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ponents which describe the marginal behavior of the return processes and the
dependence structure between the random variables from the joint density. In
order to reflect the non-ellipticity of the joint distribution and heavy tails in the
extreme quantile of the marginal distributions of asset returns, we use the gen-
eralized Pareto distribution (GPD) as the margins and a variety of parametric
copula functions along with a nonparametric copula function in the analysis. We
select the optimal copulas from a variety of non-nested copulas based on the
model selection criteria. In calculating the risk measures, we assume that the re-
turns are jointly distributed to the parametric copulas as well as to the empirical
copula. We then compare the result with that from the bivariate normal distribu-
tion. The results show that the VaR and ES computed from the copula function
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mality assumption.
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1. INTRODUCTION

Modeling and predicting financial asset returns have been important issues
in empirical finance. A voluminous literature has focused on linear predictability
through temporal and/or intertemporal linear relationship between variables. The
modeling of the joint distribution of asset returns among other considerations
is crucial in performing these tasks. Although the univariate and multivariate
normality has been a critical assumption upon which the portfolio theory has
been built, it is well documented that the normality assumption has been proved
to be at odds by the data. Correlation-based approach assumes that scatterplot of
multivariate Gaussian random variables is elliptical. If the ellipticity is met, tail
independence has to be established except the case where the linear correlation
coefficient is one.

However, we are now able to model general dynamic dependence in a sta-
tionary Markov chain in line with the development of copula function methods
in finance. Copula function methodology is a way of separating the dependence
structure and the marginal behavior from a joint density function of multivariate
random variables. Risk measurement and risk management are the most frequent
applications of copula methodology. Chen and Fan (2006) develop a method of
combining parametric copulas with unspecified marginal distributions to obtain
a copula-based semiparametric model and estimate the conditional quantile of
portfolio of assets such as the value-at-risk (VaR). Embrechts et al. (2003b) con-
struct optimal bounds for the VaR under various dependence structures based on
the copula theory and show that the nonadditivity of the risk measure is attributed
to the different dependence structures between the component random variables.

A group of research has been devoted to measure the temporal dependence
between different classes of financial assets or between international financial
markets and to assess implications for portfolio management decisions. Con-
sidering the fact that a traditional portfolio management decision is based on
the linear correlation among the component assets, time-varying and/or asym-
metric temporal dependence may have important implications for portfolio man-
agement decisions. Although we cannot exhaustively review the extant litera-
ture, we summarize those attempts as follows. Firstly, asymmetric dependence
structure has been explored in establishing the dependence structure between the
random variables from the joint density. Patton (2004) explores the economic
and statistical significance of non-elliptical return distribution or the presence
of asymmetric dependence of asset returns for asset allocation decisions via the
copula theory. Patton (2006b) models the asymmetric dependence structure be-
tween the two exchange rates, the Deutsche mark and the Japanese yen against



HOJIN LEE 37

the U.S. dollar. In constructing joint distribution functions, he focuses on the
possibility of misspecifying the marginal distributions via a variety of diagnos-
tic tests. He then proposes the symmetrized Joe-Clayton copula to measure the
asymmetric dependence structure of the data. His conclusion is that the model
explaining skewness and asymmetric dependence outperforms the benchmark
which assumes the bivariate normal distribution in the out-of-sample. Secondly,
non-normality specification proves to be statistically pertinent in some studies.
Chen et al. (2004) develop two statistical tests for the null hypotheses of the
Gaussian copula dependence and of the Student’s t copula. When they apply the
tests to the multivariate equity returns and exchange rate returns data, they find
statistically significant evidence against the Guassian copula but not against the
Student’s t copula. The results suggest an important implication for our study
that we must take the non-normality structure of the tail area dependence into
account in the management of the portfolio and the risk. Thirdly, non-linearity
plays an important role in explaining the dependence structure between the ran-
dom variables from the joint density in the following studies. Bouye et al. (2002)
investigate a copula based empirical method to measure the nonlinear dynamic
dependence structure between non-Gaussian bivariate random variables and ap-
ply the methodology to the financial return predictability. Bouye and Salmon
(2009) develop the copula quantile regression method to measure the tail area
dependence using exchange rate series and use the results to show that Forex
markets are efficient in the sense that the exchange rates, either between rates or
within rates, are dynamically independent. He uses the Kimeldorf-Sampson, the
Joe-Clayton and the BB3 copula in estimating the copula-based quantile regres-
sion along with the Gaussian copula as the benchmark.

This paper aims to quantify the tail area dependence and use this information
to evaluate the tail related risk measures from the semi-parametric estimates of
the marginal distribution and the copula function. The aims of this paper are two
folds. Firstly, the copula function methodology is briefly introduced and is uti-
lized to separate the parts which describe the marginal behavior of the individual
stock returns and the dependence structure between the bivariate stock returns
from the joint density of a stationary Markov chain process. We then extend our
discussion to the nonlinear specification of dependence structures by using non-
Gaussian copulas which as far as we know is an underdeveloped area of research.
During the process, we do not constrain ourselves to a specific parametric copula
a priori. We will assume a variety of copula functions along with the benchmark
Gaussian copula. Secondly, we then proceed to evaluating market risk using the
VaR and the expected shortfall (ES). In calculating the risk measures, we assume
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that the two stock returns are jointly distributed to the parametric copulas as well
as to the empirical copula. We then compare the results with that from the bi-
variate normal distribution. The results show that the VaR calculated from the
copula function which takes the complicated dependence structure into account
performs better than the one based on the linear correlation-based normality as-
sumption.

Our contributions to these findings are threefold. Firstly, we investigate a
variety of dependence measures between the risky assets and the related risk
measures under the non-normality and the non-linearity assumption. In order to
reflect the non-ellipticity of the joint distribution and heavy tails in the extreme
quantile of the marginal distributions of asset returns, we use the generalized
Pareto distribution (GPD) as the margins and the copula functions in the analy-
sis. Secondly, we approximate the conditional distribution of the bivariate ran-
dom variables using conditional copulas. Further, we compute the portfolio VaR
based on the copulas. We select the optimal copulas from a variety of non-nested
copulas based on the model selection criteria. Thirdly, we use a semi-parametric
method for estimating the market risk from an estimated copula functions. We
combine a parametric assessment of the VaR with the fitted tail distribution to
form a semi-parametric evaluation of the VaR. By sampling from the tail of the
distribution, the level of statistical precision is elevated in evaluating the VaR.

