
Journal of Economic Theory and Econometrics, Vol. 28, No. 1, Mar. 2017, 21–48

Data-Based Ranking of Integrated Variance

Estimators Across Size Deciles
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Abstract In recent years, there has been an explosion of research on the

volatility of stock returns. As high frequency stock price data became more read-

ily available, there have been many proposed estimators of integrated variance

which attempt to take advantage of the informational gains of high-frequency

data while minimizing any potential biases that arise from sampling at such a

fine scale. These estimators rely on various assumptions about the price process

which can make them difficult to compare theoretically. Relying on the methods

of Patton (2011a), this paper analyzes the performance of five different classes of

integrated variance estimators when applied to various stocks of differing mar-

ket capitalization in an attempt to discover the circumstances under which one

estimator should be chosen over another.
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1. INTRODUCTION

While early work in realized measures such as Merton (1980) and Zhou

(1996) recognized the benefits of utilizing higher frequency data to measure vari-

ability over a longer period, only recently has high-frequency intraday price data

become available. Subsequently, over the past several years with the increased

availability of high-frequency stock data, there has been a strong research fo-

cus on the best ways to exploit this increase in information. One specific use of

high-frequency data on which there has been a strong focus is that of measur-

ing price volatility, or quadratic variance. Realized variance (RV), or the sum of

squared intraday returns (see Andersen, Bollerslev, Diebold, and Labys, 2001;

Barndorff-Nielsen and Shephard, 2002), has been the launching pad for many

other estimators of quadratic variance that utilize high-frequency returns data.

Many of these have sought to reduce microstructure noise, isolate the contin-

uous component of volatility, reduce finite sample bias, or otherwise improve

upon our ability to measure the variation of asset prices1. These different esti-

mators are often based on different assumptions about the price process. Addi-

tionally, one may be based upon sampling in calendar time while another utilizes

tick time sampling. These, as well as other tractability issues, often prohibit the

theoretical asymptotic comparison of the various estimators.

One shortcoming of the realized variance estimator is that it is only a mea-

sure of the total variation of the price process, or quadratic variance. For years,

research in finance has been based on a continuous price process, however, re-

cently it has become clear that price processes are better represented as con-

tinuous brownian motion with jumps2. In many fields, e.g. risk management,

options pricing and volatility forecasting, it can be useful to obtain an estimate
1See Barndorff-Nielsen and Shephard (2004), Mancini (2009), Lee and Mykland (2008),

Andsersen, Dobrev, and Schaumburg (2008, 2009). Additional estimators that use subsampling
techniques include Zhang (2006), Zhang, Mykland, and Ait-Sahalia (2005). For pre-averaging
methods see Jacod, Li, Mykland, Podolskij, and Vetter (2009) and Podolskij and Vetter (2009).
Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008) develop kernel-based autocovariance
adjustments to reduce the effects of noise.

2See, for example, Andersen, Benzoni, and Lund (2002), Bates (2000), Chan and Maheu
(2002), Chernov, Gallant, Ghysels, and Tauchen (2003), Eraker (2004), and Eraker, Johannes and
Polson (2003).
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of the continuous component of quadratic variance, or integrated variance (IV),

without including the variation caused by jumps. The need to isolate and es-

timate the integrated variance in the presence of possible jumps has led to the

development of various estimators which attempt to exclude jump variation3 as

well as tests to determine if and when jumps may have occurred in the price

data4. With a variety of possible IV estimators available it is useful to obtain a

better understanding of which measure to use when investigating a specific em-

pirical question. Since it is often difficult to theoretically compare the different

estimators, we must rely on empirical methods to determine the most appropriate

estimator for any given asset.

Recently, Patton (2011a) developed an empirical method that allows for the

ranking of various estimators when the true underlying process is unobserved, as

is the case in the volatility of asset prices. In his implementation of the empiri-

cal ranking using high-frequency returns for IBM, Patton (2011a) finds that for

the simple RV estimator it is optimal to use a sampling frequency between 15

seconds and 5 minutes. This technique has also been used by Patton and Shep-

pard (2009) who rank various estimators of quadratic variance and find it is often

optimal to use a combination of estimators as opposed to simply choosing a sin-

gle estimator. This paper utilizes similar techniques to examine the performance

of IV estimators for stocks across different size deciles. We chose to examine

stocks of differing market capitalizations because many studies focus solely on

large-cap stocks which may behave quite differently than stocks of smaller mar-

ket capitalizations. Sorting the stocks based on market capitalization is a simple

way of separating stocks into groups with different trading frequencies.

