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A univariate sieve density estimation based on a
simulated Kolmogorov-Smirnov test

Hosin Song∗

Abstract This paper proposes a simulated Kolmogorov-Smirnov (KS)-based
sieve density estimation method. It exploits an objective function which is the
difference of two empirical distribution functions, one involved with actual ob-
servations and the other with simulated observations. By minimizing the ob-
jective function with respect to the sieve parameters, a sieve density/distribution
estimator is obtained. The equivalence of the sieve distribution estimator and the
true distribution can be tested by the KS test since the KS test statistic is easily
obtained from the objective function. The resulting sieve density estimator is
shown to be consistent.

Numerical experiments are conducted to verify the performance of the pro-
posed method. Furthermore, the proposed method is applied to estimate the
income density in South Korea. Whether the actual observations can be ratio-
nalized by the estimated distribution can be tested by the proposed bootstrap test.
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1. INTRODUCTION

A density function is contained in a set of square integrable nonnegative
functions whose integration over the entire support is one. The space of den-
sity functions is a Hilbert space, and the well-known Parseval’s equality implies
that any density function can be approximated by the finite number of orthogo-
nal functions arbitrarily well. Sieve density estimation follows from that idea.1

By increasing the dimension of the sieve space in accordance with the increase
of sample size, any density function can be approximated arbitrarily well. In
practice, it is well known that the approximation is quite good even with small
dimensional sieve space. See Gallant and Nychka (1987), Gabler, Laisney and
Lechner (1993), and Bierens and Song (2012).

In the sieve density estimation, mostly the Fourier coefficients-related pa-
rameters are not serious considerations because their magnitude is not directly
informative to have an idea of the true density function. Instead of these nuisance
parameters, we are interested in the overall goodness-of-fit of the sieve density
estimator. In this paper, we propose to use the idea of the Kolmogorov-Smirnov
(KS) test to evaluate the goodness-of-fit of the sieve estimator, as well as to ob-
tain the sieve estimator. We propose to use the objective function, which is the
difference of two empirical distributions where one is involved with actual obser-
vations and the other with simulated observations. By minimizing the objective
function with respect to the sieve parameters, the sieve density/distribution es-
timator is obtained. Hence, the equivalence of the sieve distribution function
estimator and the true distribution function can be tested via the KS test by us-
ing the estimation results. This is very handy since the KS test statistic is di-
rectly obtained from the proposed objective function. This paper is similar to
Bierens and Song (2012) in that both exploit the difference of actual observa-
tions and simulated observations. But, there is a significant difference in that
this paper exploits the empirical distribution functions of actual and simulated
observations, whereas Bierens and Song (2012) use the empirical characteristic
functions. Hence, the proposed estimation method leads to an objective function,
which is much less complicated than that of Bierens and Song (2012) since the
latter requires some tedious trigonometric calculus. The proposed method is re-
lated to the KS test, whereas Bierens and Song (2012) is related to the integrated
conditional moment test proposed by Bierens and Ploberger (1997).2

In section 2, a simulated KS-based sieve density/distribution estimator is

1See Chen (2007) for general sieve estimators and their properties.
2The integrated conditional moment test is the Cramer-von Mises type test.
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proposed based on the simulated KS-type objective function. Then, the resulting
density estimator is shown to be a consistent estimator. In section 3, some nu-
merical experiments are conducted, and the application of the proposed method
to the income distribution is illustrated. Section 4 presents some concluding
remarks. Proofs and Figures are given in the Appendix. As to notations and
symbols, “

p−→” and “ d−→” denote the convergence in probability and the con-
vergence in distribution, respectively. D denotes the closure of the set D .

2. A SIMULATED KS-BASED SIEVE DENSITY ESTIMATOR

2.1. SIEVE DENSITY REPRESENTATION

Bierens (2008) notices that any absolutely continuous distribution function
F(y) can be represented as F(y) = H(G(y)) where H(u) is a distribution on
the unit interval [0,1], and G(y) is strictly increasing as well as its support con-
tains that of F(y). Hence, any continuous density function f (y) can be repre-
sented by a density function h(u) on the unit interval [0,1] via the relationship
f (G−1(u)) = h(u)g(G−1(u)) where G(y) can be interpreted as the initial guess
of the distribution F(y). For details, see Bierens (2008), and Bierens (2014).

