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Abstract
Beginning with the seminal work of Manski (1990), there has been a grow-

ing literature on estimation and inference on partially identifiable parameters, in-
cluding the distribution and/or quantile functions of the heterogeneous treatment
effect. This article applies and extends the bounding approaches that Williamson
and Downs (1990) and Fan and Park (2010, 2012) to partially identify distribu-
tion of treatment effects of class size reduction (CSR). Empirical data I used
are from the Project STAR. Conducted by Tennessee State Department of Ed-
ucation in 1985-1988, it was a large-scale, randomized experiment designed to
investigate the effect of CSR on student performance.

As an extension of the bounding approach that Fan and Park (2010) used,
I proposed bounds for the conditional probability distribution function of treat-
ment effects on pre-treatment outcomes. Although it was hard to find definitive
properties of the conditional distribution due to the nature of bounding approach,
I find the approach is insightful and has a potential.
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1. INTRODUCTION

The inquiry of the effects of treatment such as policy interventions has ex-
panded toward the identification of the distribution of treatment effects beyond
focusing certain functionals of it such as the average treatment effect (ATE),
see Heckman et al. (1997), Bitler et al. (2006), Djebbari and Smith (2008)
among others. As Abbring and Heckman (2007) summarized it, however, it is
not possible to exactly identify the distribution of treatment effects unless as-
sumptions about dependent structure between potential outcomes are imposed
or agents’ decision rules on the participation are assumed, hence additional in-
formation/assumptions have been used: see Abbring and Heckman (2007).

A different approach to the problem of identification of the distribution of
treatment effects is to utilize the partial identification nature of the problem.
Starting from Manski’s seminal work in the late 1980’s (Manski(1988) for ex-
ample) the partial identification nature of the identification of treatment effects
was recognized and studied by many researchers, see, for example, Firpo and
Ridder (2010), Manski (2003), Fan and Park(2010) and the references therein
for a better understanding of the nature. Fan and Park(2010, 2012) dealt with
statistical inference on partially identified treatment effects.

This paper is basically an application of bounding approach for identify-
ing distribution of treatment effects that Firpo and Ridder(2010) and Fan and
Park(2010) discussed to an experimental project so-called Project STAR. Project
STAR, the acronym of The Student/Teacher Achievement Ratio, is a large scale,
longitudinal, randomized experiment conducted by the Tennessee State Depart-
ment of Education during 1985 - 1989 in order to see if the class size reduction
improves students’ academic achievement.

A large body of existing literature has investigated the effects of CSR and
a great portion of them sough to identify the average treatment effects (ATE)
of the CSR with a notable exception of Ding and Lehrer (2008). Ding and
Lehrer (2008) estimated so-called quantile treatment effects(QTEs) and con-
cluded, “higher ability students gain the most from CSR while many low ability
students do not benefit from these reductions in Kindergarten.” While their con-
clusion that the effects of CSR are heterogenous is persuasive, one may bear in
mind that the QTEs are not quantiles of treatment effects. In the paper, I will
apply and extend the bounding approach that Fan and Park (2010) discussed to
think about heterogeneous treatment effects of CSR. The paper is organized as
follows: Section 2 briefs about the Project STAR and relevant related researches;
Section 3 introduces the bounding approach; empirical work and findings are
summarized in Section 4; Section 5 concludes.
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2. BRIEF EXPLANATION ON PROJECT STAR

2.1. BRIEF HISTORICAL BACKGROUND

The effect of the CSR has been debated for decades but the conclusion
was controversial. Some surveys suggested theoretical channels through which
smaller classes helped students attain higher scores. Hallinan and Sorensen
(1985) reported that teachers’ morale and job satisfaction are higher in small
classes and teachers reported that students had better attitudes and motivations.
Filby, Cahen, McCutsheon, and Kyle (1980) found teachers were more able to
help students when they needed it in smaller classes. In the survey, teachers re-
sponded that their work load became lighter, which enabled them to make the
classroom climate more positive.

However, empirical researches did not provide conclusive evidences. In their
Meta-Analysis with 77 existing studies, Glass, Cahen, and Smith (1978) asserted
that they found a trend that the students’ achievement decreases as class size in-
creased and they claimed the greatest gains occurred when student-teacher ratio
was 1:15 or below. On the contrary, Robinson and Wittebols (1986) found only
35 studies out of the 85 they considered to be relevant reported small classes
were better, 18 supported larger classes, and the rest 32 did not support either.