The rest of the paper is organized as follows. We proceed with utilizing
the copula function methodology to separate out the components which describe
the marginal behavior of the individual returns and the dependence structure be-
tween the bivaraite returns from the joint density of the portfolio return process.
In order to reflect heavy tails in the extreme quantile of the marginal distribu-
tions of asset returns, we use the GPD as the margins and a variety of parametric
copula functions along with a nonparametric copula function in the analysis. We
select the optimal copulas from a variety of non-nested copulas based on the
model selection criteria and fit copulas to the data in section 2. We then use this
information to evaluate the tail related risk measures such as the VaR and ES
from the semi-parametric estimates of the marginal distributions and the copula
function in section 3. Section 4 concludes the discussion.



HOJIN LEE 39

Table 1: Descriptive statistics

Microsoft Boeing
A. Returns
Mean 0.001 0.000
Standard Deviation 0.023 0.019
Skewness -0.460 -0.296
Kurtosis 17.127 9.891
Minimum -0.361 -0.194
Maximum 0.189 0.144
ARCH(20) LM test 557.18 (0.00) 460.75 (0.00)
Q(20) on the rate changes 47.89 (0.00) 37.46 (0.00)
Jarque-Bera test 38193.85 (0.00) 10557.53 (0.00)
B. Squared returns
Q(20) on the squared rate changes 1118.41 (0.00) 948.73 (0.00)

Note: The ARCH(20) test reports the Engle (1982) Lagrange multiplier test for
ARCH(q) effects for q lags. The entries in the parentheses are the p-values. The Q(20)
stands for the modified Ljung-Box Q-statistic for up to twentieth-order serial correlation
in the stock returns and the squared stock returns.

2. METHODOLOGY AND ESTIMATION

2.1. MARGINAL MODEL

We use the daily log returns on the Microsoft and Boeing stock over the pe-
riod from March 13, 1986 to July 31, 2014, yielding 7,157 observations. Figure
1 shows the daily log returns on the two stocks, the Microsoft and Boeing. To
test whether the returns data come from the standard normal distribution, we
take the ordered sample and plot against the standard normal distribution as the
reference. Since the qq-plots curve down at the left and up at the right as we
observe in Figure 2, the marginal distribution of the returns should reflect the
non-normal fat-tailed behavior. The descriptive statistics of the returns in Ta-
ble 1 also confirm the assertion. The Jarque-Bera test statistic for the Microsoft
returns is 38,193.85 (p-value=0.00) and for the Boeing returns is 10,557.53 (p-
value=0.00), and the null hypotheses that the individual returns are normally
distributed are strongly rejected.
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Figure 1: Daily log returns on the Microsoft and Boeing
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Note: The figures show the daily log returns on the Microsoft and Boeing stock over
the period from March 13, 1986 to July 31, 2014.

Figure 2: The normal quantile plots for the log returns
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Note: The figures show the qq-plots of the ordered returns against the standard normal
distribution as the reference distribution. Since the distributions are heavy-tailed, the
plots curve down at the left and up at the right.

In applying the copula method to the modeling of the conditional bivari-
ate distribution of the daily log returns on the Microsoft and Being, we need to
specify the models for the marginal models of each return and the model for the
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conditional copula. The appropriate marginal models for the stock returns should
reflect heavy-tailed behavior of the processes. As Chen et al. (2004) and Patton
(2006b) shows, however, the degrees of freedom parameters of the two marginal
distributions and the copula should be the same to use a bivariate Student’s t-
distribution. However, the degrees of freedom parameter of the Microsoft return
is 4.52 with standard error of 0.24 and the degrees of freedom parameter of the
Boeing returns is 5.98 with standard error of 0.35. Since the degrees of freedom
parameters of the two marginal distributions are significantly different from each
other, the use of the Student’s t copula is inappropriate. In addition to this restric-
tion, although the Student’s t copula can accommodate the tail area dependence,
it does not allow for asymmetric tail dependence. Also, in specifying the joint
density of the returns, it seems to be inappropriate to use the bivariate normal
distribution when the two margins deviate from the Gaussian normality.

To prove that this is the case, we generate bivariate return processes from the
normal distribution calibrated to the data. We compare the generated data with
the actual returns in Figure 3. The left panel of the figure depicts the scatter plot
of the returns from the actual data and the right panel shows the generated data
from the bivariate normal distribution calibrated to the actual returns. As can be
seen from the figure, the artificially generated data from the calibrated bivariate
normal distribution do not seem to show joint negative and positive extremes
more often than the actual returns. This leads to the observation that the simu-
lated data in the first and third quadrant are more compactly distributed than the
actual returns. That is, the simulated data do not fully represent the tail depen-
dence structure observed in the actual data. As is observed in the right panel of
Figure 3, the normally distributed margins and bivariate normal distribution are
inappropriate to model the extreme returns on both tails of the distribution and
the positive dependence in the regions of the distribution. If we model the joint
distribution as the bivariate normal distribution calibrated to the data, then the
artificially generated data from this specification replicate the actual data in the
middle of the distribution, but do not seem to fit the actual data which represent
the tail dependence structure. We assume the existence of a positive dependence
between the bivariate random variables when large values of a random variable
are more likely to be followed by large values of the other random variable than
when the bivariate random variables are independent. A visual inspection of the
plot shows a denser cloud on extreme returns of the main diagonal. This indi-
cates the stronger tail area dependence in the actual returns than in the simulated
bivariate normal returns.
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Figure 3: Plot of actual returns vs. simulated returns from the calibrated bivariate
normal distribution
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Note: The left panel of the figure depicts the scatter plot of the returns from the actual
data and the right panel shows the generated data from the bivariate normal distribution
calibrated to the actual returns. The artificially generated returns from the calibrated
bivariate normal distribution do not seem to show joint negative and positive extremes
more often than the actual returns.

