 (0.00) 53.74 (0.00) 65.54 (0.00)
(40010000) ε = 1.0σ 35.40 (0.00) 39.63 (0.00) 42.70 (0.00) 45.25 (0.00)
(40010000) ε = 1.5σ 35.53 (0.00) 39.58 (0.00) 41.15 (0.00) 41.96 (0.00)
(40010000) ε = 2.0σ 33.17 (0.00) 37.40 (0.00) 38.98 (0.00) 39.56 (0.00)
(42210000) ε = 0.5σ 8.37 (0.00) 9.95 (0.00) 10.79 (0.00) 11.78 (0.00)
(42210000) ε = 1.0σ 9.00 (0.00) 9.92 (0.00) 10.13 (0.00) 10.30 (0.00)
(42210000) ε = 1.5σ 9.84 (0.00) 10.24 (0.00) 10.32 (0.00) 10.32 (0.00)
(42210000) ε = 2.0σ 9.71 (0.00) 9.96 (0.00) 10.21 (0.00) 10.28 (0.00)
(42218000) ε = 0.5σ 6.87 (0.00) 9.23 (0.00) 10.58 (0.00) 11.87 (0.00)
(42218000) ε = 1.0σ 7.36 (0.00) 9.09 (0.00) 9.91 (0.00) 10.40 (0.00)
(42218000) ε = 1.5σ 8.16 (0.00) 9.39 (0.00) 10.02 (0.00) 10.28 (0.00)
(42218000) ε = 2.0σ 8.21 (0.00) 9.34 (0.00) 10.10 (0.00) 10.34 (0.00)
(42218010) ε = 0.5σ 6.40 (0.00) 8.79 (0.00) 10.01 (0.00) 11.30 (0.00)
(42218010) ε = 1.0σ 6.45 (0.00) 8.28 (0.00) 8.97 (0.00) 9.48 (0.00)
(42218010) ε = 1.5σ 6.88 (0.00) 8.17 (0.00) 8.66 (0.00) 8.96 (0.00)
(42218010) ε = 2.0σ 6.99 (0.00) 8.13 (0.00) 8.70 (0.00) 8.96 (0.00)

Note: The BDS test in the table use the embedding dimensions, m = 2,3,4 and
5 and specifies in 0.5, 1.0, 1.5 and 2.0 units of sample standard deviations the
distance threshold in setting up the correlation integral at each embedding dimen-
sion m, respectively. The distance threshold values of ε/σ = (0.5,1.0,1.5,2.0)
are used in the test. The null hypotheses that the data are independently and iden-
tically distributed are rejected for combinations of m and ε at the 1% significance
level if the p-values in the parenthesis is less than 0.01.
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Table 6: Diagnostic tests for standardized residuals from SNP models:
KRW/USD returns

SNP LM test for ARCH effects Ljung-Box test
(40010000) 1882.54 (0.00) 177.56 (0.00)
(42210000) 13.37 (0.34) 20.78 (0.05)
(42218000) 8.98 (0.71) 26.35 (0.01)
(42218010) 5.95 (0.92) 20.21 (0.06)

Note: The LM test for ARCH effects and the modified Ljung-Box test for serial
correlation are reported in the table. The entries in the parentheses are the p-
values.

Table 7: Diagnostic tests for standardized residuals from SNP models:
KRW/USD returns

SNP Mean S.D Skewness Kurtosis
(40010000) 0.00 1.00 0.03 92.52
(42210000) -0.04 1.00 1.42 21.14
(42218000) -0.01 0.99 1.84 29.30
(42218010) -0.00 1.00 1.76 29.14
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Figure 5: SNP density: (40010000),(42210000),(42218000),(42218010)
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same as those of the standard normal density because the SNP densities with
Kz = 0 and Kx = 0 correspond to the Gaussian AR(1) and the Gaussian AR(1)-
GARCH(2,2) model, respectively. On the other hand, the SNP conditional den-
sities from the (12218000) and (12218010) models have tails fatter than the nor-
mal and higher peak near zero, which reflects leptokurtosis and non-normality
observed in the JPY/USD exchange rate returns processes.

