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or the minimum are also considered and their usefulness is illustrated through
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1. INTRODUCTION

When evaluating an individual’s performance, we may have multiple signals
available. For instance, in university admission, universities can use SAT scores,
high school GPA, extra-curricular activities, recommendation letters, or essays.
Universities attempt to infer an applicant’s underlying character from these mea-
sures. When firms are hiring or promoting employees, they also have multiple
signals at hand such as sales performance, peer review, and test scores.

When multiple signals are available, we tend to use the weighted sum of
all signals in evaluation. This practice is partially justified in that each measure
represents different aspects of the underlying quality and we wish to obtain a
complete picture of the individual. But some signals may represent the same
dimension of quality, and the weighted sum is not the only way of aggregating
multiple signals. For example, SAT scores and high school GPA may represent
the same underlying academic capacity, and we can use the maximum or the
minimum of two signals instead of the weighted sum to select who is admitted.

This paper investigates the optimal way of aggregating multiple signals that
represent the same dimension of an underlying quality. By investigating this
optimal rule, it will be determined whether the weighted sum rule can be justi-
fied and, if so, in what environment. Some existing aggregation rules using the
maximum or the minimum of the signals will be also considered. This, although
appearing somewhat unusual, is a rule that is quite often used. For the admis-
sion of international students to U.S. academic institutions, a TOEFL score is
needed, and applicants can choose which score to have sent to the institution
to which they apply. This practice leads to the consideration of the maximum
score only.1 Korean universities have several separate admissions processes, and
among them one mainly focuses on high school GPA while another focuses on
the CSAT (College Scholastic Ability Test, equivalent to the SAT). Under this
system, a student will be admitted if he or she passes the relevant threshold in
either of the two components; in other words, universities use the maximum
score from the two components. In some tests, one fails if one does not meet the
minimum standard in any subject, regardless of the total score. In that case, the
minimum scores of many subjects are used for selection. We will also examine
whether these seemingly unusual rules can be justified.

The optimal aggregation rule is, of course, dependent on the distributional
characteristics of the signal. The aggregation rule implicitly compares two types

1GRE score reporting, on the other hand, requires that all the scores received under the same
test name be reported.
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of individuals if we have two signals available: one with two middle signals
and one with a high signal and a low signal. While the (weighted) sum rule (or
linear rule) treats these two types similarly, the rule using the minimum favors
the former and the rule using the maximum favors the latter. This comparison
should depend on the distributional character of the signals. This paper shows
that linear aggregation, such as weighted sum, is the optimal rule for a very
general class of signal distributions, which justifies the wide use of it. We also
illustrate, however, that there exists a common distribution with which a rule
using the maximum or the minimum outperforms the linear rule. Therefore, we
can accommodate the existence of such rules.

Information aggregation is an important issue in statistical inference. As
sample observation carries information about population (or more specifically
population parameters), it is an essential question how to aggregate sample ob-
servations to estimate population parameters. Our question is a subset of the
statistical inference problem and, as is shown later, the optimality of linear ag-
gregate of the signals in the general class of distribution, though derived through
a different method, is a corollary of a well-known concept of sufficient statistic.2

Our framework, however, also allows us to investigate the possibility of better
performance of the rule using the maximum or the minimum of the signals.

The concept of the sufficient statistic is also used to evaluate the informa-
tional value of the signal in a principal-agent setting (Holmstrom 1979).3 The
optimality of the linear aggregate of the signals in the same setting is discussed
in Banker and Datar (1989). Banker and Datar consider the optimality of lin-
ear aggregate in a principal-agent setting where two observable signals of an
agent’s action are available. In a usual principal-agent setting, compensation is
determined as a function of these two observable signals for motivating agents.
Banker and Datar decompose this compensation function into two steps: an ag-
gregation of two signals and compensation dependent upon this aggregate. They
provide a sufficient condition on the joint density function of signals for the opti-
mality of a linear aggregate in the first step.4 This paper is also partly concerned
about the optimality of a linear aggregate but in the statistical inference context.

