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1. INTRODUCTION

The problem of multiplicity of Nash equilibria has long been recognized
and refinement criteria have been well developed for selecting Nash equilibria.
However, these approaches are not useful in cases where there are multiple strict
pure strategy Nash equilibria. Kandori, Mailath, and Rob (1993), Young (1993)
and others developed equilibrium selection methods based on the stochastic pro-
cess augmented with mutation that select among strict pure equilibria. Adding
small mutational noises to a simple myopic dynamic, Kandori, Mailath and Rob
(1993), Young (1993) provided criteria for selecting among multiple strict Nash
equilibria for various classes of games. This process selects a risk dominant
equilibrium as the unique long run equilibrium in a 2×2 coordination game.

A large literature modifies the KMR model and checks the robustness of such
strong results. For example, Bergin and Lipman (1996) shows that any strict
Nash equilibrium can be a limit of stochastic process with a relevantly chosen
state dependent mutation rate. So KMR’s prediction is shown to be sensitive to
the choice of specific stochastic process. There are works challenging Bergin and
Lipman (1996) using explicitly elaborate meaningful state dependent mutational
processes and most of them select the risk dominant equilibrium as the long
run equilibrium1. Thus if economically meaningful mutational processes are
considered, then the KMR’s long run prediction is still valid.

Recently Kim and Wong (2010) questioned the validity of KMR model with
regard to the presence of strictly dominated strategies. We often delete strictly
dominated strategies when we analyze strategic form games since they do not
alter Nash equilibria. Kim and Wong asked the following question: Do the
long run equilibria in the sense of KMR remain the same once strictly domi-
nated strategies are removed? They show that for any symmetric normal form
game, any strict Nash equilibrium can be selected as the unique long-run equilib-
rium by appropriately adding only one single totally dominated strategy which
is strictly dominated by all original strategies (Theorem 1). Moreover, if in-
stantaneous adjustment is assumed, then any convex combination of strict Nash
equilibria with rational number weights can be realized as the long-run distribu-
tion by appropriately adding strictly dominated strategies (Theorem 2). In this
sense, strictly dominated strategies matter in the selection of a long run equi-
librium under KMR’s state independent mutation process even though they will
never occur in equilibrium. A recent attempt to generalize the KMR which is ro-
bust to the manipulation of dominated strategies has been made by Weidenholzer

1Van Damme and Weibull (2002) and Maruta (2002) are such examples.
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(2012). Weidenholzer (2012) show that in the circular city model of local inter-
actions the selection of 1/2 -dominant strategies remains when adding strictly
dominated strategies if interaction is “decentral”. However, Weidenholzer’s cri-
tique is only valid in limited situations. For example, if the population size is
relatively small, Kim and Wong’ results are vaild.

In this paper, we try to generalize the KMR which is robust to the addi-
tion/deletion of totally dominated strategies. We introduce a state dependent
mutational process with a payoff monotonicity property2. This process provides
the same characterization of the long run behavior by KMR for 2×2 symmetric
games. We examine the robustness of this process with regard to the manipula-
tion of strictly dominated strategies. We show that the proposed process yields
independence with respect to adding or eliminating totally dominated strategies.
A distinct feature of our process is that when a strategy yields a higher pay-
off than another strategy, then the ratio between the mutation rate toward the
first strategy and that of the second strategy goes to infinity as the mutation
rate goes to zero. Such an assumption of increasing discrepancy of mutation
rate is a crucial for our conclusion of irrelevance of dominant strategy (and the
KMR-process violates this assumption). It is true that the generalization with a
hierarchic ranking process is imperfect in that the mutation is not robust to the
addition/subtraction of strictly dominated (but not totally dominated) strategies.
We give an example showing that the proposed mutational process is not enough
to justify eliminating strictly dominated strategies. We believe that this paper can
be a starting point for investigating the robust mutational process with regard to
the manipulation of dominated strategies.

The rest of the paper is organized as follows. In Section 2, we develop a
stochastic process that is based on the hierarchic ranking and show that it is
difficult to keep strictly dominated strategies from affecting long run prediction
of the model, but totally dominated strategies do not affect the selection of a long
run equilibrium. Section 3 provides our concluding remarks. Section 4 provides
proofs.