Studies that estimate the integrated variance for specific assets often focus

their attention on stocks with the largest market capitalization5. We chose to look

3See Barndorff-Nielsen and Shephard (2004), Mancini (2009), Andersen, Dobrev, and
Schaumburg (2008, 2012), Christensen, Oomen, and Podolskij (2010), and Ait-Sahalia and Ja-
cod (2010)

4See Barndorff-Nielsen and Shephard (2004, 2006), Huang and Tauchen (2005), Andersen,
Bollerslev, and Diebold (2007), and Ait-Sahalia and Jacod (2010) among others.

5For example, Andersen, Dobrev, and Schaumburg (2012) and Christensen, Oomen, and
Podolskij (2010). Additionally, in the ranking procedures of Patton (2011a) and Patton and Shep-
pard (2009) only data for IBM was examined.



24
DATA-BASED RANKING OF INTEGRATED VARIANCE ESTIMATORS ACROSS

SIZE DECILES

over a wide range of stocks from different size deciles in order to explore how

the various estimators perform on stocks with varying liquidity. Specifically,

this study will be conducted using 30 stocks from the NYSE. Once all of the

stocks were sorted into their size decile, the top ten stocks from the tenth, sixth,

and second deciles (where the tenth decile contained the largest stocks on the

NYSE) were selected for the study. Such a wide array of stocks will allow for

the examination of the relative performance of the estimators on assets of varying

size and liquidity. This paper looks to expand upon the findings of Patton (2011a)

and Patton and Sheppard (2009) by comparing various IV estimators over a wide

range of sampling frequencies and stocks.

The rest of the paper is organized as follows: Section 2 describes the empir-

ical ranking method of Patton (2011a) in further detail. Section 3 discusses the

various IV estimators in more detail. A detailed description of the data, including

stock selection, cleaning methods, and summary statistics is included in Section

4. Section 5 presents the results of both pairwise comparisons as well as tests for

the best estimator among a large set of possibilities. Section 6 concludes.

2. RANKING METHOD

One main difficulty in comparing measures of integrated variance is that the

true IV is unobservable. This difficulty, coupled with the abundance of possi-

ble sampling frequencies and estimators, has led to the need to better understand

which choice of sampling frequency and tuning parameters should be used in any

given empirical analysis. The empirical techniques presented in Patton (2011a)

allow for the comparison of different realized measures even when the true un-

derlying process is unobservable. By proving various moment and distributional

conditions, he is able to appeal to existing volatility forecasting literature in order

to compare the various RV estimators.

In addition to being able to circumvent problems arising from measuring the

accuracy of estimators to an unobservable target, these data-based techniques

also allow for the correlation between microstructure noise and the price process

and are straightforward to implement (in part because there is no need to cal-
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culate integrated quarticity or the variance of the noise process). However, it is

necessary to have a proxy of the true process that is conditionally unbiased in

finite samples. Simulation results will be presented in Section 4 to justify the

choice of proxy.

Let θt denote the latent IV process which we are interested in measuring as

accurately as possible by choosing any one of a possible k realized measures, Xi,t

for i = 1,2, ...,k. In order to determine whether one estimator is expected to be

more accurate than another, we are interested in measuring

E[∆L(θt ,Xt)≡ E[L(θt ,Xi,t)]−E[L(θt ,X j,t)] for i 6= j (1)

where L(·, ·) is any predetermined distance measure. The work of Patton (2011a)

provides a way in which this value can be accurately estimated even though the

process θt is unobservable.

In order to begin the ranking process, one needs to choose the distance mea-

sure to be used when determining the most accurate IV estimator. Any robust

pseudo-distance measure (see Patton, 2011b) of the form

L(θ ,X) = C̃(X)−C̃(θ)+C(X)(θ −X) (2)

where C̃(X) is the anti-derivative of the decreasing, twice differentiable func-

tion C(X) can be chosen when using this data ranking technique. While Patton

(2011b) and Patton and Sheppard (2009), consider both the QLIKE and MSE

loss functions, MSE was chosen as the loss function in this paper’s ranking of

IV estimators. The motivation for using MSE is that the QLIKE function doesn’t

readily accommodates estimates of zero and it is frequently the case, especially

with the small stocks in the early half of the sample, that estimates of integrated

variance will be 0 in our sample. The MSE loss function can easily manage

zero values and there is no need to manipulate the data and replace the zero es-

timates (with an average/minimum value), potentially complicating inference.