We have shown that the normal distribution and the Student’s t distribution
are inappropriate for the marginal models due to the ellipticity of the joint dis-
tribution and heavy tails in the extreme quantiles of the marginal distributions of
asset returns. As an alternative to the approaches in the extant literature, we use
the generalized Pareto distribution (GPD) as the margins due to Zivot and Wang
(2006) in the copula-based analysis.

We take the extreme value theory (EVT) based approach and use the gener-
alized Pareto distribution (GPD) as the marginal model. The EVT offers a fully
parametric method for estimating the tails of the marginal distribution. The most
complicated thing in estimating the GPD parameters via the maximum likelihood
method is to separate out the tail area from the center of the marginal distribution
by selecting the optimal threshold. There are two approaches to choosing a high
threshold. Danielsson et al. (2001), Danielsson and de Vries (1998), Goldie and
Smith (1987) and Hall (1990) use a subsample bootstrap procedure for deter-
mining the optimal threshold value. Alternatively, McNeil and Saladin (1997),
McNeil and Frey (2000) and Zivot and Wang (2006) use the sample mean excess
function plot. Theoretically, it would be ideal if we could fit the GPD marginal
model to the excesses over a threshold which are included in the tail area of the
distribution and not pertained in the center of the distribution. We can minimize
the bias of the GPD parameter estimates by selecting a high threshold. Oth-
erwise, we can reduce the variance of the parameter estimates by including a
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sufficient number of exceedances of the returns over a threshold. This is where
our subjective judgment kicks in. Following the sample mean excess function
plot procedure, we choose a threshold and fit the GPD marginal model to the
excesses over a threshold. When we locate a threshold value, we trade off the
bias against the efficiency of the GPD parameter estimates.

Figure 4: Sample mean excess function plots
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Note: The figures present the sample mean excess function plot against a variety of
threshold values. We choose the threshold value where the slope of the curve changes
from negative to positive. The excesses over the selected threshold are fitted to obtain
the GPD marginal models. In our sample of data, the sample mean excess function plot
changes the slope of the curve from negative to positive at the upper threshold value of
0.023 and 0.0165 for the Microsoft and Boeing, respectively.

Figure 4 presents the sample mean excess function plot against a variety of
threshold values. As suggested by the extant literature, we locate the threshold
value to obtain the excesses over a threshold with which the GPD marginal mod-
els are estimated. For example, the sample mean excess function plot changes
the slope of the curve from negative to positive at the upper threshold value of
0.023 and 0.0165 for the Microsoft and Boeing, respectively. Thus, the obser-
vations above the upper tail threshold value are fitted to the generalized Pareto
distribution. For the Microsoft, we include 14.21% with the upper threshold
of 0.023, and 14.11% of the total of 7,156 observations with the lower thresh-
old of -0.020. For the Boeing, we include 15.99% with the upper threshold of
0.0165, and 14.62% of the total of 7,156 observations with the lower threshold
of -0.0165. The tail shape parameters on both side lobes are estimated via the
MLE procedure and reported in Tables 2 and 3. Since the estimates of the tail
shape parameter ξ are greater than zero in both returns, the tails of the marginal
models of the returns are fat-tailed.
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Table 2: GPD fit to the daily log returns on Microsoft: Gξ ,β (u)(y) =

1− (1+ξ y/β (u))−1/ξ f or ξ 6= 0 or Gξ ,β (u)(y) = 1− exp(−y/β (y)) f or ξ = 0

Upper Tail Estimate
Value S.E. t-ratio

ξ 0.1193 0.0343 3.48
β 0.0152 0.0007 20.76

Lower Tail Estimate
Value S.E. t-ratio

ξ 0.1739 0.0357 4.87
β 0.0146 0.0007 20.38

Note: The tail shape parameters on both side lobes are estimated via the MLE procedure
and reported in the table. Since the estimates of the tail shape parameter ξ are greater
than zero on both side, the tails of the marginal models of the returns are fat-tailed.

Table 3: GPD fit to the daily log returns on Boeing

Upper Tail Estimate
Value S.E. t-ratio

ξ 0.1001 0.0353 2.83
β 0.0112 0.0005 20.84

Lower Tail Estimate
Value S.E. t-ratio

ξ 0.1838 0.0395 4.65
β 0.0109 0.0006 19.40

Note: For the Boeing returns, the estimates of the tail shape parameter ξ are greater than
zero on both side. Thus, the tails of the marginal models of the returns are fat-tailed.
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Figure 5: Calibration result of the semiparametric GPD model
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Note: The figure depicts the pairs of simulated returns from the estimated GPD margins.
Although the two GPD margins generate the extreme values in the tail area, the
co-movements in the extreme quantile of the joint distribution fail to replicate the
extreme returns in tandem and the dependence structure of the bivariate returns.

We check for adequacy of the two GPD marginal models in describing both
the fat-tailed behavior and the tail area dependence. We artificially generate the
pairs of returns from the estimated GPD margins. Figure 5 depicts the pairs of
simulated returns. The two GPD margins successfully generate the extreme val-
ues in the tail area, however, do not exhibit the co-movements in the extreme
quantile of the joint distribution as closely as we expect. That is, we fail to repli-
cate the extreme returns in tandem and the dependence structure of the bivariate
returns.

Our findings suggest that the tail dependence structure in the bivariate returns
observed in the left panel of Figure 3 should be included in the bivariate mod-
eling of the returns. Our strategy is to combine the two GPD marginal models
to describe fat-tailed behavior and the copula model to specify the dependence
structure in the tail area. This is the subject which we now turn to in the next
section.
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2.2. COPULA MODEL

A comprehensive treatment of the copula methodology can be found in Joe
(1997), Cherubini et al. (2004), and Nelson (2006). According to the Sklar′s
theorem, copulas are joint distribution functions of standard uniform marginal
distributions.