Bierens (2008) proposes to approximate h(u) by using orthonormal polyno-
mials on the unit interval. Such approximated density function by the finite num-
ber of orthonormal polynomials is called an SNP density function. Throughout
this paper, sieve density functions indicate the SNP density functions in Gal-
lant and Nychka (1987). Typical examples of orthonormal polynomials on [0,1]
are three-term recurrence series and trigonometric series. Some examples of the
three-term recurrence series are: Hermite polynomials, Laguerre polynomials,
Legendre polynomials and Chebyshev polynomials. The cosine series, Fourier
series and sine series are examples of the trigonometric series. In this paper, we
focus on Legendre polynomial based on density in Bierens (2008), and Bierens
and Song (2012).3 Similar to Bierens and Song (2012), the space of density
function h(u) is defined as

D =

{
h(u) =

(1+∑
∞
j=1 δ jρ j(u))2

1+∑
∞
j=1 δ 2

j
, ∑

∞

j=1 δ
2
j ≤ ∞

}
. (1)

3Of course, the proposed estimation method similarly can be applied to other orthonormal
polynomial based representations.
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Given an a priori chosen sequence δ j > 0 satisfying ∑
∞
j=1 δ j < ∞, the space

of sieve density functions on the unit interval with SNP order k can be defined
as follows.

Dk =

{
hk(u) =

(1+∑
k
j=1 δ jρ j(u))2

1+∑
k
k=1 δ 2

j
, sup j≥1 |δ j|/δ j ≤ 1

}
(2)

where ρk(u) is the orthonormal Legendre polynomial satisfying ρ0(u)= 1,ρ1(u)=√
3(2u−1), and

√
k+1/2√

2k+3
√

2k+1
ρk+1(u)+(0.5−u)ρk(u)+

k/2√
2k+1

√
2k−1

ρk−1(u) = 0
for all k ∈ N.

2.2. SIMULATED KS-BASED SIEVE ESTIMATOR

Assumption 1. The SNP order k increases as the sample size n increases, i.e.,
k ≡ kn→ ∞ as n→ ∞.

Assumption 2. The true density function h0(u) ∈ ∪∞
k=1Dk = D . Moreover,

H0(u) =
∫ u

0 h0(t)dt, and Hk(u) =
∫ u

0 hk(t)dt with hk ∈Dk.

Assumption 2 is about the idea of sieve estimation. The sieve space Dk is non-
decreasing, and hence ∪∞

k=1Dk = D since ∪∞
k=1Dk is dense in D .

Assumption 3. The true distribution F0(y) and the initial guess G(y) are strictly
increasing in y. Moreover, the support of G contains that of F0.

The true distribution function and density function are denoted by F0(y) and
f0(y) respectively. Assumptions 1-3 are maintained throughout this paper.

Theorem 1 Let hk(u) ∈ Dk be a sequence of densities of absolutely continu-
ous distributions with limk→∞ hk(u) = h0(u) for each u ∈ (0,1), and Hk(u|δk) =∫ u

0 hk(t)dt. If h0(u) is a density function on [0,1], then limk→∞

∫ 1
0 |hk(u)−h0(u)|du=

0.

The proof of Theorem 1 is provided in the Appendix. It is a simple adaptation
of Scheffe’s lemma.4

4See Serfling (1980).
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Corollary 1 Theorem 1 implies supu∈[0,1] |Hk(u)−H0(u)| → 0 as k→ ∞.

The proof of Corollary 1 is provided in the Appendix.

The proposed simulated KS-based sieve density estimator ĥk(u) can be ob-
tained by minimizing the objective function Ωn(δk) with respect to δ k =(δ1, . . . ,δk).