2See Blackwell and Girshick (1954). We thank an anoymous referee for indicating this and
introducing the relevant reference.

3See also Kim (1995) and Jewitt (1997) for further discussion on information issues in
principal-agent set up.

4Their sufficient condition for the optimality of a linear aggregate is also related to the concept
of sufficient statistic though it was not explicitly discussed there. The proposed functional form
of the joint density function of the singals guarantees that the linear aggregate of the signal is a
sufficient statistic of the agent’s chosen action.



74 OPTIMAL AGGREGATION OF SIGNALS

This paper is organized as follows: Section 2 introduces the model setting.
In Section 3 we show how the optimal rule is obtained and that the optimal rule
is a linear rule for a general class of signal distribution. Better performance of
the aggregation rules using the maximum or the minimum is also illustrated in
that section. The conclusion follows.

2. MODEL

2.1. POPULATION AND SELECTION

There is a unit mass of agents with two types, q mass of high types (H) and
1−q mass of low types (L). An evaluator wants to select a portion p(< 1) of the
population and tries to maximize the mass of type H among those selected.

2.2. INFORMATION

The evaluator does not observe agents’ types, but instead observes signals of
types. There are two signals available, s1 and s2, which are distributed condi-
tional on types. We assume the two signals are iid with common support [s,s]
with a continuously differentiable conditional density function f (·|·). Further-
more, the signals are informative of types satisfying the (strict) monotone likeli-
hood ratio property, or MLRP,

f (s|H)

f (s|L)
≤ (<)

f (s′|H)

f (s′|L)
if s < s′.

As is clear in the later analysis, strict MLRP is necessary to avoid the random
selection rule. Without any specific comment, hereafter, we will assume that
strict MLRP holds.

2.3. SELECTION PROBLEM

Let g be a selection rule. It is a function which assigns a probability of being
selected when a pair of signals (s1,s2) is given; g : [s,s]2→ [0,1]. An agent with
signal (s1,s2) is selected with probability g(s1,s2). A selection rule is feasible if
it satisfies the selection capacity p:

q
∫∫ s

s
g(s1,s2) f (s1|H) f (s2|H)ds1ds2+(1−q)

∫∫ s

s
g(s1,s2) f (s1|L) f (s2|L)ds1ds2 = p.

(1)
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The selection problem is to choose a feasible selection rule g that maximizes the
mass of type H among the selected,

max
g

∫∫ s

s
g(s1,s2) f (s1|H) f (s2|H)ds1ds2 (2)

subject to (1).

3. ANALYSIS

3.1. OPTIMAL SELECTION RULE

The Lagrangian of the problem (2) can be written as5

L =
∫∫ s

s

{
qg(s1,s2) f (s1|H) f (s2|H)

−λ [qg(s1,s2) f (s1|H) f (s2|H)+(1−q)g(s1,s2) f (s1|L) f (s2|L)]

}
ds1ds2+λ p.

This is a linear function of g(s1,s2) and therefore g(s1,s2) takes the value 1
or 0 depending on its coefficient being positive or negative. Thus, the optimal
selection rule g∗ is

g∗ (s1,s2) =

{
0 if L(s1,s2)< k
1 if L(s1,s2)≥ k

, (3)

where L(s1,s2) =
f (s1|H) f (s2|H)
f (s1|L) f (s2|L) , which is a likelihood ratio of two types given the

observed pair of signals (s1,s2), and k = λ

1−λ

1−q
q .

The optimal selection rule is to select agents with signals who are more likely
to be type H. Therefore, we rank the pairs of signals by their likelihood ratios
and select the agents with pairs from the highest rank until the selection capacity
p is fulfilled.

Proposition 1. The optimal selection rule is given by (3) where k (or λ ) is de-
termined to satisfy (1).