Theorem (Sklar’s theorem) Let X and Y be two random variables on a
probability space with their joint and marginal distribution functions, FXY ,FX

and FY . A copula C(FX(x),FY (y)) is a multivariate distribution that decomposes
a joint distribution function FXY into marginal distributions FX and FY which de-
scribe the marginal behavior of X and Y and the dependence structure between
X and Y. That is, FXY = C(FX(x),FY (y)). Conversely, if FXY (x,y) is a joint dis-
tribution function with continuous marginal distributions FX and FY , there exists
a unique copula C(FX(x),FY (y)). We can also denote this relationship in terms
of a bivariate density function. That is, fXY = fX(x) fY (y)c(FX(x),FY (y)). The
density function can be derived to be used for maximum likelihood estimation
provided that two marginal distributions FX and FY are differentiable and FXY

and C(FX(x),FY (y)) are twice differentiable.

fXY (x,y) = ∂ 2FXY (x,y)
∂x∂y = ∂FX (x)

∂x
∂FY (y)

∂y
∂ 2C(FX (x),FY (y))

∂u∂v

= fX(x) fY (y)c(u,v), ∀(x,y) ∈ R×R (1)

where we use FXY = C(FX(x),FY (y)) = C(u,v), u = FX(x) and v = FY (y). So,
the maximum likelihood function is set up as ln fXY (x,y) = ln fX(x)+ ln fY (y)+
ln c(FX(x),FY (y)). The U and V are the probability integral transforms of X and
Y and are uniformly distributed marginal distributions on [0,1].

In order to construct the conditional distribution of asset returns where the
temporal dependence is specified by the relevant copula, we need to identify the
parametric copulas. Bouye et al. (2002) show that the Bayes theorem provides
a simple way of deriving the lowest dimensional copula which captures the tem-
poral association of the time series. A wide range of copula models are available
in the extant literature. We choose the following copulas because they are fre-
quently used in the literature. We do not provide the detailed specifications of all
copula models we estimate to save space. The interested readers are referred to
Joe (1997), Cherubini et al. (2004), Nelson (2006) and Zivot and Wang (2006).

The Gaussian copula with the correlation parameter 0 ≤ δ ≤ 1 can be de-
noted as:
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C(u,v) = Φδ (Φ
−1(u),Φ−1(v)),0≤ u, v≤ 1 (2)

where Φ(·) is the standard normal distribution function, and Φδ (·) is the bivari-
ate standard normal distribution function. The Gaussian copula is symmetric and
independent in the extreme tails of the distribution. The upper and lower tail de-
pendence coefficients are the same as zero. Therefore, the Gaussian copula may
be inappropriate if the bivariate return processes exhibit nonlinear asymmetric
dependence and no tail dependence.

The Kimeldorf-Sampson (Clayton) copula is a class of Archimedean copulas
and represented as C(u,v;θ)= [u−θ +v−θ−1]−

1
θ , where θ > 0 and has the lower

tail dependence parameter τL = 2−
1
θ and the upper tail dependence parameter

τU = 0. The parameter θ denotes the measure of the association between the
two margins. Due to the presence of the asymmetric lower tail dependence, the
Kimeldorf-Sampson copula is used when the joint negative extreme returns are
clustered in the time series scatter plot.

The Frank copula is a simple Archimedean copula and has parameters de-
scribing both positive (when θ ∈ (0,1) ) and negative (when θ > 1) dependence
structures:

C(u,v;θ) =− 1
θ

ln(1+
(exp(−θu)−1)(exp(−θv)−1)

exp(−θ)−1
. (3)

The Kimeldorf-Sampson and the Frank copula of the Archimedean copulas
listed above have a single parameter θ which measures the dependence structure.
The BB3 copula is also a type of Archimedean copula with lower (δ ) and upper
(θ ) tail dependence parameters:

Cδ ,θ (u,v;θ) = exp(1− [δ−1ln(exp(δu−θ )+ exp(δv−θ )−1)]
1
θ ),

where θ ≥ 1, δ > 0 (4)

The Joe-Clayton (BB7) copula is a specific Archimedean copula with lower
(δ ) and upper (θ ) tail dependence parameters:

Cδ ,θ (u,v;θ) = 1− (1− [(1− (1−u)θ )−δ +(1− (1− v)θ )−δ −1]−
1
δ )

1
θ ,

where θ ≥ 1, δ > 0 (5)
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Although the correlation coefficient estimate of the Gaussian copula sub-
sume the overall dependence structure information, the Joe-Clayton copula is
convenient in identifying the tail area dependence measures. The parametric es-
timates of the lower (τL) and upper (τU ) tail dependence measures are obtained
by τL = 2−

1
δ and τU = 2− 2

1
θ respectively. The lower (λL) and upper (λU ) tail

dependence measures are representative of the asymptotic behavior of the copula
in the left and right tails.

For the Archimedean copulas, Bouye et al. (2002) develop a copula based
empirical method to measure the nonlinear dynamic dependence structure be-
tween non-Gaussian bivariate random variables. They show that the measures
of association, the Kendall’s τ and the Spearman’s ρ estimate the difference be-
tween the probabilities of concordance and discordance of the bivariate random
variables. As the non-parametric measures of concordance of the bivariate series,
the Kendall’s concordance coefficient τ is

τ = 4
∫ 1

0

∫ 1

0
C(u,v)dC(u,v)−1 = 4E(C(U,V ))−1 (6)

and the Spearman’s concordance coefficient is

ρ = 12
∫ 1

0
∫ 1

0 C(u,v)dudv−3 = 12
∫ 1

0
∫ 1

0 uvdC(u,v)−3

= 12E(UV )−3 = E(UV )−1/4
1/12 = E(UV )−E(U)E(V )√

Var(U)
√

Var(V )
(7)

These two measures are different from the Pearson’s product-moment corre-
lation coefficient which is a representation of linear dependence and is directly
related to the generator of the families of Archimedean copulas. Thus, for these
families of the Archimedean copulas, the parameter of the copulas, θ and the
concordance coefficient, τ represent the same dependence structure. If this is the
case, the parameter estimates of the copula can be interpreted as the measures of
association.

As an alternative to a wide range of parametric copulas, we fit the Deheuvels’
empirical copula to the data and measure the sample version of dependence in
a nonparametric way. The empirical copula methodology has the advantage of
estimating copula function parameters and other related measures of the copula
without assuming any functional form for the copula and/or the margins. Once
estimates of empirical copulas are obtained, other estimates expressed in terms
of copulas can be empirically computed. According to Nelson (2006), for exam-
ple, the sample version of dependence measures such as the Spearman’s ρ and
Kendall’s τ are obtained from the empirical copula.
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In this paper, we employ a semiparametric estimation procedure of the em-
pirical marginal distribution function and parametric/nonparametric estimate of
the parameters of the copula function. Our estimation strategy is to use the GPD
as a marginal model coupled with different parametric/nonparametric copula dis-
tribution functions. This enables us to appropriately model marginal behaviors
such as skewness and heavy tails on both extremes and symmetric or asymmet-
ric positive and negative tail dependence. The aim of the paper is to characterize
the transition distribution and conditional quantile such as the VaR using the
marginal distribution and the copula dependence parameter.