ĥk(u)≡ h(u|δ̂k) = argminhk∈Dk Ωn(δ k) (3)

where

Ωn(δk) = supy

∣∣∣∣1n ∑
n
i=1 I(Yi ≤ y)− 1

n ∑
n
i=1 I(Ỹi ≤ y)

∣∣∣∣ (4)

where Yi is an actual observation which is randomly drawn from the true den-
sity function f0(y), while Ỹi is an independent random drawing from fk(y) =
hk(u|δk)g(y). Note the determination of δk is equivalent to the determination
of hk(u|δk). Given δk, Ỹi can be obtained by the accept-reject method using
hk(u|δk).5 The estimation of δk in (3) can be implemented by the simplex
method in Nelder and Mead (1965). Once ĥk(u) ≡ h(u|δ̂k) is obtained, then
f̂k(y) = hk(G(y)|δ̂k)g(y) and F̂k(y) = Hk(G(y)|δ̂k) =

∫ u
0 h(t|δ̂k)dt are easily ob-

tained.

The following theorem shows that the proposed simulated KS-based sieve
density/distribution estimator minimizing the objective function to be op(1) is
the consistent estimator.

Theorem 2 Suppose that h0 ∈ D with f0(y) = h0(u)g(y) where the support of
f0(y) is contained in the support of g(y) and u = G(y). Let f̂kn(y) = ĥkn(u)g(y)
where ĥkn(u) is defined in (3). Then, the sieve estimator ĥkn(u) and Ĥkn(u) =∫ u

0 ĥkn(t)dt satisfy (i) supu∈[0,1] |Ĥkn(u)−H0(u)|
p−→ 0 as n→∞, and (ii)

∫ 1
0 |ĥkn(u)−

h(u)|du
p−→ 0 as n→ ∞.

The proof of Theorem 2 is provided in the Appendix.

The main advantage from the objective function (4) is that it enables us to do
a goodness-of-fit test of the sieve estimator F̂k(y) = Hk(u|δ̂k) with y = G−1(u)

5The detailed procedure of the accept-reject method is described in Lemma A in the Appendix.
For general accept-reject methods, see Devroye (1986).
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by the KS test. Note

√
nΩn(δ̂k) =

√
nsupy

∣∣F̂0(y)− F̂k(y)
∣∣=√nsupu∈[0,1]

∣∣Ĥ0(u)− Ĥk(u)
∣∣ (5)

where F̂0(y) = n−1
∑

n
i=1Yi is the empirical distribution of the actual observations,

and F̂k(y) = n−1
∑

n
i=1 Ỹi is the empirical distribution of simulated observations.

Define the null hypothesis and the alternative hypothesis as follows.

H0: F̂k(y) is the true distribution

versus

H1: F̂k(y) is not the true distribution.

If the null hypothesis holds, then

√
nΩn(δ̂k)

d−→ supt∈[0,1]B(t),

where B(t) is the Brownian bridge process.6 Moreover, it is well-known that

P
[
supt∈[0,1]B(t)≤ d

]
= 1−2∑

∞

j=1(−1) j+1 exp(−2 j2d2).7

Instead of 1−2∑
∞
j=1(−1) j+1 exp(−2 j2d2), we can use 1−2∑

M
j=1(−1) j+1 exp(−2 j2d2)

with sufficiently large M. When M = 1000, P
[
supt∈[0,1]B(t)≤ 1.23

]
= 0.90,

P[supt∈[0,1]B(t) ≤ 1.36] = 0.95, and P[supt∈[0,1]B(t) ≤ 1.63] = 0.99. There-
fore, if

√
nΩn(δ̂k) is less than 1.23 for sufficiently large n, the null hypothesis

H0 : F̂k(y) = F0(y) cannot be rejected at the 10% significance level. Thus, we
can test whether the estimated sieve distribution is true or not by the proposed
KS goodness-of-fit test.

2.3. TEST OF THE VALIDITY OF F̂K(Y ) USING BOOTSTRAP

The validity of the sieve distribution estimator F̂k(y) = Ĥk(G(y))g(y) can be
verified by testing the null against the alternative hypotheses:

6For the detailed proof, see the subsubsection 8.3.1 in Appendix I in Lee (2010).
7For details, see Serfling (1980).



32 SIMULATED KS-BASED SIEVE DENSITY ESTIMATION

H0: the actual observations are rationalized by the estimated distribution
F̂k(y)

versus

H1: the actual observations are not rationalized by the estimated distri-
bution F̂k(y).

Following Bierens and Song (2012), we propose to perform the following
bootstrap to test the above null hypothesis.