Additionally, MSE is a generally accepted and widely used distance measure.
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The specific functional forms of MSE is

MSE L(θ ,X) = (θ −X)2 (3)

Since θt is unobservable, we must use a proxy, θ̃t , to consistently estimate the

difference in average accuracy of the different estimators. In order to obtain ac-

curate results, this proxy must be conditionally unbiased for a finite number of

observations N. Once a finitely unbiased proxy has been selected, Patton (2011a)

shows that using an average of leads of the proxy, Yt = ∑
J
j=1 θ̃t , it is possible to

obtain estimates of E[∆L(θt ,Xt)]. These results do require one of two assump-

tions about the true process θt ; it must either be a random walk or an AR(p)

process. In this study, we hold to the assumption that the true integrated variance

process follows a random walk. The random walk assumption is supported em-

pirically in work by Andersen, Bollerslev, and Diebold (2007) and Hansen and

Lunde (2014). Further support comes from the results of Patton (2011a) and Pat-

ton and Sheppard (2009) where there was little difference between the random

walk case and the AR(p) case. If the random walk assumption holds, then

E[∆L(θt ,Xt)] = E[∆L(Yt ,Xt)] (4)

With a couple of additional technical assumptions, then it can be shown that

√
T
(

1
T ∑

T
t=1 ∆L(Yt ,Xt)−E[∆L(θt ,Xt)]

)
d−→ N(0,Ω1) (5)

as T → ∞. Additionally, the conditions that allow for the use of the stationary

bootstrap will be met (see Propostion 2 of Patton (2011b) for the proof of (4)

and (5) and the proof that the stationary bootstrap may be employed). These

results allow for testing multiple estimators using the methods of Hansen, Lunde,

and Nason (2011) and Giacomini and White (2006) which will be the primary

testing methods we consider. White (2000) and Romano and Wolf (2005) also

developed techniques to test multiple models simultaneously.
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3. IV ESTIMATORS

Before we continue with a presentation of the results, further discussion

about each estimator under consideration is necessary. For notational purposes,

let us consider a jump-diffusive price process where the logarithmic price, Pt , is

observed at N +1 discrete points throughout the trading day.

The first estimator of daily integrated variance is the Bipower Variation (BV)

estimator of Barndorff-Nielsen and Shephard (2004). One benefit to this estima-

tor is that it is a consistent estimator of IV under the assumption of no market

microstructure noise but otherwise general conditions. The specific form that it

takes is similar to that of the RV estimator, but instead of using squared returns it

uses the product of neighboring absolute returns. It has the following functional

form

BVN =
π

2
N

N−1 ∑
N−1
i=1 |∆Pt ||∆Pt+1| (6)

where ∆Pt = Pt −Pt−1. The intuition behind this estimator is that because there

are finitely many jumps during a trading day, as the sampling frequency goes to

zero (or as N→ ∞), there will not be two jumps in any subsequent returns. Ad-

ditionally, the diffusive return will go to zero. For illustrative purposes, consider

two returns ∆Pt and ∆Pt+1 where the first return contains a jump and the second

does not. The returns when there is no jump, or ∆Pt+1 in this case, will go to zero

as the sampling frequency gets small. This will cause the product |∆Pt ||∆Pt+1| to
go to zero and thus eliminate any variation in returns due to the jump component

of the price process. One shortcoming of this estimator, however, is that it is

biased in finite samples. This bias arises from the fact that in finite samples the

diffusive return |∆Pt+1| does not equal zero and thus the jump return |∆Pt | is not

completely cancelled out. This drives up the estimated value of IV and creates

an upward bias.

A recent attempt to extend upon the thought underlying the BV estimator

while minimizing any potential finite sample bias are the MinRV and MedRV

estimators of Andersen, Dobrev, and Schaumburg (2009). These estimators are
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shown to be consistent IV estimators and are more robust to finite jumps in finite

samples. The functional forms of the two estimators are as follows:

MinRVN =
π

π−2
N

N−1 ∑
N−1
i=1 min(|∆Pt |, |∆Pt+1|)2 (7)

MedRVN =
π

6−4
√

3+π

N
N−2 ∑

N−1
i=1 med(|∆Pt−1|, |∆Pt |, |∆Pt+1|)2 (8)

The intuition behind these estimators is similar to that of bipower variation; these

estimators seek to eliminate the variation in returns due to jumps by taking either

the minimum or the median return over a small block size of two or three returns.