Proir to the launch of Project STAR, Whittington, Bain, and Achilles (1985)
investigated the effect of CSR from 1:25 to 1:15 by doing a small scale exper-
imental study with first grade students in the Metro Nashville School District.
They reported the students in classes of 15 students performed better than those
in classes of 25 in reading and math. On the other hand, Dennis (1986) could
not observe any difference between the treated group and control groups in the
following year. Bourke (1986) found the class size itself did not affect students’
attainment directly. It was, he claimed, teachers’ practices that enhanced student
achievement. Moreover, teachers do not change their teaching practices when
class size is reduced. (Robinson 1990).

There continue to be debates on the effectiveness of CSR. For example,
Hanushek (1998) could find “little reason to believe that smaller class sizes sys-
tematically yield higher student achievement” , while Krueger (2002) found ex-
actly the opposite and said “when studies are assigned weights in proportion to
the ‘impact factor’... class size is systematically related to achievement.”

Because the CSR was costly, and the results of proceeding researches were
not conclusive, the Tennessee State Government decided to conduct a well-
designed randomized experiment to investigate whether or not the CSR would
be effective before implementing the CSR. In May, 1985, the Tennessee Legisla-
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ture passed House Bill (HB) 544, which authorized and funded an experimental
study on the effect of CSR, which was Project STAR.

The project was conducted by a consortium of persons from Tennessee State
Department of Education, Memphis State University, Tennessee State Univer-
sity, University of Tennessee at Knoxville, Vanderbilt University, representatives
from the State Board of Education and the State Superintendents’ Association.
Only a few months after the pass of the legislation, the consortium was able to
set up major parts of the project and to implement it from the fall semester of
1985-1986 schooling year, which continued up until 1988-1989 schooling year.

2.2. DESIGN OF PROJECT STAR

Tennessee had been regulating the student/teacher ratio even before Project
STAR.1 By the time Project STAR started, the ratio could not exceed 1:25. The
average of the ratios was 1:22-24. The legislation regulated the ratio in small
classes to be between 1:13 and 1:17. So the main question that Project STAR
should answer was whether 1:13-17 would be better than 1:22-24 for students’
academic achievements.

The consortium decided to divide the class sizes/environment into three cate-
gories; small class (teacher:students = 1:13 ∼17), regular class (teacher:students
= 1:22∼25), and regular class with teacher aide (teacher:students = 1:22∼25).
The project schools were chosen out of 180 volunteers from 141 school sys-
tems all over the state. Because the consortium designed the project to make the
‘within-school’ comparison available as well, each school had to have certain
number of students so that it had at least one class of each type. After an inves-
tigation, the consortium chose 79 schools as the participants for the 1985-1986
schooling year. Initially, a school should plan to remain in the project for the
whole years but 1-3 schools left. The initial objective was to have about 100
classes of each type. In the first year, there were 128 small classes, 101 regular
classes, and 99 regular classes with teacher aide. Each participating school had
to agree to assign students and teachers randomly in three types of classes and
not to make any significant changes in their provision of education other than
class size. Roughly 6,000 students participated in the project every year.

The kindergarten student academic achievements were measured by Stan-
ford Early School Achievement Test II (SESAT II) in Math, Sounds and Letters,
Words and Sentences, and Reading. Higher graders used the Stanford Achieve-
ment Tests (SAT), the State of Tennessee’s criterian referenced Basic Skills First

1This subsection is a summary of the technical report of the STAR project (Word et. al. 1990b),
which I will refer as Technical Report.
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(BSF) tests. In this chapter, I will use the data of kindergarten students on math
and reading only.

2.3. EFFECTS OF CSR

After the project was over, Word reported the followings (Word et. al. (1990b),
pp.17-19).

1. Small-class advantages are present in all locations and all grades. Stu-
dents in small classes showed higher performance than those in regular classes
or regular classes with teacher aide.