2. HIERARCHIC PROCESS AND DOMINATED STRATEGIES

Suppose that a finite number of players are repeatedly matched to play a
stage game and adjust their behavior over time. A set of players {1,2, ...,N}
is called a population. The stage game is a finite and symmetric two player

2As proposed in Myerson (1978), mistakes that are associated with larger payoff losses are
less likely, and thus state dependent mutation rates appear more reasonable.
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normal form game G = {S1,S2;u1,u2}, where the finite set S = {s1,s2, · · · ,sI},
the payoff function u : S× S→ ℜ such that: S = S1 = S2 = S and ui(si,s j) =
u j(s j,si) = u(si,s j) for all si,s j ∈ S. We can identify G with the pair (S,u). We
assume that actions are taken in discrete time. At the beginning of the period,
each agent chooses a strategy. Let zt(s) be the number of players that adopt s∈ S
at t. Then the state space is ZS,N = {z ∈ NS : ∑s∈S z(s) = N}.

We denote by 4(S) the set of all mixed strategies.3 Each z ∈ ZS,N corre-
sponds to the element x = z/N ∈ 4(S). Hence, given a z, the expected payoff
for using a s ∈ S is:

u(s,z/N) = u(s,x) = ∑
si∈S

x(si)u(s,si) . (1)

For each s ∈ S, we define the set:

Bs = {x ∈4(S) : ∀s′∈S u(s,x)≥ u(s′,x)} . (2)

A best response selection is a function b :4(S)→ S such that

x ∈ Bb(x) for all x ∈4(S) . (3)

We define the deterministic dynamics over the population state space ZS,N

by the best response selection:4

zt+1(b(zt/N)) = N , (4)

zt+1(s) = 0 for all s 6= b(zt/N) . (5)

Under this deterministic dynamics, any strict Nash equilibrium is a stationary
point. When there are multiple Nash equilibria, there is a difficulty in determin-
ing the outcome of this game. KMR (1993) introduce noise to the system to
resolve this indeterminacy as follows. They assume that each player’s strategy
flips with probability ε in each period (i.i.d. across players and over time). Let
g(z,ε) : ZS,N →4(S) be the function such that

g(z,ε)(s′) = ε if s′ 6= b(z/N) , (6)

g(z,ε)(s) = 1− ∑
s′∈S\{s}

ε if s = b(z/N) . (7)

3For any set X , by4(X) we denote the set of probability measures on X . For each x ∈4(X),
by x(a) we denote the probability of a for any a ∈ X . We write x� 0 to indicate that x(a)> 0 for
all a ∈ X .

4Sometimes, by abuse of notation, we will write “b(i) = j” to indicate that “under this deter-
ministic dynamic, if zt = i, then zt+1 = j.”
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Thus, g(z,ε) defines a unique element in x ∈ 4(S), which in turn generates a
unique probability measure y ∈ 4(ZS,N). This relation is denoted by y = Φ(x).
Clearly, x� 0 implies y� 0. Now, the stochastic dynamics are described by the
irreducible stationary Markov process, in which the transition probabilities over
states in ZS,N are given by the Markov matrix P = P(ε), where P = [pz,z′ ]z,z′∈ZS,N

and
pz,z′ = Prob(zt+1 = z′|zt = z) and pz,z′ = (Φ(g(z,ε)))(z′) . (8)

Clearly, all elements in the matrix P are strictly positive, and thus there is a
unique stationary probability distribution µ = µ(ε) for the Markov matrix P =
P(ε), i.e. µP = µ . The limit distribution µ∗ is defined by µ∗ = limε→0 µ(ε) if
it exists. We call the above stochastic process with state independent mutation
rates the KMR process. KMR (1993) consider 2× 2 symmetric games and ob-
tain a surprisingly strong result that stochastic dynamics tend to select the risk
dominant equilibrium that is relatively robust to mutations.

In this paper, we develop a stochastic process that is state dependent and pay-
off monotone, and examine the robustness of the process with regard to eliminat-
ing or adding strictly dominated strategies. The novelty of our stochastic process
is as follows. When a strategy yields a higher payoff than another strategy, the
ratio of the mutation rate toward the better strategy to that of the other strategy
goes to infinity as the mutation rate goes to zero. Thus, players are less likely
to choose a strategy with more damages. In this sense, our process is in line
with that of Myerson (1978). For formal presentation, we give the following
definitions of rankings.