Similar to our estimation method, Chen and Fan (2006) propose to separate
out dependence structure as parametric copulas and nonparametric marginal dis-
tributions which can be estimated as the rescaled empirical distribution or the
kernel smoothed distribution. The copula-based semiparametric model is then
applied to calculating the conditional risk measures of portfolio.

2.3. COPULA ESTIMATION

The joint density function of X and Y is fXY (x,y)= fX(x) fY (y)c(FX(x),FY (y)),
where

c(FX(x),FY (y)) =
∂ 2FXY (x,y)

∂FX(x)∂FY (y)
(8)

If the marginal distributions are specified, then the likelihood function is:

l(ζ ) = ∑
T
t=1 lnc(FX(x),FY (y))+∑

T
t=1 ln fX(x)+∑

T
t=1 ln fY (y) (9)

where ζ is the parameters of both the marginal distributions and the copula.
Then, the exact maximum likelihood method is used to estimate the param-

eters of the copula and the marginal distributions simultaneously:

ζ̂MLE = argmaxζ l(ζ ) (10)

Joe and Xu (1996) suggest using the inference functions for the margins
(IFM), a two-step procedure to resolve the computational intensity of the exact
maximum likelihood method in a high dimensional multivariate distribution.

Firstly, we estimate the following maximization to obtain the parameters of
the univariate probability density functions:
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ζ̂1 = argmaxζ1 ∑
T
t=1 ln fX(x;ζ1)+∑

T
t=1 ln fY (y;ζ1). (11)

Secondly, given the estimated parameters of the marginals ζ1, we estimate
the parameters of the copula density function ζ2:

ζ̂2 = argmaxζ2 ∑
T
t=1 lnc(FX(x),FY (y);ζ2, ζ̂1). (12)

The property of asymptotic normality under regular conditions and the efficiency
of the IFM estimator are presented in Joe (1997), Cherubini et al. (2004) and
Patton (2006a).

The optimal copula which describes the appropriate measure of dependence
can be selected using the information criteria. Vandenhende and Lambert (2000)
suggest choosing an optimal copula function based on the AIC from the MLE of
a variety of copula functions with the same marginal distribution function. Van-
denhende and Lambert (2005) expand their previously cited paper by introducing
a flexible semiparametric Archimedean copula using a local linear combination
of quantile functions in describing the dependence measure.

The two stock returns processes prove to be non-normal with excess kurtosis
and negative skewness. We estimate a wide range of parametric copulas along
with the empirical copula. We estimate the 16 parametric copula models such
as the Gaussian, the Gumbel, the Joe-Clayton (BB7), the BB3 and the Frank
copula etc. reported in Tables 4, 5 and 6. The Gaussian copula is used for the
benchmark model due to the fact that the bivariate Gaussian copula results in
the tail area independence and can be used for comparison with the case where
there is tail area dependence in the bivariate return processes. Combining these
with the GPD estimation of the marginal models would result in the class of
semiparametric copula-based calculation of the VaR.

In the first step of the procedure, we fit the 16 bivariate copula models to
the Microsoft and Boeing returns with the IFM estimator. The log-likelihood
value and the information criteria of the copula models are reported in Table 4.
From the log-likelihood estimation results, the BB1 copula is evaluated to max-
imize the log-likelihood value and minimize the information criteria. Although
the BB1 copula provides the best fit of the description of the dependence struc-
ture to the bivariate data, the Joe-Clayton (BB7) and the BB3 copulas are also
fit to the data well. The dependence parameter estimates of the copula models
are shown in Table 5. The entries in the table are the measure of association
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Table 4: Log-likelihood and information criteria

Copula Log-likelihood AIC BIC HQ
Gaussian 298.55 -595.09 -588.29 -592.77
Gumbel 288.35 -574.70 -567.99 -572.38

Normal mixture 298.55 -591.09 -570.97 -584.11
BB1 365.72 -727.43 -714.01 -722.77
BB2 305.78 -607.55 -594.13 -602.89
BB3 364.21 -724.41 -711.00 -719.76
BB4 347.06 -690.11 -676.69 -685.46
BB5 288.35 -572.70 -559.29 -568.05
BB6 193.19 -382.38 -368.96 -377.72

BB7 (Joe-Clayton) 362.53 -721.05 -707.63 -716.39
Galambos 257.70 -513.40 -506.69 -511.07

Husler Reiss 233.26 -464.52 -457.81 -462.19
Tawn 315.81 -625.62 -605.49 -618.63
Frank 295.58 -589.15 -582.44 -586.82

Kimeldorf-Sampson 305.81 -609.62 -602.91 -607.30
Joe 193.19 -384.38 -377.67 -382.05

Note: The table reports the log-likelihood value and the information criteria of the six-
teen bivariate copula models to the Microsoft and Boeing returns with the IFM estima-
tor. The BB1 copula minimizes the information criteria and provides the best fit of the
description of the dependence structure of the bivariate data.

for the bivariate log daily returns of the Microsoft and Boeing. The IFM es-
timator of δ of the Gaussian copula model is 0.31 and statistically significant
with an asymptotic standard error of 0.01. The dependence parameter estimates
of the copula models are used to calculate the tail area dependence measures.
For example, the Joe-Clayton copula is convenient in identifying the tail area
dependence measures from the dependence parameter estimates in Table 5. The
parametric estimates of the lower (τL) and upper (τU ) tail dependence measures
of the Joe-Clayton copula model are obtained by τL = 2−

1
δ and τU = 2− 2−

1
θ ,

respectively. The lower (τL = 2−
1
δ ) and upper (τU = 2− 2−

1
θ ) tail dependence

measures are representative of the asymptotic behavior of the copula in the left
and right tails. From the bivariate Joe-Clayton copula function estimates, the
lower (λL) and upper (λU ) tail dependence measures are calculated as 0.13 and
0.16, respectively.
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Table 5: Dependence parameter estimate of the copula