• For the rth bootstrap replication, independently and randomly draw Ur, j,
j = 1,2, . . . ,2n, from the estimator h(u|δ̂k), where u = G(y). Then, let
U (1)

r, j = Ur, j for j = 1, . . .n, and U (2)
r, j = Ur, j for j = n+ 1, . . . ,2n, respec-

tively. Note the superscript 1 and 2 denote the first half and the other half
of Ur, j’s, respectively, and the first subscript r denotes the rth bootstrap
replication.

• For each random drawing U (i)
r, j , compute Ỹ (i)

r, j = G−1(U (i)
r, j ), i = 1,2. Then,

compute KSr as follows.

KSr = supy

∣∣∣∣1n ∑
n
j=1 I(Ỹ (1)

r, j ≤ y)− 1
n ∑

n
i=1 I(Ỹ (2)

r, j ≤ y)
∣∣∣∣ ,

where r = 1,2, . . . ,R, and R is the number of bootstrap replications.

• Find the 90th percentile KSr, denoted by τ0.90, in the sense that Pr[KSr ≤
τ0.90] = 0.9. Then compare the original KS≡

√
nΩn(δ̂k) with τ90%.

If KS ≡
√

nΩn(δ̂k) < τ0.90, the null hypothesis cannot be rejected at the
10% significance level. That is, the observations are rationalized by the
estimated distribution F̂k(y) at the 10% significance level.

The bootstrap test can play a role of a supplementary test to the goodness-
of-fit test addressed in the previous subsection. It verifies the null hypothesis
that the actual observations Yi’s are rationalized by the estimated distribution
F̂k(y) ≡ H(G(y)|δ̂ k), while the goodness-of-fit test in the previous subsection
2.2 directly tests the null hypothesis H0 : F̂(y) is true. Fundamentally, both null
hypotheses of the two tests are similar. But, the way the tests are done are quite
different. The bootstrap test has both parametric and nonparametric properties.
It is parametric since F̂k(y) = H(G(y)|δ̂k) is used to generate the bootstrap repli-
cations. Moreover, it is nonparametric test since the nonparametric quantiles of
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the bootstrap Kolomogorov-Smirnov test statistics are used for the test. It is very
likely that both tests lead to the similar test results when the sample size is large.8

In the following section, some numerical experiments are conducted to ver-
ify the performance of the proposed method and an application of the proposed
method is illustrated to estimate the 2012 income distribution in South Korea.

3. MONTE CARLO EXPERIMENTS AND APPLICATION

3.1. NUMERICAL EXPERIMENTS

Suppose a random variable Y follows a Gumbel extreme value distribu-
tion with a location parameter µ and a scale parameter σ with the distribu-
tion F0(y) = exp(−exp(−(y−µ)/σ)) .9 Hence, its probability density func-
tion is f0(y) = exp(−(y−µ)/σ)exp(−exp(−(y−µ)/σ))/σ . Suppose µ = 1
and σ = 1. Then, f0(y) = exp(y−1)exp(−exp(y− 1)). Obtain n independent
random drawings from f0(y), and treat them as actual observations. Orthonor-
mal Legendre polynomials are used to construct the SNP density function. The
initially chosen distribution G is the normal distribution N (Y ,S2) where S2

Y =
(n−1)−1

∑
n
i=1(Yi−Y )2. That is, G(y) =

∫ y
−∞

1/
√

2πS2 exp(−(t−Y )2/(2S2))dt.
The proposed simulated KS-based sieve estimation is performed to obtain f̂ (y)=
hk(G(y)|δ̂ k) for three cases of n = 1000,5000 and 10000. In each case, 1000
bootstrap replications are obtained so that the 5th percentile and 95th percentile
bootstrap density estimates are obtained. These results are shown in Figures 1-3
in the Appendix. The SNP order is selected by choosing the sieve order k when
the objective function cannot decrease any longer by using order k+1. Specifi-
cally, SNP order k is chosen by following the criterion: choose the smallest k sat-
isfying Ω(δ̂ k) = Ω(δ̂ k+1) and Ω(δ̂ m)> Ω(δ̂ m+1) for all m with 1 ≤ m ≤ k−1.
Note that Ω(δ̂ k) = Ω(δ̂ k+1) happens when δ̂ k+1 = (δ̂

′
k,0)

′. Accordingly, the
SNP order is selected to be 3, 5 and 6 respectively.10 Table 3.1 shows the results
of goodness-of-fit of the proposed sieve distribution estimator. Note the selected
SNP order increases as the sample size increases.11 The results suggest that the

8This property seems to hold generally in sieve estimation which requires large sample.
9This distribution is also called type 1 extreme value distribution.