Definition 1. A ranking is a function r : S×4(S)→ [0,1, · · · , I−1} such that
there is a best response selection b : 4(S)→ S such that for all s ∈ S and all
x ∈4(S): r(s,x) = 0 implies s = b(x).5

The following class of ranking function is of our special interest.

Definition 2. A proper ranking is a ranking r such that for all x ∈4(S):

u(s,x)> u(s′,x) implies r(s,x)< r(s′,x) for all s,s′ ∈ S. (9)

(Note that when u(s,x) = u(s′,x), we can have r(s,x) = r(s′,x) or r(s,x) <
r(s′,x).)

5Thus, by definition for every x there is exactly one s satisfying r(s,x) = 0, and the ranking
function is not an onto function.
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The KMR mutation process can be modeled in terms of a ranking function
as follows; A KMR ranking is a ranking r such that for all x ∈4(S):

r(s′,x) = 1 for exactly I−1 number of s′ ∈ S. (10)

It is clear that the KMR ranking is not a proper ranking. When a given game
has only two strategies, the notions of a KMR ranking and a proper ranking are
the same. However, in general, they are not.

A ranking puts strategies into different classes, for which we will assign dif-
ferent mutation rates in our stochastic process. Roughly speaking, under a KMR
ranking, at any state z ∈ ZS,N , the strategies are grouped into only two classes:
the best-response class, and the non best-response class. Under a proper ranking,
strategies can be grouped into more than two classes: the first-best response class
C1, the second-best response class C2, the third-best response class C2, · · · , and
the least-best response class. Note that this approach incorporates the property
of payoff-monotonicity in Maruta (2002), but with a simpler formulation6.

In the following stochastic process, we will assume that the mutation rate of
strategies depends on which class it belongs. In particular, the rate of mutating
to playing a second-best strategy is much larger than the rate of mutating to
playing a third-best strategy. Moreover the discrepancy rates will increase as the
total mutation rate ε goes to 0.

For any ranking r, and any population size N, the stochastic dynamics is
the irreducible stationary Markov process, where the transition probabilities over
states in ZS,N are given by the Markov matrix P=P(ε,r), where P= [pz,z′ ]z,z′∈ZS,N

are defined by (8) with respect to the function g(z,r,ε) where

g(z,r,ε)(s′) = exp{−1/ε
r(s′,z/N)} if r(s′,(z/N)) 6= 0 , (11)

g(z,r,ε)(s) = 1− ∑
s′∈S\{s}

exp{−1/ε
r(s′,z/N)} if r(s,(z/N)) = 0 . (12)

It is clear that if r is a KMR ranking, then this stochastic dynamics becomes
the one described by KMR (1993) (where it is replaced the mutation rate ε by
exp{−1/ε}). The unique stationary probability distribution µ = µ(ε,r) for the
Markov matrix P = P(ε,r) exists, and we sometimes denote it by µ(ε,r) to
emphasize its dependence on ε and r.

We give the existence of the limit distribution of the stationary probability
distribution as ε goes to zero, and the following Lemma 1 generalizes Theorem

6While Maruta’s approach (Maruta 2002) requires computing the detailed amount of payoffs
in determining the mutation rates for different strategies, ours only needs to know the relative
performance of different strategies.
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1 in KMR (1993). We say that µ∗ is the long run equilibrium for the stochastic
process.

Lemma 1. For any ranking r, the long run equilibrium µ∗ = µ∗(r,N) by:

µ
∗ = lim

ε→0
µ(ε,r) (13)

exists and is unique.

Proof: See the Appendix.

Kim and Wong (2010) showed that the long run prediction of the KMR pro-
cess based on state independent mutation rates was sensitive to the manipulation
of eliminating strictly dominated strategies by Theorem 1 and Theorem 2. In
fact, they showed that any strict Nash equilibrium can be selected as the unique
long-run equilibrium by appropriately adding only one single strategy which is
strictly dominated by all original strategies known as a totally dominated strat-
egy. In this sense, Kim and Wong (2010) casts doubt on the validity of the long
run characterization of the KMR process.