In summary, the semiparametric AR(1)-GARCH(2,2) model with the tuning
parameter Kz = 8 model, (12218000) and the nonlinear nonparametric model
with the tuning parameter Kz = 8 and Kx = 1 model, (12218010) fit the data
very well.

We evaluate the performance of the estimated SNP conditional density func-
tion in generating the observed data via simulation. In order for the estimated
SNP density to work as a score generator during the EMM estimation method,
not only the statistical characteristics of the observed data but the dynamic sta-
bility of the fitted model has to be guaranteed. Since the SNP density function
captures departures of the observed data from the underlying data generating
process specified in the leading term, it is difficult to assign statistical meaning
to the estimated coefficients of the Hermite polynomial. For this reason, we gen-
erate the data from a variety of estimated SNP conditional density functions to
see if the fitted SNP density appropriately recognize the pattern of the original
data.

We show the original data along with the simulated data from a variety of es-
timated SNP conditional density functions in Figure 7. The first panel of Figure
7 illustrates the actual returns on the KRW/USD exchange rate. The large spikes
correspond to the period of the Asian financial crisis in 1997 and the global fi-
nancial crisis in 2009. The second panel of Figure 7 illustrates the simulated data
from the Gaussian AR(4) model. The bottom three panels show the artificially
generated data from the semiparametric AR(4)-GARCH(1,1) model with the
tuning parameter Kz = 8, the semiparametric AR(4)-GARCH(2,2) model with
the tuning parameter Kz = 8 and the nonlinear nonparametric AR(4)-GARCH(2,2)
model with the tuning parameters Kz = 8 and Kx = 1 model. Obviously, the
Gaussian AR(4) model does not generate the data which depicts the conspicu-
ous conditional heteroskedasticity in the observed returns data. Compared to the
Gaussian AR(4) model, the bottom three panels mimic the characteristics of the
actual data quite well.

Simulation results from a variety of the estimated SNP models with the
JPY/USD returns data are illustrated in Figure 8. The first panel of the graph
shows the raw returns on the JPY/USD exchange rate during the sample period.
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Simulations from the Gaussian AR(1) and the Gaussian AR(1)-GARCH(1,1)
model are illustrated in the second and third panel. Simulations from the semi-
parametric AR(1)-GARCH(1,1) model with the tuning parameter of the Hermite
polynomial Kz = 8 are presented in the fourth panel. The fifth panel of the graph
shows simulations from the BIC preferred semiparametric AR(1)-GARCH(2,2)
model with the tuning parameter of the Hermite polynomial Kz = 8. Lastly, sim-
ulations from the AIC preferred nonlinear nonparametric AR(1)-GARCH(2,2)
model with the tuning parameters of the Hermite polynomial Kz = 8 and Kx = 1
are presented in bottom panel. As can be easily verified, simulation results from
a variety of SNP models are distinctly different. However, the time dependent
characteristic of the conditional volatility and the side lobes of the tails or the
leptokurtosis of the actual data are appropriately recognized by the simulations
from the semiparametric AR-GARCH-type models.

Table 8: BDS statistic for standardized residuals from SNP models: JPY/USD
returns