The jump robustness of the MedRV and MinRV estimators of Andersen, Dobrev,

and Schaumburg (2009) in relation to bipower variation is that the variation due

to the jump return will be completely eliminated by the minimum or median

operator. These estimators do rely on the assumption of a constant variance over

each block of returns, and by using block sizes of only two or three returns,

the MinRV and MedRV estimators are less vulnerable to bias due to intraday

volatility patterns.

The fourth IV estimator we will consider in this analysis is the truncation-

type estimator, see Mancini (2009), Jacod (2008), and Ait-Sahalia and Jacod

(2009).

T RVc = ∑
N
i=1(∆Pt)

21{|∆Pt |<cN−ω̄} (9)

where ω̄ ∈ (0,0.5) and c is the truncation parameter or threshold for truncating

jumps. In the specific implementation of the estimator, we follow Christensen,

Oomen, and Podolskij (2010) and set ω̄ = 0.47.

This form of estimator relies on filtering out returns that exceed a threshold

chosen by the researcher. Through these means, the large returns that are the re-

sult of jumps in the price process will be eliminated and ideally the only returns

that will be considered are diffusive returns. One potential difficulty with trunca-

tion estimators is in the choice of threshold. By selecting a different truncation

thresholds for the comparison, we hope to gain further insight into the extent to

which the choice of the truncation parameter can effect the results.
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4. IMPLEMENTATION

4.1. DATA

For the purposes of a more thorough ranking, as well as to discover if any

estimators may generally perform better for one class of stock over another, the

empirical rankings are done over a collection of 30 different stocks. The stocks

were chosen based on their market capitalization for the year 2007. All NYSE

stocks were sorted into ten size deciles. The ten largest stocks from the tenth

(large cap), sixth (mid cap), and second (small cap) size deciles (with the tenth

being the largest stocks and the first being the smallest) were then chosen as

our sample. Stocks from a range of size deciles were chosen to examine how

liquidity and market capitalization may affect the relative performance of the

estimators. It may well be the case that a specific estimator outperforms in highly

liquid stocks while another shines when used on less liquid ones. Two additional

requirements were that the available data for the stock dates to at least 2002, and

that the ticker symbol corresponded to an actual company (e.g. mutual funds

were ignored). The thirty stocks that were chosen, the total sample size for each

stock, as well as some descriptive statistics are presented in Table 1.

The TAQ trades data was then cleaned in a method very similar to that out-

lined in Barndorff-Nielsen, Hansen, Lunde, and Shephard (2009). Observations

were filtered based on time stamp so that only those occurring between 9:30am

and 4:00pm were included. Any zero price was removed and only trades that oc-

curred on the NYSE were included in the final dataset. All entries that had been

corrected (or had the variable CORR 6= 0) as well as any observation with an

abnormal sale condition were removed (specifically trades where COND has a

letter code, except for “E” and “F” – please refer to the Daily TAQ Quick Refer-

ence Card for additional details about the sale condition classifications). If there

were multiple prices for a single timestamp, then the median price was used for

that second. The last recorded price was used for any second on which there was

no recorded trade. From this dataset, any desired sampling frequency is readily

obtained. Additionally, returns due to stock splits and overnight returns are set

to zero.
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4.2. SAMPLING FREQUENCIES AND TUNING PARAMETERS

For a few of the estimators, the only parameter that one must choose is the

sampling frequency. When choosing the sampling frequency, there is always

a trade-off between added information and possible noise contamination. The

sampling frequencies under consideration are 10 and 30 seconds and 1, 2, 5,

10, 15, 20, and 30 minutes. When varying the sampling frequency, we set the

truncation parameter as c = 6
√

IV , where IV is the daily integrated variance

estimated using BV (see Christensen, Oomen, and Podolskij (2010) for a similar

choice of truncation level). When changing the truncation parameter, c, we fix

the sampling to be at 2 minutes.

4.3. CHOICE OF PROXY

As was previously mentioned, when implementing the data-based ranking

technique of Patton (2011a), it is necessary to have a proxy of the latent variable

that is unbiased in finite samples. If an unbiased proxy were unavailable, then

the equality in Equation (4) would not hold. In the case of quadratic variance, 5-

minute RV is widely accepted as an unbiased proxy in finite samples of quadratic

variance. In the case of integrated variance, the choice of proxy is not so obvious.