2. Small-class effects diminish after first grade but are significant at the end
of third grade.

3. Teacher aides were less effective than CSR in enhancing student perfor-
mance at each grade level.

4. The effects in Math and reading are similar.
5. Small classes help low socioeconomic students as much as they helped

high socioeconomic students. In reading, low socioeconomic students appeared
to benefit more whereas in math the high socioeconomic student did.2

Many follow-up studies have been conducted on the mid-term effects of CSR
found a significantly larger proportion of the small class students than regular or
regular with aids class students had passed the Tennessee Competency Exam-
ination (TCE) requirement at eighth grade. (Pate-Bain et. al. 1997) Another
follow-up study showed similar results. Students in small classes were more
likely to take ACT or SAT exams and the difference in proportions of students
who took a college entrance exam out of Project STAR participants differed
across races. The difference was larger for black students, which indicates CSR
benefited black students more in the long run. In addition, the average scores
of small class students were significantly higher than that of large class students
(Krueger and Whitmore 2001).

Including the official project reports, almost all of existing literature focuses
on the average effect of treatment (CSR) gains with the consideration of ob-
servable heterogeneities such as sex, age, race, and the socioeconomic status.
One notable exception is Ding and Lehrer (2008). They estimated the following
quantile regression equation with the kindergarten data:

Quantile(Yi j) = α
′Xi j +δ

′CSi j + v j + εi j,

2Students’ socioeconomic status is measured by a dummy variable indicating whether or not
student joined a free or reduced price lunch program. If they joined, they were considered to be
poor or of low socioeconomic status.
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where Yi j is the level of achievement for child i in school j, Xi j a vector of student
and teacher characteristics, CSi j the actual number of students in the class where
child i belonged to, v j a school fixed effect, and εi j the random and idiosyncratic
unobservable factors. The QTEs are the δ and estimated to be increasing as
quantile levels increase for both math and reading. Ding and Lehrer interpreted
this as an evidence that higher ability students gain more from the CSR. Their
interpretation, though, is only valid when we consider QTE as if they are the
quantiles of treatment effects.

3. BOUNDS ON DISTRIBUTION OF TREATMENT EFFECTS

Consider a randomized binary treatment. Let D be an indicator function that
takes a value of one if a subject is assigned to the treatment group and zero
if he/she is assigned to the control group. Following conventional notations,
let Y1 (∈ Y1 ⊂R) and Y0 (∈ Y0 ⊂R) be the (potential) continuous outcomes
from treatment and control and F1 and F0 the marginal distributions of them
respectively. Let ∆ = Y1−Y0 denote the treatment effect or outcome gain and
F∆(·) its distribution function. Due to the randomization assumption, we assume
the independence between (Y1,Y0) and D i.e. (Y1,Y0)⊥D.

Since we only observe Y = DY1+(1−D)Y0 but not (Y1,Y0), we cannot iden-
tify ∆ nor F∆ but can identify the (pointwise) lower and upper bounds for F∆.
Define

FL(δ ) = max(supy {F1(y)−F0(y−δ )} ,0) and (1)

FU(δ ) = 1+min(infy {F1(y)−F0(y−δ )} ,0). (2)

Then FL(δ )≤ F∆(δ )≤ FU(δ ) and these bounds are sharp. Similar bounds exist
for quantile function of ∆, namely Q∆ (p) = arg infδ {F∆ (δ )≥ p}. For any p ∈
(0,1), Q∆ (τ) ∈

[
QL(p),QU(p)

]
, where

QU(p) = infu∈(p,1)[F
−1

1 (u)−F−1
0 (u− p)], (3)

QL(p) = supu∈(0,p)[F
−1

1 (u)−F−1
0 (1+u− p)]. (4)

See Williamson and Downs (1990) for its proofs. The identification of FL,FU ,QL,
and QU is straightforward due to the randomized experiment because

F1 (y) = F1 (y|D = 1) and F0 (y) = F0 (y|D = 0) ,

i.e. F1 is identified by the marginal distribution of the treatment group outcomes
and F0 by the marginal distribution of the control group outcomes.
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3.1. BOUNDS ON THE DISTRIBUTION OF TREATMENT EFFECTS
CONDITIONAL UPON PRE-TREATMENT OUTCOMES

The Y0 can be viewed as the pre-treatment outcome of the treated. It can
be of an important research interest to know how likely the treatment is benefi-
cial to a sub-population defined by pre-treatment outcome. For example, policy
makers may want to how much the treatment will be beneficial to the lower
first quantile of pre-treatment outcomes. Then the parameter of interest will be
Pr
[
∆≥ 0|Y0 ≤ F−1

0 (0.25)
]
. The general functions I am considering are

Λy (δ ) = Pr [∆ > δ |Y0 ≤ y] and (5)

Ψy (δ ) = Pr [∆ > δ |Y0 ≥ y] . (6)

Like the F∆ or Q∆, Λy (δ ) and Ψy (δ ) are only partially identified. Below I pro-
vide the bounds for those functions.