10Throughout this paper, this criterion is used to select the SNP order. The determination of the
sieve order can be another issue of interest. See Izenman (1991) to see many suggestions about
that issue. Bierens and Song (2012) suggests to use the information criterion to determine the
order.

11This result reflects the sieve estimation idea in Assumption 1.
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Table 1: Goodness-of-fit test results of F̂k(u)

Sample size (n) 1000 5000 10000
Selected sieve order (kn) 3 5 6
KS test stat. (

√
nΩn(δ̂k)) 0.854 0.877 1.130

Note: P[supt∈[0,1]B(t) ≤ 1.23] = 0.90,P[supt∈[0,1]B(t) ≤ 1.36] = 0.95, and
P[supt∈[0,1]B(t)≤ 1.63] = 0.99.

null hypothesis that F̂k(y) is the true distribution cannot be rejected at the con-
ventional significance level in all three cases. In terms of KS test statistic, the
case of (n,k) = (1000,3) is the best among the three cases. The comparison of
SNP density estimates and the true density function is shown in Figure 4 in the
Appendix.

3.2. AN APPLICATION: INCOME DISTRIBUTION

In this subsection, the proposed simulated KS-based sieve density estimation
method is exploited to estimate the density function of the 2012 South Korean
household income using household financial survey data by the Bank of Korea,
Financial Supervisory Service, and Statistics Korea. The sample size is 9831.
The chosen SNP order is three. The estimated density function is shown in
Figure 5, and the histogram of actual income and simulated income is shown in
Figure 6 in the Appendix.12 The histogram result suggests that both look similar
except on a few intervals.

To justify the validity of the estimated sieve distribution function F̂k(y), we
can test the null hypothesis that the actual observations are rationalized by F̂k(y)
against the alternative hypothesis that the actual observations are not rational-
ized by F̂k(y) via the bootstrap in subsection 2.3. The 90th and 95th percentiles of
bootstrap KS statistics are τBS

0.90 = 1.54 and τBS
0.95 = 1.70 respectively.13 The KS

statistic from the estimation is
√

nΩn(δ̂3) = 0.52 which is less than τBS
0.90 = 1.54.

12The unit of the household income is 10 thousand won.
13The histogram of the bootstrap KS statistics is provided in Figure 7 in the Appendix for

readers who may be interested in it.
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Hence, the null hypothesis is not rejected at the 10% significance level. There-
fore, the actual observations can be rationalized by the estimated distribution
F̂k(y). Note that the null hypothesis: F̂k(y) is the true distribution is also accepted
at 5% and 10% significance level respectively when applying the goodness-of-fit
test to this application.14

4. CONCLUDING REMARKS

In this paper, we propose a simulated sieve density estimation method based
on orthonormal Legendre polynomials. In particular, we propose to use the sim-
ulated KS-type objective function, which is the difference of two empirical dis-
tribution functions: one is involved with actual observations and the other with
simulated observations. By minimizing the objective function with respect to the
sieve parameters, a sieve density estimator is obtained. The sieve distribution es-
timator automatically follows from the density estimator.

The main advantage of the proposed objective function lies in the ease in
constructing the objective function, which is contrast to the complicated Cramer-
von Mises type objective function such as the integrated moments in Bierens
and Song (2012). The final objective function value can be used to evaluate the
goodness-of-fit of the proposed estimator. Particularly, the equivalence of the
distribution estimator and the true distribution can be tested by the KS test since
the KS test statistic is easily obtained from the estimation results. Moreover,
the validity of the sieve estimator can be verified by the proposed bootstrap test
by testing whether the actual observations can be rationalized by the estimated
distribution.

Some numerical experiments are conducted to confirm the performance of
the proposed estimation method and the KS test. Moreover, as a supplementary
test to the KS test, the proposed bootstrap test is applied to the household income
distribution in South Korea.