The final decision on the choice of proxy was based on the simulation results of

both Andersen, Dobrev, and Schaumburg (2012) and Christensen, Oomen, and

Podolskij (2009).

In Table 2, we reproduce the simulation results of Andersen, Dobrev, and

Schaumburg (2012). They consider six different models for the price process

and they compare the finite sample properites of the RV, BV, MinRV, MedRV,

Tripower variation (TV) and QRV estimators. In the interest of space, we will

refer the interested reader to Section 2.5 of their paper for the detailed descrip-

tion of their six models for stock prices. Examining Table 2, we see that at

the 1 minute sampling frequency, the relative bias for MedRV is between 1.026

and 0.990. This tells us that across all of the six models under consideration,

the MedRV estimate of the true integrated variance is no more than 2.6% larger

than and 1% smaller than the true value on average. Furthermore, Christensen,
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Oomen, and Podolskij (2009) find that for 100,000 simulations from 10 differ-

ent models, the expected relative bias for MedRV is 1 for 6 of the models under

consideration. It is no more than 1.03 for 3 of the remaining 4 models. The

only model for which MedRV is largely biased is when the price process follows

a brownian motion with an outlier (represented by 2 consecutive jumps of op-

posite signs – a violation of an underlying assumption of MedRV). From these

simulation results, the proxy used for the ranking technique was chosen to be

the MedRV estimator. It was sampled at the 2 minute frequency following the

advice of Andersen, Dobrev, and Schaumburg (2012).

5. RESULTS

5.1. TRUNCATED REALIZED VARIANCE

Before examining the formal statistical tests, it is worthwhile to visually ex-

amine the performance of the truncation estimator as the truncation parameter

changes. By plotting the average loss as a function of the truncation parameter

we are able to identify the threshold that will provided the lowest average loss for

a specific stock. Similar to volatility signature plots, see Andersen, Bollerslev,

Diebold and Labys (2000), Figures 1 - 3 provide a visual means of selecting the

optimal threshold parameter. In each of these plots, the sampling frequency is

fixed at 2 minutes and the truncation parameter is allowed to vary. The graphs in

Figures 1 - 3 plot the average MSE loss as a function of the truncation parameter

(number of standard deviations above which a return is considered a jump). The

plot with the crosses is using the 2 minute MedRV as the proxy while the dotted

line is the average MSE loss using 2 minute BV as the loss function. The value

at which the plots obtain a minimum is the value of the threshold that will yield

the lowest average MSE loss for any given stock. In almost all of the individual

plots for the 30 stocks we see the minimum occurring at either 2 or 3. This result

is robust across each of the size deciles under consideration, and indicates that

the result is quite robust. While not included in the plots in order to keep them

as clean as possible, this result is robust to also using 2 minute MinRV as the

proxy.
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5.2. GIACOMINI AND WHITE (2006) TESTS

In this section, we implement Giacomini and White (2006) tests on whether

two competing IV estimators have equal average accuracy conditional on the

same information set, Ft−1. The specific null hypothesis in question is

H0 : E[L(θt ,Xt,i)|Ft−1]−E[L(θt ,Xt, j)|Ft−1] = 0 (10)

The results of Patton (2011a) allow this test to be run using a simple regression

of the following form

L(θt ,Xt,i)−L(θt ,Xt, j) = β0 + et (11)

These regressions were run for each pairing of estimators based on the 2 minute

sampling frequency. As discussed previously, the proxy used for the regressions

is the MedRV estimator based on data sampled at the five minute frequency.

Table 3 and Table 4 report the percentage of times an estimator significantly

outperforms or underperforms in pairwise tests.

One interesting trend that emerges for the 10 stocks in the largest decile is

that the 2 minute RV estimator is rarely out-performed by the other estimators.

However, this trend does not hold for the stocks in the middle and lower deciles.

This suggests that for highly liquid securities the impact of jumps is so limited

that RV and BV provide statistically similar estimates of integrated variance. For

a large portion of the stocks in the middle size decile, 2 minute RV is significantly

worse at estimating the integrated variance than each of the estimators specifi-

cally developed for IV estimation. The poor performance of RV in pairwise

comparisons continues into the lower decile as well. This discrepancy between

stocks in the largest size decile and those in the lower deciles is most likely ex-

plained by the discrepancy in the average number of trades between large and

small stocks. As the summary statistics in Table 1 indicate, the largest stocks

trade at a much higher frequency than the smaller stocks. Increased trading ac-

tivity will likely result in the presence small, frequent jumps in large stocks. The

presence of small, frequent jumps would lead to a smaller difference between
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the RV estimator and any of the IV estimators since it would be more difficult

for the later to distinguish jump returns from non-jump returns. Small, frequent

jumps in large cap stocks would explain why RV is significantly outperformed

at a much higher frequency for the Mid and Small cap stocks in Table 4.