Copula θ δ

Gaussian 0.31 (0.01)
Gumbel 1.23 (0.01)

Normal mixture
BB1 0.26 (0.02) 1.11 (0.01)
BB2
BB3 1.12 (0.01) 0.22(0.02)
BB4 0.28 (0.02) 0.31(0.02)
BB5
BB6 1.26 (0.02) 1.00 (0.01)

BB7 (Joe-Clayton) 1.14 (0.02) 0.34 (0.02)
Galambos 0.47 (0.01)

Husler Reiss 0.79 (0.02)
Tawn
Frank 1.98 (0.08)

Kimeldorf-Sampson 0.42 (0.02)
Joe 1.26 (0.02)

Note: The table reports the estimation results of the sixteen bivariate copula models
to the Microsoft and Boeing returns with the IFM estimator. The benchmark model
is the Gaussian copula. The tail area independence in the Gaussian copula is used for
comparison with the case where there is tail area dependence in the bivariate return
processes. The entries in parentheses are the standard deviations.
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Table 6: Measures of concordance: Kendall’s τ and Spearman’s ρ

Copula Kendall’s τ Spearman’s ρ

Gaussian 0.20 0.29
Gumbel 0.19 0.27

Normal mixture
BB1 0.21 -0.42
BB2 0.17 2.05
BB3 0.20 -0.42
BB4 0.20 -0.90
BB5 0.19 0.27
BB6 0.13 4.95

BB7 (Joe-Clayton) 0.20 -0.43
Galambos 0.18 0.26

Husler Reiss 0.16 0.24
Tawn 0.19 0.28
Frank 0.21 0.31

Kimeldorf-Sampson 0.17 2.05
Joe 0.13 4.95

Note: The measures of concordance are stable with respect to the specifications of the
copulas. The boldface entries are close to the Kendall’s τ and the Spearman’s ρ of 0.21
and 0.30 computed from the empirical copula. The measures of concordance indicate
overall moderate positive dependence between the Microsoft and Boeing returns.

Table 6 reports the Kendall’s τ and the Spearman’s ρ for the two stocks with
the copulas we estimate. The measures of concordance are close to each other,
meaning that the estimates are stable with respect to the specifications of the
copulas. The boldface entries in the table are close to the Kendall’s τ and the
Spearman’s ρ of 0.21 and 0.30 computed from the empirical copula, which in-
dicates an overall moderate positive dependence between the two returns series.

To evaluate the performance of the fit of the parametric copulas, we es-
timate the empirical copula for the Microsoft and Boeing stock returns. The
iso-probability contours of the estimated bivariate copula densities with the esti-
mated GPD margins are compared with the contours of the empirical copula and
given in Figure 6. The BB1, BB3 and the BB7 copulas provide clearly better fits
to the bivariate returns than the Guassian, Gumbel, and the Kimeldorf-Sampson
copulas. From the estimation results, the BB1, BB3 and the BB7 copulas fit well
to the bivariate returns conditional on using the semiparametric GPD models for
the marginal models.
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Figure 6: Contour plots of the nonparametric copula vs. the estimated parametric
copulas
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3. COPULA-BASED RISK MEASURES

Chen and Fan (2006) develop a method of combining parametric copulas
with unspecified marginal distributions to obtain a univariate copula-based semi-
parametric stationary time series models and estimate the value-at-risk (VaR) of
portfolio of assets. They propose to separate out the dependence structure as
parametric copulas from nonparametric marginal distributions which can be es-
timated as the rescaled empirical distribution or the kernel smoothed distribution.
The copula-based semiparametric model is then applied to calculating the condi-
tional VaR of portfolio. Chiou and Tsay (2008) combine the GARCH marginal
models and two copula models, the Plackett copula and the Frank copula to price
financial derivatives and assess the risk of a portfolio. Embrechts et al. (2003a)
construct optimal bounds for the VaR under various dependence structures based
on the copula theory and show that the nonadditivity of the risk measure is at-
tributed to the different dependence structures between the component random
variables.

This paper employs an alternative procedure for calculating the VaR. Firstly,
the semi-parametric estimates of the tails of the empirical marginal models are
obtained using the non-parametric estimate of the random proportion of the data
and the GPD function of estimating the tails of the marginal distributions. Armed
with the parameter estimates of the empirical marginal distributions, we use the
IFM method for estimating the parameters of the copula function. We then use
these results to calculate the copula-based semiparametric VaR and the expected
shortfall (ES).

Given any q ∈ (0,1), the daily (1− q)× 100% VaR on the daily losses of
the stock portfolio is the 100× q% quantile of the portfolio return distribution
function F:

VaRq = F−1(q). (13)

The level of the loss is used as the threshold, and the estimate of the thresh-
old is the extreme quantile estimate. If the loss on the stock portfolio is exceeded
with the (1− q)× 100% probability, then the level of the loss is the 100× q%
quantile or the VaRq. If we assume the losses with the cumulative distribution
function F are distributed to normal, the 100× q% quantile of the distribution
function F of the daily losses can also be calculated. If the distribution of the
daily losses has fatter tails than the normal distribution then the 100×q% quan-
tile of the standard normal distribution could be misleading and underestimate
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the extreme quantile estimation. Estimates of the extreme quantile based on the
GPD procedure are more accurate.