14This is the expected result. Note that the critical values for the KS test are τ0.90 = 1.23 and
τ0.95 = 1.36 respectively.
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A. APPENDIX

Proof of Theorem 1. Let I(·) be the indicator function. Then,

|hk(u)−h0(u)|= (hk(u)−h0(u))I(hk(u)≥ h0(u))+(h0(u)−hk(u))I(hk(u)< h0(u))

= (hk(u)−h0(u))[1− I(hk(u)< h0(u))]+(h0(u)−hk(u))I(hk(u)< h0(u))

= (hk(u)−h0(u))+2(h0(u)−hk(u))I(hk(u)< h0(u)).

Hence,∫ 1

0
|hk(u)−h0(u)|du =

∫ 1

0
(hk(u)−h0(u))du+2

∫ 1

0
(h0(u)−hk(u))I(hk(u)< h0(u))du

=
∫ 1

0
hk(u)du−

∫ 1

0
h0(u)du

+2
∫ 1

0
(h0(u)−hk(u))I(hk(u)< h0(u))du→ 0

since
∫ 1

0 hk(u)du=
∫ 1

0 h0(u)du= 1, and
∫ 1

0 (h0(u)−hk(u))I(hk(u)< h0(u))du→
0 by the dominated convergence theorem since (h0(u)−hk(u))I(hk(u)< h0(u)))<
h0(u)< M for some M > 0, and limk→∞(h0(u)−hk(u)) = 0. Q.E.D.

Proof of Corollary 1. It is noted that

supu∈[0,1] |Hk(u)−H0(u)|= supu∈[0,1]

∣∣∣∣∫ u

0
(hk(t)−h0(t))dt

∣∣∣∣
≤ supu∈[0,1]

∫ u

0
|hk(t)−h0(t)|dt =

∫ 1

0
|hk(t)−h0(t)|dt.

Therefore,
∫ 1

0 |hk(t)−h0(t)|dt→ 0 implies supu |Hk(u)−H0(u)| → 0 as k→∞.
Q.E.D.

Accept-reject method. The following lemma from Song (2007) is used to im-
plement the accept-reject method in this paper.

Lemma A. Let fk(·) be a density function from which we want to draw a random
variable Y , and let g(·) be a density function from which it is easy to draw a
random variable Y0. The proposed accept-reject method below (steps 1− 4)
generates Y .
Step 1: Find a constant c≥ 1 such that fk(y)≤ cg(y) for all y.
Step 2: Draw an Y0 from g(y).
Step 3: Draw a U from the uniform distribution on [0,1].
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Step 4: If U ≤ c−1 fk(Y0)/g(Y0) then set Y = Y0, else redo steps 2−4.15

Note fk(y) = h(G(y)|δk)g(y) and the value c is determined by a grid search
c = sup0≤u≤1 h(u|δk), and step 2 can be done by setting Y0 = G−1 (U0), where U0
is a random drawing from the uniform [0,1] distribution. The uniform random
variable U in step 3 has to be drawn independently of U0, so that Y0 and U are
independent. Then step 4 yields a random drawing Y from the density function
fk(y).

Proof Theorem 2.
Part (i). We need to show supy

∣∣∣∣1n ∑
n
i=1 I(Ỹr,i ≤ y)−F0(y)

∣∣∣∣ p→ 0. First, it is noted

that

Ωn(δkn)

= supy

∣∣∣∣1n ∑
n
i=1 I(Yi ≤ y)− 1

n ∑
n
i=1 I(Ỹr,i ≤ y)

∣∣∣∣
= supy

∣∣∣∣(1
n ∑

n
i=1 I(Yi ≤ y)−F0(y)

)
−
(

1
n ∑

n
i=1 I(Ỹr,i ≤ y)−F0(y)

)∣∣∣∣
≤ supy

∣∣∣∣1n ∑
n
i=1 I(Yi ≤ y)−F0(y)

∣∣∣∣+ supy

∣∣∣∣1n ∑
n
i=1 I(Ỹr,i ≤ y)−F0(y)

∣∣∣∣ ,
(6)

and that

Ωn(δkn)