In Table 3, the TRV3 estimator significantly outperforms the other estima-

tors for the 2 minute sampling frequency. Furthermore, as shown in Table 4,

TRV3 is never significantly worse than the other estimators. This suggests that

the TRV3 estimator is a better choice than the others as it is never significantly

worse than the other estimators and it often significantly outperforms the other

estimators. The data also suggests that the easily implemented BV estimator

performs quite well across a variety of stocks and the additional refinements of

the more sophisticated estimators may not be as helpful when applied to actual

stock data.

5.3. SET OF BEST ESTIMATORS

While pairwise comparisons can be informative, it can be difficult to test

every possible specification of the estimators in a pairwise manner. The model

confidence set (MCS) procedure of Hansen, Lunde, and Nason (2011) is imple-

mented in order to test which estimators, sampling frequency, and tuning param-

eters are significantly better than the others. While the MCS may not yield a

single estimator as being the best, it will result in a group of estimators which

will contain the best estimator with a specific level of confidence. This procedure

will allow the data to determine which estimator(s) most accurately estimate IV.

If an estimator appears in the MCS for a stock it implies that the estimator is in

the group of “best” estimators for the stock.

There are a total of 62 different estimators under consideration. For each es-

timator (BV, MedRV, MinRV, and TRV6) we have 9 possible sampling frequen-

cies ranging from 10 seconds to 30 minutes. Additionally, we fix the sampling

frequency of TRV at 2 minutes and then vary the truncation parameter to take on

one of the following values 1, 2, 3, 4, or 5 standard deviations.

The results are summarized in Tables 5 - 7. The tables are divided into the
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three size groups that we are considering. The model confidence set is deter-

mined for the IV estimators for each stock, and the tables indicate the number of

times that a specific estimator was in the model confidence set, or set of best esti-

mators. For each group of stocks, there were two or three stocks which included

all of the estimators in the model confidence set. Another noticeable trend was

that the TRV with a truncation of 2 or 3 standard deviations was almost always

selected as one of the best estimators for integrated variance regardless of the

size decile.

In section 5.1, we found that the truncation estimator had the lowest aver-

age MSE loss when the truncation parameter was set to either 2 or 3 standard

deviations. In Table 3, we found that the TRV estimator using a truncation of 3

standard deviations was significantly outperformed the other estimators in pair-

wise tests roughly half of the time. Table 4 reports that TRB with a truncation of

3 standard deviations is never significantly outperformed in pairwise tests. The

presence of this same estimator in the model confidence set of virtually every

stock (28 out of 30) further confirms the performance of TRV using a truncation

of 2 or 3 standard deviations. Also, the pairwise Giacomini and White (2006)

tests indicated that only TRV was able to outperform 2 minute BV across all of

the stocks.

6. CONCLUSION

The recent availability of high frequency asset returns has led to the devel-

opment of a numerous variety of volatility measures. With the current number

of estimators and no feasible way to compare them theoretically, researchers are

always confronted with the question of which estimator will provide the most

accurate IV measure for a given asset. In addition to choosing the estimator and

any subsequent tuning parameters, one must also select a sampling frequency for

the data. This paper applies the data-based ranking technique of Patton (2011a)

to estimators of integrated variance. It focuses on stocks over a wide range of

sizes and, as a result, also liquidities. Stock prices of small companies often

behave differently than large companies. Since empirical examples are often
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estimated using only a few large companies, we wanted to determine if the per-

formance of various estimators would extend to stocks with different liquidity

characteristics. The results indicate that if one is interested in measuring the in-

tegrated variance, then TRV with a threshold of 2 or 3 standard deviations not

only has the lowest MSE loss for the truncation parameters but is almost al-

ways included in the set of “best” estimators of integrated variance for a stock

regardless of market size and trading volume. In pairwise Giacomini and White

(2006) tests, TRV3 significantly outperforms the other estimators (sampled at a

2 minute frequency) for the majority of the 30 stocks included in the analysis.

Also, TRV3 is found to never significantly underperform in the pairwise tests.