We also compute the ES which can be calculated as the conditional expec-
tation of the daily loss -R given that -R is greater than the VaRq. That is, the
(1−q)×100% ES is computed as follows:

ESq = E[−R|−R >VaRq]. (14)

If the distribution of the daily losses is a fat-tailed distribution, ESq computed
from the standard normal distribution could be misleading and underestimate the
expected shortfall. We compute the ESq as the conditional expectation of the
threshold excesses FVaRq(−R) given that -R is greater than the VaRq. The GPD
approximation to FVaRq(−R) has the shape parameter ξ and the scale parameter
β (u)+ξ (VaRq−u). Consequently, the GPD approximation to ESq can be com-
puted from the parameter estimates of the GPD model. Since the portfolio return
distribution function F is generally unknown, analytic expressions for the VaRq

and ESq are generally not available.
We use the copula-based model to calculate the VaRq and ESq. In applying

the copula method to the computation of the conditional VaR from the bivariate
distribution of the daily log returns on the portfolio which is composed of the Mi-
crosoft and Being, we need to specify the models for the marginal distributions
of each return and the model for the conditional copula. The appropriate condi-
tional distribution for the portfolio should reflect heavy-tailed behavior of each
return process and the dependence structure between the two processes. In spec-
ifying the model for the bivariate distribution, we use the fitted GPD marginal
models and the optimal copula to generate bivariate returns of the Microsoft and
Boeing. We generate 1,000,000 sample paths of bivariate returns and calculate
the 5 % and 1 % VaR. For comparison, we calculate the 5 % and 1 % VaR under
the assumption of dependence structure implied by the Gaussian copula model
as the reference model. In the simulation, we assume a portfolio weight on the
Microsoft and Boeing as 0.5 and 0.5, respectively.

Based on the Sklar’s theorem, we generate the joint density of the bivari-
ate process via two marginal distributions and a copula function, fXY (x,y) =
fX(x) fY (y)c(FX(x),FY (y)).

For the benchmark model, the margins are assumed as X ∼N(0.0009,0.0239)
and Y ∼N(0.0004,0.0190). We employ the Gaussian copula which describes the
concordance between the two margins at different levels of dependence measure.
The estimate of the dependence measure of the Gaussian copula from the actual
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bivariate returns is 0.31, however, we employ a variety of levels of dependence
for comparison. Due to the complexity of the bivariate distribution, we use a
numerical approximation method of random simulations for evaluating the risk
measures. From the simulated returns of the portfolio which invests 50 percent
of the wealth into Microsoft and 50 percent into Boeing, we compute the daily
(1− q)× 100% VaR as the 100× q% empirical quantile of the portfolio return
distribution function F, and the ES which can be calculated as the conditional
expectation of the daily loss -R given that -R is greater than the VaRq.

Table 7 reports the computation results of the VaRq and ESq by simulation
based on the GPD approximation. According to the estimation results in Table
7, the daily loss on the portfolio of the Microsoft and Boeing could be as low as
-2.77% with the 5% probability when the parametric copula is the Kimeldorf-
Sampson copula. And, under the condition that the daily negative return is less
than -2.77%, the average loss on the portfolio return is -4.36%. Under the con-
dition that the daily negative returns are less than -5.18%, the expected loss on
the portfolio return is, on average, -7.32% when the parametric copula is the
Kimeldorf-Sampson copula. If the distribution of the daily losses is a fat-tailed
distribution, the VaRq and ESq computed from the standard normal distribution
could be misleading and underestimate the true VaRq and ESq. To confirm this
assertion, we compute the VaRq and ESq for q=0.95, 0.99 from the benchmark
model. The results are presented in Table 8. When we assume low dependece
measure of δ , the VaRq and ESq from the benchmark model generally underes-
timate the levels of the risk. These results are more conspicuous for the cases
with VaR0.99 than those with VaR0.95.
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Table 7: VaRq and ESq computation results by simulation with the GPD margins
and the parametric copulas

Copula VaR0.95 VaR0.99 ES0.95 ES0.99
Gaussian 2.7397 4.7897 4.0635 6.4225
Gumbel 2.6434 4.5528 3.8694 6.0411

BB1 2.7570 5.0668 4.2504 6.9952
BB3 2.7504 5.0504 4.2418 7.0171
BB5 2.6452 4.5509 3.8631 6.0246

BB7 (Joe-Clayton) 2.7644 5.0660 4.2675 7.0665
Frank 2.7282 4.5921 3.9255 6.0100

Kimeldorf-Sampson 2.7748 5.1799 4.3594 7.3187
Joe 2.5302 4.2983 3.6560 5.7738

Note: The table reports the computation results of the VaRq and ESq by simulation based
on the GPD margins and a variety of parametric copulas. We can read off from the
second column that the daily loss on the portfolio of the Microsoft and Boeing could be
as low as -2.77% with the 5% probability when the parametric copula is the Kimeldorf-
Sampson copula. If the daily negative return is less than -2.77%, the expected loss on
the portfolio is -4.36% from the fourth column.

Table 8: VaRq and ESq computation results by simulation with the normal mar-
gins and the normal copulas

q VaRq ESq

Panel A δ = 0.31
0.95 2.8028 3.5300
0.99 3.9871 4.5743

Panel B δ = 0.10
0.95 2.5640 3.2315
0.99 3.6488 4.1900

Panel C δ = 0.90
0.95 3.3825 4.2581
0.99 4.8066 5.5223

Note: The table reports the computation results of the VaRq and ESq by simulation
based on the Gaussian margins and the Gaussian copulas. The VaR0.95 and ES0.95 from
the benchmark model with δ = 0.10 are -2.56% and -3.23%, respectively. These un-
derestimate the levels of the risk, for example, compared to those with the VaR0.95 and
ES0.95 from the GPD margins and the Kimeldorf-Sampson copula.
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4. CONCLUSION

This paper aims to quantify the tail area dependence and use this information
to evaluate the tail related risk measures from the semi-parametric estimates of
the marginal distributions and the copula function. To those ends, firstly, we uti-
lize the copula function methodology to separate out the components which de-
scribe the marginal behavior of the individual returns and the dependence struc-
ture between the random variables from the joint density of stationary time se-
ries. In applying the copula method to the modeling of the conditional bivariate
distribution of the daily log returns on the Microsoft and Being, we specify the
models for the marginal distributions of each return and the model for the condi-
tional copula. The appropriate marginal distributions for the stock returns should
reflect heavy-tailed behavior of the process. However, we also consider that the
degrees of freedom parameters of the two marginal distributions and the copula
should be the same to use the Student’s t margins and the bivariate Student’s t
copula, which we regard the conditions as too restrictive. Also, in specifying
the joint density of the returns, it seems to be inappropriate to use the bivariate
normal distribution when the two margins deviate from the Gaussian normality.
In order to reflect the non-ellipticity of the joint distribution and heavy tails in
the extreme quantile of the marginal distributions of the asset returns, we use
the generalized Pareto distribution (GPD) as the margins and a wide range of
parametric copula functions along with a nonparametric copula function in the
analysis. We select the optimal copulas from a variety of non-nested copulas
based on the model selection criteria.