Example 1 (Discrete case). There is a unit mass of agents with q. Two signals,
s1 and s2, are conditionally iid and can take three discrete values {h,m, l} with
h > m > l. Conditional probability is given by the following table.

H L
h 1

3
1
6

m 1
3

1
3

l 1
3

1
2

5We multiply the objective function by q, as it does not change the solution.
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Note that signals are informative in MLRP sense as Pr(h|H)
Pr(h|L) >

Pr(m|H)
Pr(m|L) >

Pr(l|H)
Pr(l|L) . It

is better to select agents with higher signals. The only uncertain comparison is
that between (h, l) and (m,m). If we compare the likelihood ratios of these two
pairs,

L(h, l) = L(l,h) =
4
3

q
1−q

> L(m,m) =
q

1−q
.

Then the selection occurs in the following sequence starting with (h,h), then
(h,m) = (m,h), then (h, l) = (l,h), then (m,m), then (m, l) = (l,m), and then
(l, l). The selection stops at the pair when the selection capacity p is filled.
Since the likelihood ratio is the same for the same signal pair with significant
mass, there can be random selection for some capacity parameters p.

3.2. FROM SELECTION RULE TO AGGREGATION RULE

Until now, only the optimal selection rule has been discussed. But in the
introduction, the focus was on how to aggregate two signals with the linear rule
as an example. The optimal selection rule is easily translated into an aggregation
rule.

The optimal aggregation rule is defined by a likelihood function L(s1,s2) at
value k. Because of the MLRP of signals, L(s1,s2) is an increasing function.
Therefore, it is optimal to use L(s1,s2) at critical level k as an aggregation rule
and to select agents with a pair of signals obtaining a higher score than k. Graph-
ically, L(s1,s2) = k is an iso-likelihood curve and the optimal aggregation rule
is dependent upon the shape of this curve. Some common aggregation rules are
illustrated in Figure 1. If the optimal aggregation rule is to be a (weighted) sum
of signals, the iso-likelihood curve should be linear, as in (a). If the minimum or
the maximum of signals is to be the optimal aggregation rule, the iso-likelihood
curve should be as in (b) or (c).

3.3. THE OPTIMALITY OF A LINEAR AGGREGATION RULE

If the linear rule is to be the optimal aggregation rule, the iso-likelihood
curve should be linear regardless of its value. As the shape of an iso-likelihood
ratio curve is usually dependent on the level k, it seems difficult to justify using
a (weighted) sum as a typical information aggregation rule when there are multi-
ple signals. However, it turns out that the iso-likelihood curve is linear in a very
general class of signal distributions. By abusing the notation, let L(s) = f (s|H)

f (s|L)
as the likelihood ratio of a single signal. As signals are independent, then
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Figure 1: Shape of iso-likelihood curve and optimal aggregation rule

L(s1,s2) = L(s1)L(s2). The following proposition shows a condition of L(s)
for a linear iso-likelihood curve, or the optimality of the linear aggregation rule.

Proposition 2. Iso-likelihood curves are linear at all levels, and thus a linear
aggregation rule is optimal if L′′(s)L(s) = (L′)2, or L′

L = L′′
L′ .

Proof. Iso-likelihood curves are given by

L(s1,s2) = L(s1)L(s2) = k.

Its slope is given as
ds2

ds1
=−L1

L2
=−L′(s1)L(s2)

L(s1)L′(s2)
.

If the slope is constant as s1 changes, iso-likelihood curves are linear.

d
ds1

ds2

ds1
=−L′′(s1)L(s1)−L′(s1)

2

L(s1)2
L(s2)

L′(s2)
+

L′(s1)
2

L(s1)2
L′(s2)

2−L(s2)L′′(s2)

L′(s2)2
L(s2)

L′(s2)

Thus, the slope is constant if L′′(s)L(s) = (L′)2.