When implementing the model confidence sets, we find that the TRV estimator

with a truncation parameter of 2-3 standard deviations is almost always in the set

of “best” estimators for the stocks (it appears for either 9 or 10 out of 10 stocks

in each category). While there doesnt appear to be a one-size-fits-all solution for

estimating integrated variance, the truncated estimator with a threshold of 2-3

standard deviations does well in a variety of situations. Additionally, this paper

provides a quick, visual method for determining the optimal truncation threshold

for any given asset, similar to volatility signature plots.
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APPENDIX

Table 1: Summary Statistics for the 30 selected stocks

Ticker Year Range Average # trades per day Average # trades per day Average # of trades per day
1993-2002 2003-2012

AIG 1993-2012 3,942.3 927 7,092
BAC 1993-2012 6,524.7 1,119 12,171
GE 1993-2012 6,341.8 2,071 10,803

IBM 1993-2012 4,689.8 1,737 7,774
JNJ 1993-2012 4,441.3 1,113 7,918
MO 1993-2012 3,544.4 1,323 5,864
PFE 1993-2012 4,889.3 1,672 8,250
PG 1993-2012 4,264.5 1,058 7,614
T 1993-2012 4,463.0 1,394 7,660

WMT 1993-2012 4,937.6 1,225 8,816
AKS 1995-2012 1,936.7 146 3,384
ATW 1997-2012 944.3 132 1,402
BPL 1993-2012 131.37 22 246
CTV 1997-2011 1,176.1 209 1,567
CW 1993-2012 299.7 21 571
DRQ 1997-2012 622.6 59 927
HXL 1993-2012 633.5 33 1,259
KEX 1996-2012 478.9 49 758
RBA 1998-2012 312.12 15 459
VMI 2002-2012 487.8 95 501
CCC 1993-2012 380.9 39 738
CIA 2002-2012 144 44 153

CMO 1993-2012 327.8 85 581
CRN 1998-2010 156.2 18 186
CV 1993-2012 82.23 22 144

CYD 1994-2012 208.4 8 360
DCO 1996-2012 96.4 35 136
HGR 1998-2012 263.7 83 347
MIG 1995-2012 189.2 12 317
RHB 1998-2012 316.4 96 383
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Table 2: Simulation Results from Andersen, Dobrev, and Schaumburg (2012)

Relative Bias for 12 sec. sampling frequency

RV BV TV QRV MinRV MedRV
Model 1:BM 1.000 1.000 1.000 0.999 1.000 1.000

Model 2: SV-U 0.999 0.999 0.998 0.971 0.999 0.998
Model 3: BM + Sparcity 0.999 0.974 0.965 0.969 0.955 0.962
Model 4: BM + 1 Jump 1.244 1.018 1.009 1.001 1.002 1.002

Model 5: BM + 4 Jumps 1.250 1.035 1.020 1.006 1.006 1.006
Model 6: BM + Noise 1.078 1.079 1.079 1.078 1.079 1.079

Relative Bias for 1 min. sampling frequency

RV BV TV QRV MinRV MedRV
Model 1:BM 1.001 1.000 1.000 1.000 1.000 1.000

Model 2: SV-U 0.995 0.993 0.990 0.969 0.993 0.991
Model 3: BM + Sparcity 1.001 0.993 0.991 0.988 0.988 0.990
Model 4: BM + 1 Jump 1.242 1.038 1.023 1.006 1.007 1.007

Model 5: BM + 4 Jumps 1.250 1.073 1.051 1.026 1.023 1.026
Model 6: BM + Noise 1.003 1.004 1.003 1.003 1.004 1.004

Relative Bias for 5 min. sampling frequency

RV BV TV QRV MinRV MedRV
Model 1:BM 1.001 1.001 1.002 1.001 1.002 1.002

Model 2: SV-U 0.990 0.979 0.968 0.967 0.979 0.969
Model 3: BM + Sparcity 1.002 1.001 1.003 0.998 1.000 1.002
Model 4: BM + 1 Jump 1.241 1.075 1.053 1.031 1.024 1.027

Model 5: BM + 4 Jumps 1.251 1.131 1.107 1.086 1.073 1.082
Model 6: BM + Noise 1.002 1.004 1.004 1.001 1.005 1.002
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Table 3: Summary of results from pairwise GW tests using the MSE distance
measure at a 2 minute frequency. This table shows the percentage of times a
measure of integrated variance significantly outperformed another measure in a
pairwise test using 2 minute MedRV as the proxy.