Theorem 1. Let Y1 and Y0 be continuous random variables. For y such that
F0 (y)∈ (0,1) , ΛL

y (δ )≤Λy (δ )≤ΛU
y (δ ) , and ΨL

y (δ )≤Ψy (δ )≤ΨU
y (δ ), where

Λ
L
y (δ ) = min

{
max

{
supz≤y {F0 (z)−F1 (δ + z)}

F0 (y)
,0
}
,1
}
,

Λ
U
y (δ ) = max

{
min

{
infz≤y {F0 (z)−F1 (δ + z)}+1

F0 (y)
,1
}
,0
}
,

Ψ
L
y (δ ) = min

{
max

{
supz≥y {F0 (z)−F1 (δ + z)}−F0 (y)

1−F0 (y)
,0
}
,1
}
,

Ψ
U
y (δ ) = max

{
min

{
1+

infz≥y {F0 (z)−F1 (δ + z)}
1−F0 (y)

,1
}
,0
}
.

Although a bit more complicated, the interpretation of these bounds is similar
to that of bounds of distribution of treatment effects. See Appendix A for its
proof.

3.2. TIGHTENING THE BOUNDS

Although the bounds for the marginal distribution and quantile functions are
presented, the idea can be easily extended to the bounds for conditional distribu-
tion and quantile functions.

(C1) Let (Y1,Y0,D,X) have a joint distribution. For all x ∈X (the support of
X ,⊂Rq×Rr), (Y1,Y0) is jointly independent of D conditional on X = x.3

3The randomization assumption implies (Y1,Y0,X) is jointly independent of D.
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(C2) For all x ∈X , 0 < p(x)< 1, where p(x) = P(D = 1|x).

Define

FL(δ |x) = supy max(F1(y|x)−F0(y−δ |x),0),
FU(δ |x) = 1+ infy min(F1(y|x)−F0(y−δ |x),0).

Under (C1) and (C2),

FL(δ |x)≤ F∆(δ |x)≤ FU(δ |x),

Here, we use F∆(·|x) to denote the conditional distribution function of ∆ given
X = x. A similar conclusion can be made to the bounds of conditional quantile
function. Let QT E (p|x) = arg infδ {F∆ (δ |x)≥ p}. Then, QL (p|x) and QU (p|x)
defined below consist of the bounds for QT E (p|x):

QU(p|x) = infu∈(p,1)[F
−1

1 (u|x)−F−1
0 (u− p|x)],

QL(p|x) = supu∈(0,p)[F
−1

1 (u|x)−F−1
0 (1+u− p|x)].

Under (C1) and (C2), F1(y|x) and F0(y|x) are identified by F1(y|x) = F1(y|x,D =
1) and F0(y|x) = F0(y|x,D = 0). See Fan and Park (2010, 2012).

Using the bounds for conditional distribution or quantile function of ∆, we
can tighten unconditional bounds. Under (C1) and (C2),

FL(δ |x)≤ F∆(δ |x)≤ FU(δ |x).

Since F∆(δ ) = EX [F∆(δ |X)], we can construct the following bounds for F∆(δ ):

EX
[
FL(δ |X)

]
≤ F∆(δ )≤ EX

[
FU(δ |X)

]
.

If X is independent of (Y1,Y0), then these new bounds on F∆(δ ) reduce to those
in (1) and (2). If X is not independent of (Y1,Y0), then the above bounds are in
general tighter than them. It can be intuitively understood that EX

[
FL(δ |X)

]
=

EX
[
FU(δ |X)

]
if both Y1 and Y0 are deterministic functions of X . We can tighten

the bounds for QT E (p), Λy (δ ), and Ψy (δ ) similarly.