In this paper, we will show that a reasonable stochastic process is robust
to the manipulation of a totally dominated strategy. We pay attention to the
following special proper ranking.

Definition 3. A hierarchic ranking is a ranking such that for all x ∈ 4(S) and
all s ∈ S:

r(s,x) = 1 for [(s 6= b(x) & (u(s,x) = u(b(s),x))] ,

r(s,x) = #{s′ ∈ S : u(s′,x)> u(s,x)} for u(s,x)< u(b(s),x) .
(14)

where b is the best response selection, as given in Definition 1.

We call the stochastic process with state dependent mutation rates based on
a hierarchic ranking the “hierarchic process”. In what follows, we show that the
hierarchic process is robust with respect to the elimination of totally dominated
strategies. A strategy is totally dominated when it is strictly dominated by all
other strategies. Formally, a strategy s ∈ S is totally dominated if s is strictly
dominated by all s′ ∈ S\{s}.

Theorem 1. Let game G = {S,u} be obtained from a game G′ = {S̃, ũ} by elim-
inating one totally dominated strategy s∗. Suppose that:

(s′ 6= s) ⇒ (u(s,z/N) 6= u(s′,z/N)) for all s,s′ ∈ S and all z ∈ ZS,N , (15)
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and let the mutation process be hierarchic. Let µ be the long run equilibrium
for G (on ZS,N) and µ ′ be the long run equilibrium for G′ (on ZS̃,N). Then,
µ ′(z) = µ(z) for all z ∈ ZS,N , and µ ′(z) = 0 for all z 6∈ ZS,N .7

Condition (15) holds generically for all possible payoffs. The proof of Theo-
rem 1 uses the fact that ratio between the mutational rate moving to a non-totally
dominated strategy and that of a totally dominated strategy unboundedly ex-
pands as the overall mutation rate goes to zero8, because a hierarchical ranking
of a totally dominated strategy is always the lowest. This property is indispens-
able in our proof. Indeed, for a strictly dominated (but not totally) strategy, this
property does not necessarily hold, and thus the ratio of mutation rates among
strategies can be bounded (rather than explosive). As a result, this discrepancy
property cannot rule out the impact of such a strictly dominated strategy to long
run equilibria.

We now give such an example that even under the hierarchic process, keeping
or eliminating a strictly but not totally dominated strategy will affect the long run
equilibrium. Consider the following example:

Game III

A B C
A (8,8) (0,4) (−K,−2K)
B (4,0) (6,6) (−2K,0)
C (−2K,−K) (0,−2K) (−3K,−3K)

(16)

Clearly, for a sufficiently large positive number K, strategy C is strictly domi-
nated by B, but only weakly dominated by A. For a sufficiently large K, we have
A as a best response to any mixed strategy x∈4(S) with x(C)≥ 1/N. We divide
4(S) into 3 zones:

Zone 1 = {z ∈ ZS̃,N : z(B) = N}
Zone 2 = {z ∈ ZS̃,N : z(B) = z(C) = 0 and B is the response to z }
Zone 3 = {z ∈ ZS̃,N : A is the response to z }.

(17)

7Here we identify ZS,N with the subset {z ∈ ZS̃,N : z(s∗) = 0} of ZS̃,N .
8The key feature that generates results is that the sum of mutation probabilites of strategies

ranked lower than the second diminishes exponentially relative to the second best no matter how
many such strategies exist. In this sense, the hierarchic ranking process generalizes the class
of mutational process with payoff monotonicity propery, e.g., Maruta (2002). It would be an
interesting to characterize sufficient and necessary conditions under which Thereom 1 holds.
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The hierarchic ranking for Game III is as follows.

z in
Zone 1 Zone 2 Zone 3

r(A,z) 1 1 0
r(B,z) 0 0 1
r(C,z) 1 2 2

(18)

Note that moving from state B into Zone 3 requires only one mutation (from B
into z = (N−1)/N)B+(1/N)C)), so Pr{B→ Zone 3} ≥ exp{−1/ε}. Moving
from state A into Zone 2 requires at least two mutations, so Pr{A→ Zone 2} =
O([exp{−1/ε}]2). Therefore, it follows that (AA) is the unique long run equi-
librium for Game III. This contrasts sharply with the case, in which for Game I
the unique long run equilibrium is (BB).