Market Cap. RV BV MinRV MedRV TRV6 TRV3

Large 0.02 0.16 0.04 0.02 0.24 0.44
Mid 0.00 0.20 0.18 0.16 0.12 0.62
Small 0.00 0.18 0.22 0.28 0.16 0.40

Table 4: Summary of results from pairwise GW tests using the MSE distance
measure at a 2 minute frequency. This table shows the percentage of times a
measure of integrated variance was significantly worse than another measure in
a pairwise test using 2 minute MedRV as the proxy.

Market Cap. RV BV MinRV MedRV TRV6 TRV3

Large 0.22 0.08 0.26 0.28 0.08 0.00
Mid 0.76 0.10 0.08 0.12 0.24 0.00
Small 0.70 0.10 0.06 0.06 0.28 0.00
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Table 5: Model Confidence Set (Hansen, Lunde, and Nason (2011)) Results for
10 large cap stocks. The table reports the number of times that the estimator
was found to be one of the best models (in the model confidence set). The top
portion of the table uses c = 6 for the TRV estimator. The bottom portion of the
table presents the results when the truncation parameter varies but the sampling
frequency is fixed at 2 minutes.

Frequency RV BV MinRV MedRV TRV6

10s 2 4 3 3 3
30s 2 6 3 3 4
1m 2 8 3 3 5
2m 2 8 6 3 8
5m 3 5 6 6 9
10m 3 7 6 7 7
15m 3 6 7 6 6
20m 3 6 4 6 6
30m 3 4 4 5 5

Truncation parameter, c 2 minute TRV
1 3
2 9
3 9
4 9
5 9



44
DATA-BASED RANKING OF INTEGRATED VARIANCE ESTIMATORS ACROSS

SIZE DECILES

Table 6: Model Confidence Set (Hansen, Lunde, and Nason (2011)) Results for
10 medium cap stocks. The table reports the number of times that the estimator
was found to be one of the best models (in the model confidence set). The top
portion of the table uses c = 6 for the TRV estimator. The bottom portion of the
table presents the results when the truncation parameter varies but the sampling
frequency is fixed at 2 minutes.

Frequency RV BV MinRV MedRV TRV6

10s 2 6 6 8 8
30s 2 9 9 9 9
1m 2 8 7 9 8
2m 2 8 8 8 5
5m 3 7 8 6 4
10m 3 6 5 6 4
15m 2 5 2 3 3
20m 2 5 2 3 3
30m 2 4 3 4 3

Truncation parameter, c 2 minute TRV
1 4
2 10
3 10
4 8
5 5
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Table 7: Model Confidence Set (Hansen, Lunde, and Nason (2011)) Results for
10 small cap stocks. The tables reports the number of times that the estimator
was found to be one of the best models (in the model confidence set). The top
portion of the table uses c = 6 for the TRV estimator. The bottom portion of the
table presents the results when the truncation parameter varies but the sampling
frequency is fixed at 2 minutes.

Frequency RV BV MinRV MedRV TRV6

10s 3 4 4 5 8
30s 3 4 5 7 8
1m 3 8 7 8 6
2m 3 8 8 7 3
5m 3 6 4 5 3
10m 3 4 4 4 3
15m 3 3 3 3 3
20m 3 3 3 3 3
30m 3 3 3 3 3

Truncation parameter, c 2 minute TRV
1 5
2 10
3 9
4 5
5 3
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Figure 1: Average MSE loss for TRV2min where the truncation parameter varies
along the x-axis. Large cap stocks. The cross is the 2 minute MedRV proxy and
the dashed line is the 2 minute BV (bipower variation) proxy.

(a) AIG (b) BAC (c) GE

(d) IBM (e) JNJ (f) MO

(g) PFO (h) PG (i) T

(j) WMT
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Figure 2: Average MSE loss for TRV2min where the truncation parameter varies
along the x-axis. Large cap stocks. The cross is the 2 minute MedRV proxy and
the dashed line is the 2 minute BV (bipower variation) proxy.

(a) AKS (b) ATW (c) BPL

(d) CTV (e) CW (f) DRQ

(g) HXL (h) KEX (i) RBA

(j) VMI
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Figure 3: Average MSE loss for TRV2min where the truncation parameter varies
along the x-axis. Large cap stocks. The cross is the 2 minute MedRV proxy and
the dashed line is the 2 minute BV (bipower variation) proxy.

(a) CCC (b) CIA (c) CMO

(d) CRN (e) CV (f) CYD

(g) DCO (h) HGR (i) MIG

(j) RHB
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