We provide the condition on the likelihood ratio for the optimality of the
linear aggregation rule. We need increasing L(s) for the MLRP and L′

L = L′′
L′

for the optimality of the linear aggregation rule. As is shown in the following
remark and examples, there is a large class of common distributions that satisfy
the condition.
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Remark 1. 1. If a likelihood ratio is log-linear, L(s) = κ exp(as+b), then a lin-
ear aggregation rule is optimal. Among the distributions satisfying the MLRP,6

those whose density exhibits such a property include exponential and Laplace,
and Normal and gamma with a restriction on the parameters.
2. If a linear aggregate of signals is a sufficient statistic for types, then it should
also be a criterion of the selection problem.7 In a statistical inference literature,
it is also well known that a linear aggregate is a sufficient statistic in the above
mentioned classes of distributions, and thus this result is just a restatement of a
sufficiency argument through a different approach.

Example 2. i) Exponential distribution has a density f (s) = λe−λ s. Since the
mean of this distribution is 1

λ
, we assume that type H has a higher mean, λH <

λL. Then L(s) = λH
λL

e−(λH−λL)s is monotone increasing, and log-linear.
ii) A similar argument also applies to Laplace distribution, though MLRP holds
in a weak sense.8

iii) Gamma distribution has a density f (s) = 1
Γ(m)x

m−1θ me−xθ with m,θ > 0.

With m identical for two types and θH < θL, L(s)= (θH
θL
)me−x(θH−θL) is increasing

in s and log-linear.

Example 3. When signals are normally distributed and conditional densities
f (s|H) and f (s|L) vary only in mean µH > µL, but not in variance, the likelihood
ratio is monotone increasing and log-linear,

L(s) =
f (s|H)

f (s|L)
= exp

{
µH −µL

σ2 s− µ2
H −µ2

L

2σ2

}
.

If two signals have different variances σ2
1 and σ2

2 , the optimal aggregation rule
is the weighted sum and the weight for each signal is the inverse of its variance.

L(s1,s2)=L(s1)L(s2)= exp
{
(µH −µL)

(
s1

σ2
1
+

s2

σ2
2

)
−
(
µ

2
H −µ

2
L
)( 1

2σ2
1
+

1
2σ2

2

)}
,

and iso-likelihood curves are represented by s1
σ2

1
+ s2

σ2
2
= k.9

6See Bagnoli and Bergstrom (2004) for a class of distributions satifying MLRP.
7A statistic T (s1,s2) is sufficient for type if the joint distribution of (s1,s2) conditional on

T (s1,s2) is not dependent on type. Alternatively, it is sufficient if the joint density can be written
as g(T (s1,s2), t)h(s1,s2) where t = H or L by factorization theorem.

8For some threshold values k, the iso-likelihood curve can be thick because L(s) is constant
for some ranges. Although there can be multiple optimal aggregation rules in this case, the linear
rule is still one of them.

9It can be also shown that s1
σ 2

1
+ s2

σ 2
2

is a sufficient statistic for µ , and thus that should be a
selection criterion.
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Since the optimality of linear aggregate in the above mentioned classes of
distributions can also be obtained through the sufficient statistic argument, it is
readily extended to multiple signals and multiple types. For example, suppose
there are I types, {t1, · · · , tI}with the mass of each, qi, and J signals, {s1, · · · ,sJ},
which are independently distributed as s j ∼N

(
ti,σ2

j

)
.10 Then the weighted sum

∑
I
i=1

si
σ2

i
is the optimal aggregation rule. The sum ∑

I
i=1

si
σ2

i
is a sufficient statistic

for mean t by factorization theorem, or alternatively likelihood ratio between
any two types L(s,(ti, ti′)) =

qi
qi′

exp
{
(µi−µi′)∑

I
i=1

si
σ2

i
−
(
µ2

i −µ2
i′
)

∑
I
i=1

1
2σ2

i

}
is

ordered by ∑
I
i=1

si
σ2

i
.