= supy

∣∣∣∣1n ∑
n
i=1 I(Yi ≤ y)− 1

n ∑
n
i=1 I(Ỹr,i ≤ y)

∣∣∣∣
= supy

∣∣∣∣(1
n ∑

n
i=1 I(Yi ≤ y)−F0(y)

)
−
(

1
n ∑

n
i=1 I(Ỹr,i ≤ y)−F0(y)

)∣∣∣∣
= supy

∣∣∣∣(1
n ∑

n
i=1 I(Ỹr,i ≤ y)−F0(y)

)
−
(

1
n ∑

n
i=1 I(Yi ≤ y)−F0(y)

)∣∣∣∣
≥ supy

∣∣∣∣1n ∑
n
i=1 I(Ỹr,i ≤ y)−F0(y)

∣∣∣∣− supy

∣∣∣∣1n ∑
n
i=1 I(Yi ≤ y)−F0(y)

∣∣∣∣ .
(7)

15It is important to restart from step 2, because Y0 and U need to be mutually independent.
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(6) and (7) is reduced to the following:

supy

∣∣∣∣1n ∑
n
i=1 I(Ỹr,i ≤ y)−F0(y)

∣∣∣∣− supy

∣∣∣∣1n ∑
n
i=1 I(Yi ≤ y)−F0(y)

∣∣∣∣
≤Ωn(δkn)

≤ supy

∣∣∣∣1n ∑
n
i=1 I(Yi ≤ y)−F0(y)

∣∣∣∣+ supy

∣∣∣∣1n ∑
n
i=1 I(Ỹr,i ≤ y)−F0(y)

∣∣∣∣ .
(8)

Glivenko-Cantelli theorem implies that

supy

∣∣∣∣1n ∑
n
i=1 I(Yi ≤ y)−F0(y)

∣∣∣∣ p→ 0. (9)

Therefore, it follows from (8) and (9) that

Ωn(δkn)
p→ 0 if and only if supy

∣∣∣∣1n ∑
n
i=1 I(Ỹr,i ≤ y)−F0(y)

∣∣∣∣ p→ 0.

Note that supy

∣∣∣∣1n ∑
n
i=1 I(Ỹr,i ≤ y)−F0(y)

∣∣∣∣ p→ 0 implies supy

∣∣F̂kn(y)−F0(y)
∣∣ p→

0, which is equivalent to supu

∣∣Ĥkn(u)−H0(u)
∣∣ p→ 0 as n→ ∞. Q.E.D.

Part (ii). Similar to the part (i), |ĥkn(u)− h0(u)| = |ĥkn(u)− hkn(u)+ hkn(u)−
h0(u)| has the following inequality.

|ĥk(u)−hk(u)|− |hk(u)−h0(u)|
≤ |ĥk(u)−h0(u)| ≤ |ĥk(u)−hk(u)|+ |hk(u)−h0(u)| (10)

where n is suppressed in kn for convenience. Hence,

||ĥk(u)−hk(u)||1−||hk(u)−h0(u)||1
≤ ||ĥk(u)−h0(u)||1 ≤ ||ĥk(u)−hk(u)||1 + ||hk(u)−h0(u)||1 (11)

where ||h(u)||1≡
∫ 1

0 |h(u)|du. Note ||hk(u)−h0(u)||1→ 0 by Theorem 1. Hence,
(11) becomes the following inequality

||ĥk(u)−hk(u)||1−o(1)

≤ ||ĥk(u)−h0(u)||1 ≤ ||ĥk(u)−hk(u)||1 +o(1). (12)
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For given k ∈ N, ||ĥk(u)− hk(u)||1
p→ 0. Therefore, ||ĥk(u)− h0(u)||1

p→ 0 as
n→ ∞. Q.E.D.

Figure 1: SNP density estimate when SNP order is 3 and n = 1000
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Figure 2: SNP density estimate when SNP order is 5 and n = 5000
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Figure 3: SNP density estimate when SNP order is 6 and n = 10000
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Figure 4: Comparison of SNP density estimates when n = 1000,5000,10000
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Figure 5: Estimated density function of the household income with SNP order 3
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Figure 6: Histogram of actual income and simulated income
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Figure 7: Histogram of bootstrap KS test statistic with δ̂ 3
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