SNP ε m=2 m=3 m=4 m=5
(10010000) ε = 0.5σ 7.93 (0.00) 9.23 (0.00) 10.29 (0.00) 12.25 (0.00)
(10010000) ε = 1.0σ 8.50 (0.00) 10.01 (0.00) 11.14 (0.00) 12.83 (0.00)
(10010000) ε = 1.5σ 9.31 (0.00) 11.07 (0.00) 12.20 (0.00) 13.56 (0.00)
(10010000) ε = 2.0σ 10.27 (0.00) 12.31 (0.00) 13.30 (0.00) 14.29 (0.00)
(12210000) ε = 0.5σ -0.53 (0.59) -1.48 (0.14) -2.06 (0.04) -1.75 (0.08)
(12210000) ε = 1.0σ -0.25 (0.80) -1.00 (0.32) -1.48 (0.14) -1.23 (0.22)
(12210000) ε = 1.5σ 0.32 (0.75) -0.17 (0.86) -0.48 (0.63) -0.32 (0.75)
(12210000) ε = 2.0σ 1.13 (0.26) 0.96 (0.34) 0.84 (0.40) 0.88 (0.38)
(12218000) ε = 0.5σ -0.65 (0.52) -1.55 (0.12) -1.97 (0.05) -1.77 (0.08)
(12218000) ε = 1.0σ -0.38 (0.70) -1.09 (0.28) -1.55 (0.12) -1.32 (0.19)
(12218000) ε = 1.5σ 0.07 (0.94) -0.46 (0.65) -0.76 (0.45) -0.62 (0.54)
(12218000) ε = 2.0σ 0.92 (0.36) 0.60 (0.55) 0.51 (0.61) 0.53 (0.60)
(12218010) ε = 0.5σ -1.55 (0.12) -2.24 (0.02) -2.67 (0.01) -2.33 (0.02)
(12218010) ε = 1.0σ -1.59 (0.11) -1.95 (0.05) -2.25 (0.02) -1.84 (0.07)
(12218010) ε = 1.5σ -1.28 (0.20) -1.46 (0.14) -1.53 (0.13) -1.19 (0.24)
(12218010) ε = 2.0σ -0.40 (0.69) -0.41 (0.68) -0.25 (0.80) -0.01 (1.00)
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Table 9: Diagnostic tests for standardized residuals from SNP models:
KRW/USD returns

SNP LM test for ARCH effects Ljung-Box test
(10010000) 275.77 (0.00) 27.89 (0.00)
(12210000) 10.48 (0.57) 16.86 (0.16)
(12218000) 9.63 (0.65) 19.22 (0.08)
(12218010) 8.80 (0.72) 18.73 (0.10)

Table 10: Diagnostic tests for standardized residuals from SNP models:
KRW/USD returns

SNP Mean S.D Skewness Kurtosis
(10010000) 0.00 1.00 -0.39 8.77
(12210000) -0.01 1.00 -0.25 5.95
(12218000) -0.01 1.00 -0.30 5.79
(12218010) 0.00 1.00 -0.23 5.56
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Figure 6: SNP density: (10010000),(12210000),(12218000),(12218010)
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Figure 7: Actual returns and simulated returns from a variety of SNP models:
KRW/USD returns
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Note: The figures show the original data along with the simulated data from a variety
of estimated SNP conditional density functions. The first panel illustrates the actual
returns on the KRW/USD exchange rate. From the second to fifth panel show the
simulated data from the Gaussian AR(4), the semiparametric AR(4)-GARCH(1,1) with
the tuning parameter Kz = 8, the semiparametric AR(4)-GARCH(2,2) with the tuning
parameter Kz = 8 and the nonlinear nonparametric AR(4)-GARCH(2,2) with the tuning
parameters Kz = 8 and Kx = 1 model, respectively.
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Figure 8: Actual returns and simulated returns from a variety of SNP models:
JPY/USD returns
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Note: The figures show the original data along with the simulated data from a variety
of estimated SNP conditional density functions. The first panel illustrates the actual
returns on the JPY/USD exchange rate. From the second to sixth panel show the
simulated data from the Gaussian AR(1), the Gaussian AR(1)-GARCH(1,1), the semi-
parametric AR(1)-GARCH(1,1) with the tuning parameter Kz = 8, the semiparametric
AR(1)-GARCH(2,2) with the tuning parameter Kz = 8 and the nonlinear nonparametric
AR(1)-GARCH(2,2) model with the tuning parameters Kz = 8 and Kx = 1 model,
respectively.
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3. CONCLUSION