Extreme value theory based approach offers the fully parametric methods
for estimating the tails of the marginal distribution. We fit the generalized Pareto
distribution (GPD) to the threshold excesses. In theory, it is best to fit the GPD
to the data solely pertained to the tail of the distribution and not included in
the center of the distribution. At the same time, however, we want to reduce
the variance of the parameter estimates by keeping the number of observations
included in the tail shape and scale parameter estimation large enough to have
a sufficient number of exceedances of the returns over a high threshold. We
minimize the bias of the GPD parameter estimates by choosing a high threshold.
In this paper, we follow the mean excess methodology for selecting the optimal
threshold.

The two stock return processes prove to be non-normal with excess kurtosis
and negative skewness. We estimate a variety of parametric copulas along with
the empirical copula. We use the Gaussian, the Joe-Clayton (BB7), the BB3 and
the Frank copula. The Gaussian copula is used for the benchmark due to the
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fact that the bivariate Gaussian copula results in the tail area independence and
can be used for comparison with the case where there is tail area dependence
in the bivariate time series. Combining these with the GPD estimation of the
marginal distributions would result in the class of semiparametric copula-based
calculation of the VaR. In the first step of the procedure, we fit the bivariate
copulas to the Microsoft and Boeing returns with the IFM estimator.

Secondly, we proceed to evaluating the market risk using the VaR and the
expected shortfall (ES). We use a semi-parametric method for estimating the
market risk from an estimated copula functions. We combine a parametric as-
sessment of the VaR and the ES with the fitted tail distribution to form a semi-
parametric evaluation of the risk measures. By sampling from the tail of the
distribution, the level of statistical precision is elevated in evaluating the risk
measures. In calculating the risk measures, we assume that the returns are jointly
distributed to the parametric copulas as well as to the empirical copula. We then
compare the results with that from the bivariate normal distribution. The results
show that the VaR and the ES calculated from the copula function which takes the
complicated and possibly nonlinear dependence structure into account performs
better than the one based on the linear correlation-based normality assumption.



HOJIN LEE 61

REFERENCES

Bouye, E., N. Gaussel and M. Salmon (2002). Investigating dynamic depen-
dence using copulae, Working Papers Series WP01-03, Financial Economet-
rics Research Centre.

Bouye, E. and M. Salmon (2009). Dynamic copula quantile regressions and tail
area dynamic dependence in Forex markets, European Journal of Finance,
15, 721-750.

Chen, X., Y. Fan and A. Patton (2004). Simple tests for models of dependence
between multiple financial time series, with applications to U.S. equity re-
turns and exchange rates, Working Paper 04-19, Financial Econometrics Re-
search Centre.

Chen, X. and Y. Fan (2006). Estimation of copula-based semiparametric time
series models, Journal of Econometrics, 130, 307-335.

Cherubini, U., E. Luciano and W. Vecchiato (2004). Copula Methods in Finance.
John Wiley and Sons, New York.

Chiou, S. C. and R. S. Tsay (2008). A copula-based approach to option pricing
and risk assessment. Journal of Data Science, 6, 273-301.

Danielsson, J., de Hann, L., Peng, L., de Vries, C. G. (2001). Using a bootstrap
method to choose the sample fraction in tail index estimation. Journal of
Multivariate Analysis, 76, 226-248.

Danielsson, J., de Vries, C. G. (1998). Beyond the sample: Extreme quantile and
probability estimation with applications to financial data. Discussion paper,
TI98-016/2. Tinbergen Institute.

Embrechts, P., A. Hing and A. Juri (2003a) Using copulae to bound the Value-at-
Risk for functions of dependent risks, Finance and Stochastics, 7, 145-167.

Embrechts, P., F. Lindskog and A. McNeil (2003b). Modelling dependence with
Copula and applications to risk management, in S. T. Rachev (eds.) Hand-
book of Heavy Tailed Distributions in Finance, Pronide Publisher.

Goldie, C., Smith, R. L. (1987). Slow variation with reminder: Theory and
applications. Quarterly Journal of Mathematics, Oxford 2nd Series 38, 45-
71.



62 NON-NORMALLY DISTRIBUTED STOCK PORTFOLIO RETURNS

Hall, P. (1990). Using the bootstrap to estimate mean square error and select
smoothing parameter in nonparametric problem. Journal of Multivariate
Analysis, 32, 177-203.

Joe, H. (1997). Multivariate Models and Dependence Concepts. Chapman and
Hall, London.

Joe, H. and J. Xu (1996). The estimations method of inference functions for
margins for multivariate models, Technical Report No. 166, Department of
Statistics, University of British Columbia, Vancouver.

McNeil, A. J., Frey, R. (2000). Estimation of tail-related risk measures for het-
eroskedastic financial time series: An extreme value approach. Journal of
Empirical Finance, 7, 271-300.

McNeil A. J., Saladin, T. (1997). The peaks over thresholds method for estimat-
ing high quantiles of loss distributions. Department of Mathematics, ETH
Zentrum.

Nelson, R. B. (2006). An Introduction to Copulas, Second edition, Springer,
New York.

Patton, A. J. (2004). On the out-of-sample importance of skewness and asym-
metric dependence for asset allocation, Journal of Financial Econometrics,
2, 130-168.

Patton, A. J. (2006a). Estimation of multivariate models for time series of possi-
bly different lengths. Journal of Applied Econometrics, 21, 147-173.

Patton, A. J. (2006b). Modelling asymmetric exchange rate dependence. Inter-
national Economic Review, 47, 527-556.

Vandenhende, F. and P. Lambert, (2000). Modeling repeated ordered categorical
data using copulas. Stat Discussion Paper 0025, Universite Catholique de
Louvain.

Vandenhende, F. and P. Lambert, (2005). Local dependence estimation using
semiparametric Archimedean copulas, Canadian Journal of Statistics, 33,
377-388.

Zivot, E. and J. Wang, Modeling Financial Time Series with S-PLUS, Springer,
2006