3. CONCLUDING REMARKS

Kim and Wong (2010) show that the KMR process with state independent
mutation rates is not robust to the manipulation of adding or eliminating domi-
nated strategies. Thus, an evolutionary approach with mutations must be care-
fully applied to the study of the selection of Nash equilibria when dominated
strategies are involved in stage games.

The main result of this paper shows that if a state dependent mutation process
called the hierarchic process is applied, then a certain class of strictly dominated
strategies known as totally dominated strategies does not affect the long run equi-
librium since manipulating such strategies does not alter the basins of attraction
of steady states. Hence, the stochastic process based on a hierarchic ranking se-
lects the same outcome, risk dominant equilibria, independent of the presence of
totally dominated strategies. In this sense, we confirm that the state dependent
mutation process with the payoff monotonicity in line with Myerson (1978) is
a reasonable mutation process for economically meaningful long run prediction.
Whether there is a reasonable mutation process that yields the independence with
regard to any strictly dominated strategies remains open.

4. APPENDIX: PROOFS

We recall several notions from Freidlin and Wentzell (1984) and Kim and
Wong (2010). A directed graph h on Z is a finite set collected order pairs of
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elements in Z (denoted by (i→ j)).9 For any z ∈ Z, a z-tree is a direct graph h
on Z such that every state except z has a unique successor and there are no closed
loops. Denote by Hz the set of all z-trees by Hz.

Consider a ranking r, and an mutation rate µ , and the corresponding Markov
matrix P = P(ε,r). We can state Lemma 1 in Kim and Wong (2010) as follows.

Lemma 2. (Kim and Wong (2010), Lemma 1) Let µ be the stationary proba-
bility distribution, i.e. µP= µ . Then: µ is proportional to the vector q=(qz)z∈Z ,
i.e., µz = qz/∑i∈Z qi, where

qz = ∑
h∈Hz

Ph, where Ph = Π(i→ j)∈hPi j. (19)

Let K be the set of all functions K(ε) in the form of

K(ε) = (exp{−1/ε
n1}) · · ·(exp{−1/ε

nK}) , (20)

where n1, · · · ,nK are strictly positive integers. Clearly, for all K,G ∈K , if K 6=
G, then either limε→0(K/G) = 0 or limε→0(G/K) = 0.

Proof of Lemma 1. By Lemma 2 the stationary probability distribution µ is
proportional to vector q. Each qz is a linear combination of elements Kz,i ∈K :

qz =
Mz

∑
i=0

az,iKz,i, (21)

where az,i’s are constant terms that are independent of ε , and each pair Kz,i,Kz,i′

are distinct for distinct i, i′. Define K ∗ = ∪z∈Z{Kz,i : 0 ≤ i ≤Mz}. Choose the
unique “maximal” element K∗ from K ∗, i.e. K∗ ∈K ∗ is such that limε→0(G/K∗)=
0 for all G ∈K ∗\{K∗}. Then for each z ∈ Z,

if there is some i such that Kz,i = K∗, define a∗z = az,i, (22)

otherwise, define a∗z = 0. (23)

Using (21), we obtain:

µ
∗
z = lim

ε→0

qz

∑i qi
=

a∗z
∑i a∗i

. (24)

Q.E.D.

9Then we call (i→ j) an edge, and say that j is a successor of i. A loop is a finite sequence
i1, · · · , in ∈ Z such that i1→ i2→ ·· · → in→ i1.
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Proof of Theorem 1. We consider game G = {S,u} and Game G′ = {S̃, ũ} as
given in the theorem, where S̃ = S∪{s∗}. For game G, the population state set
is Z = ZS,N , and for game G′, the population state set is Z̃ = ZS̃,N . We define
Z∗ = {z ∈ Z̃ : z(s∗) = 0}, and we will identify Z as Z∗ in the natural manner.

Let b :4(S)→ S be a best response selection for G, and let b̃ :4(S̃)→ S̃ be
a best response selection for G′. By (15) for every z ∈ Z there is a unique best
response in S, hence we have b(z/N) = b̃(z/N) for all z ∈ Z = Z∗.