The success of the GARCH model is attributed to the fact that GARCH
model and its extensions can be fit to the leptokurtic data that have a higher peak
near zero and fatter tails than a normal distribution even under the assumption
of conditional normality. Although the assumption of conditional normality has
been the norm in modeling the conditional distribution of asset returns, we have
witnessed a voluminous literature where the GARCH model with conditionally
normal, Students t, or the generalized error distribution cannot fully account for
the observed characteristics in the exchange rate returns such as leptokurtosis,
conditional heteroskedasticity and higher peak than the normal near zero. To
resolve this misspecification, we investigate a SNP method in this paper. We
expect the conditional density to successfully model not only conditional het-
eroskedasticity and nonlinear dynamics in the returns process but non-normality
which proved to be difficult to capture with GARCH models.

We implement the mathematical procedure such as a series expansion method-
ology in order to apply an appropriate parametric procedure to estimate a condi-
tional density function of the exchange rate changes. The aim of this paper is to
show a seminonparametric (SNP) methodology in characterizing the conditional
density of the process.

The model selection procedure based on the BIC is used by moving upward
along an expansion path. We follow the recommendation by Gallant and Tauchen
(2010) and estimate a variety of SNP models, starting from the Gaussian AR and
the Gaussian ARCH/GARCH models to the semiparametric ARCH/GARCH
and nonlinear nonparametric ARCH/GARCH models. We employ a random
restart procedure in order not to be stuck with local minima and use randomly
perturbed starting values in each step of the procedure.

We find that the BIC minimizing SNP model is the semiparametric AR(4)-
GARCH(2,2) model with the tuning parameter Kz = 8 for the KRW/USD returns
and the semiparametric AR(1)-GARCH(2,2) model with the tuning parameter
Kz = 8 for the JPY/USD returns. The modeling strategy in this paper is partic-
ularly successful for the JPY/USD data. When we apply a nonparametric BDS
test for i.i.d.-linearity to the standardized residuals from the estimated SNP mod-
els to test for the goodness of fit and omitted dynamics, we fail to reject the null
hypothesis and conclude that the series is from i.i.d.-linear data generation pro-
cess.

Simulations from a variety of estimated SNP models with the JPY/USD
returns data show that the BIC preferred semiparametric AR(1)-GARCH(2,2)
model with the tuning parameter of the Hermite polynomial Kz = 8 mimics the
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actual data well. The time dependent heterogeneity of the actual data is appropri-
ately recognized by the simulations from the semiparametric AR-GARCH-type
models and the nonlinear nonparametric AR-GARCH-type models.

Although a nonparametric BDS test for i.i.d.-linearity to the standardized
residuals from the estimated SNP models is rejected for the KRW/USD returns,
the LM test for ARCH effects and the modified Ljung-Box test for serial cor-
relation show that the estimated residuals from the estimated SNP models seem
to have no further heteroskedasticity. For the KRW/USD returns, the semipara-
metric AR(4)-GARCH(2,2) model with the tuning parameter Kz = 8 model and
the nonlinear nonparametric model with the tuning parameter Kz = 8 and Kx = 1
model seem to fit the data relatively well. However, we have to note that condi-
tional leptokurtosis of the observed data is not fully captured in the semiparamet-
ric GARCH or nonlinear nonparametric GARCH model. However, observing
that the conditional coefficients of kurtosis are 29.30 and 29.14 from the afore-
mentioned estimated SNP models, they are significantly lower than the condi-
tional coefficient of kurtosis of 92.52 from the Gaussian AR(4) model. The SNP
conditional densities from the (42218000) and (42218010) models have tails fat-
ter than the normal and higher peak near zero, which reflects leptokurtosis and
non-normality observed in the KRW/USD returns processes.

A summary of our findings from using SNP method suggest that the semi-
parametric and the nonlinear nonparametric AR-ARCH/GARCH-type models
can explain conditional heterogeneity of the exchange rate changes and appro-
priately mimic the actual data in the simulation experiments.
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