3.4. OTHER COMMON RULES OF AGGREGATION

Until now, our analysis has focused on the optimality of linear aggregation
rule. However, there are other used rules. As introduced earlier, at one extreme,
one can set minimum requirements for all signals, and at the other extreme, one
can use only the maximum signal. This section illustrates examples where those
rules work better than the linear aggregation rule.

Iso-likelihood curves should be convex (or concave) if a rule using the mini-
mum (or the maximum) of signals is to work better than a linear rule. As seen in
Figure 1, a rule using the minimum (or the maximum) represents an extremely
concave (or convex) iso-likelihood curve. As a corollary to Proposition 2, we
can provide a condition for convex (or concave) iso-likelihood curves.

Corollary 2. With two signals, iso-likelihood curves are convex (concave) to
the origin when likelihoods of both signals exhibit L′′(s)L(s) < (>)L′2 for both
signals.

We can find a common distribution that satisfies the above condition, and it
turns out that a rule using the maximum (or the minimum) can perform better
than a linear rule with that distribution, as illustrated in the following examples.

Example 4. Assume that the signals are iid Gumbel conditional on types {H,L}.
The Gumbel distribution has distribution and density functions,

F(x|µ) = e−e
− x−µ

β

and f (x|µ) = 1
β

e−
x−µ

β e−e
− x−µ

β

10When there are multiple types, the objective of an evaluator is not straightforward as in the
model. If there are three types, H, M, and L, then the evaluator may want to maximize the mass
of type H, or to minimize that of type L among the selected. In the following argument, however,
we do not face the conflict of different objectives as the selection to maximize the mass of type H
also minimizes that of type L.
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for β > 0. The mean of the Gumbel distribution is linearly increasing in µ , and
the two types are represented by µH and µL with µH > µL. As

L(x) =
f (x|H)

f (x|L)
= e

µH−µL
β exp

(
−e−

(x−µH )
β + e−

(x−µL)
β

)
,

L′(x)> 0 with µH > µL. Furthermore, we can show

L′′

L′
− L′

L
=

d
dx

[
lnL′ (x)− lnL(x)

]
=− 1

β
< 0.

The iso-likelihood curves are convex to the origin and they become extremely
convex as β → 0. Therefore, a rule using the minimum performs better than the
linear rule for a sufficiently small β .

β linear min
1 1.0000 1.0359
2 1.0000 1.0188
3 1.0000 1.0084
4 1.0000 1.0060
5 1.0000 1.0015

The above table shows the results from an experiment with two independent
signals that are Gumbel distributed with µH = 1 and µL = 0, for q = 0.5 and
p = 0.5. The mass of the selected type H is shown, while the numbers are nor-
malized so that the linear rule has value of 1.

Example 5. One can think of a mirror example, a negative transformation of the
Gumbel distribution,

F(x|µ) = 1− e−e
x+µ

β

, f (x|µ) = 1
β

e
x+µ

β e−e
x+µ

β

for β > 0. Suppose type H is represented by a lower µ . Then the MLRP is
satisfied. Also, as

L′′

L′
− L′

L
=

1
β

> 0,

the iso-likelihood curves are concave and become extremely concave as β → 0.
Therefore, the rule using the maximum can perform better than the linear rule.

β linear max
1 1.0000 1.0345
2 1.0000 1.0156
3 1.0000 1.0152
4 1.0000 1.0115
5 1.0000 1.0108
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The above table shows the results from the same experiment in Example 4 except
µH = 0 and µL = 1.

4. CONCLUSION

We considered the optimal aggregation rule of multiple signals in a very styl-
ized setting.11 A sufficient condition on the distribution of signals for the optimal
linear aggregation rule is provided. Several common distributions including nor-
mal satisfy this condition, though optimality of linear aggregation rule in the
same class can be obtained through sufficient statistic argument. This justifies
the prevalent use of a linear aggregation rule. We also exemplified the better per-
formance of rules using the maximum or the minimum relative to a linear rule,
which are used in some contexts.
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