Let r be the hierarchic ranking for G, g(z,r,ε)(s) be the mixed strategy prob-
ability, and Pz,z′ be the corresponding transitional probability over Z; similarly,
r̃, g̃(z, r̃,ε)(s) and P̃z,z′ denote the corresponding terms for G̃ and Z̃.

Note that (15) ensures that:

a) r(s,z) = r̃(s,z)< I for all s ∈ S and all z ∈ Z = Z∗ , (25)

b) r̃(s∗,x) = I for all x ∈ Z̃\Z∗ . (26)

Hence, for all z ∈ Z = Z∗, we have:

a) if s 6= b(z) and s ∈ S, then g(z,r,ε)(s) = g̃(z, r̃,ε)(s)≥ exp{−1/ε I} , (27)

b) if s = b(z), then g(z,r,ε)(s)/g̃(z, r̃,ε)(s)→ 1 as ε → 0 , (28)

c) g̃(z, r̃,ε)(s∗) = exp{−1/ε I+1}. (29)

For game G, we choose the set H of all trees in Z, choose the set Hz of all z-trees
for all z ∈ Z, and choose the probabilities qz and Ph as given in (19). Similarly,
we choose the corresponding terms H̃, H̃z, q̃z and P̃h for the game G′.

We define H∗ to be set of all h∈ H̃ satisfying the property that for all i, j ∈ Z̃,
if (i→ j) ∈ h, then:

a) if i ∈ Z∗, then j ∈ Z∗, (30)

b) if i ∈ Z̃\Z∗, then j = b̃(i). (31)

Clearly, for each h ∈ H∗, there is a unique tree f (h) ∈ H such that h|Z×Z =
f (h). In addition, this mapping f : H∗→ H is one-to-one and onto.

Claim 1. If h ∈ H̃\H∗, then there is an h′ ∈H∗ such that (P̃h/P̃h′)→ 0 as ε→ 0.

Proof: (Case 1) Suppose that h violates (30) at some i ∈ Z∗, say (i→ j) ∈ h but
j(s∗)> 0. Then, by (29) and the definitions of P̃h and P̃i, j, we have:

P̃h = O(exp{−1/ε
I+1}) . (32)
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Now, we choose any h′ ∈ H∗. By (27), (28), and the definitions of P̃h and P̃i, j,
we have:

[exp{−1/ε
I}]#(Z∗) = O(P̃h′) . (33)

Therefore, we have (P̃h/P̃h′)→ 0 as ε → 0.
(Case 2) Suppose that h satisfies (30) for all i′ ∈ Z∗, but violates (31) at some

i ∈ Z̃\Z∗. Hence, we have i ∈ Z̃\Z∗, and (i→ j) ∈ h, but j 6= b̃(i). Then we can
choose a unique h′ ∈H∗ such that for all i′ ∈ Z∗, we ahve: (i′→ j′)∈ h if and only
(i′→ j′)∈ h′ for all j′ ∈ Z̃. Then (P̃h/P̃h′)= (P̃i,b̃(i)/P̃i, j)≤ (P̃i,b̃(i)/(1−P̃i,b̃(i)))→
0 as ε → 0. This establishes Claim 1.

Claim 2. If h ∈ H∗ and h′ = f (h) ∈ H, then (P̃h/Ph′)→ 1 as ε → 0.

Proof: This follows immediately from (27) and (28).

Now, we consider the terms qz = ∑h∈Hz Pz (where z ∈ Z), and the terms q̃z =

∑h∈H̃z
P̃z (where z ∈ H̃).

First, note that if z∈ Z̃\Z∗, then each z-tree violates (30) at some i. Therefore,
by Claim 1, we have:

if z ∈ Z̃\Z∗, then
q̃z

∑z′∈Z̃ q̃z′
→ 0 as ε → ∞ . (34)

Next, it follows from Claim 2 that

if z ∈ Z∗, then
q̃z

qz
→ 1 as ε → ∞. (35)

Therefore, by Lemma 2 the long run distribution µ for G and that µ ′ for G′ satisfy
µ(z) = µ ′(z) for all s ∈ Z = Z∗, and µ ′(z) = 0 for all z ∈ Z̃\Z∗. Q.E.D.
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