3.3. PARTIAL IDENTIFICATION AND HOMOGENEOUS TREATMENT
EFFECTS

When the treatment effects are constant over agents i.e. ∆ = ∆̄, then F∆ (δ ) =
0 if δ < ∆̄; 1 if δ ≥ ∆̄, which implies sup

{
FU (δ )−FL (δ )

}
= 1. Therefore if
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sup
{

FU (δ )−FL (δ )
}
< 1 then it is the evidence against the constant treatment

effects.
It can also be of interest whether ∆ is independent of Y0 conditional/unconditional

on covariates. Suppose ∆ (potentially a function of X) is independent of Y0. Then

Λy (δ ,x) = Pr [∆ > δ |Y0 ≤ y,x] = Pr [∆ > δ |x] and

Ψy (δ ,x) = Pr [∆ > δ |Y0 ≥ y,x] = Pr [∆ > δ |x]

i.e. they are not functions of Y0. Therefore Λy (δ )=EX [Λy (δ ,X)]=EX [Ψy (δ ,X)]=
Ψy (δ ) are constant in Y0 for all δ . If supy ΛL

y (δ )> infy ΛU
y (δ ) or supy ΨL

y (δ )>
infy ΨU

y (δ ) for some δ then it is the evidence against the independence of ∆ to
Y0.4

Figure 1 is an example graph of ΛL
y (δ ) and ΛU

y (δ ) that are consistent with
assumption of ∆⊥Y0. The horizontal axis is y in the graph and I changed the
notations of ΛL

y (δ ) and ΛU
y (δ ) to ΛL

δ
(y) and ΛU

δ
(y) to visualize that the curves

are functions y for a fixed δ . Having a space in the middle of ΛL
δ
(y) and ΛU

δ
(y)

throughout the entire domain of y shows supy ΛL
y (δ )> infy ΛU

y (δ ).

Figure 1: Consistent with ∆⊥Y0

If, on the other hand, graphs of ΛL
y (δ ) and ΛU

y (δ ) against y look like Fig-
ure 2 then ∆ is clearly dependent of Y0 because not a single horizontal line

4Heckman, Smith, and Clements (1997) showed that, when ∆ is independent of Y0,

F∆ (δ ) =
1
2
+

1
2π

∫
∞

−∞

1
it

(
eitδ E

[
eitY1

]
E [eitY0 ]

− e−itδ E
[
eitY1

]
E [eitY0 ]

)
dt.
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can fit within two curves without crossing one or another, which visualizes
supy ΛL

y (δ )< infy ΛU
y (δ ).

Figure 2: Inconsistent with ∆⊥Y0

3.4. ESTIMATION

Let the empirical distribution function of Yj be Fjn i.e.

Fn j (y) =
1
n j

∑
n j

i=1 1{Y ji≤y} for j = 1,0

where the sample data consists of {Y1i}n1
i=1 and {Y0i}n0

i=1 and 1{A} is an indicator
function that takes a value 1 if A happens and 0 if A does not. Fan and Park
(2010, 2012) suggested the following estimators for FL,FU ,QL, and QU :

FL
n (δ ) = max

{
supy∈Yδ

{Fn1(y)−Fn0(y−δ )} ,0
}

; (7)

FU
n (δ ) = 1+min

{
infy∈Yδ

{Fn1(y)−Fn0(y−δ )} ,0
}

;

QL
n(p) = supu∈(0,p){F−1

n1 (u)−F−1
0n (1+u− p)};

QU
n (p) = infu∈(p,1){F−1

n1 (u)−F−1
0n (u− p)}.

The inverses of empirical distribution functions are defined as follows:

F−1
n j (p) = Yjn(i) for p ∈

(
i−1
n j

,
i

n j

]
, i = 1, ...,n j, F−1

jn (0) = Yjn(1),
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where Yjn(1) ≤ ...≤Yjn(n) are the order statistics of {Yji}
n j
i=1. I will summarize in

the next subsection the inference on the partially identified F∆ (δ ). See Fan and
Park (2010, 2012) for the inference on F∆ (δ ) or Q∆ (p).

Estimatiors for ΛL
y ,Λ

U
y ,Ψ

L
y ,Ψ

U
y are:

Λ̂
L
y (δ ) = min

{
max

{
supz≤y {Fn0 (z)−Fn1 (δ + z)}

Fn0 (y)
,0
}
,1
}

; (8)

Λ̂
U
y (δ ) = max

{
min

{
infz≤y {Fn0 (z)−Fn1 (δ + z)}+1

Fn0 (y)
,1
}
,0
}

;

Ψ̂
L
y (δ ) = min

{
max

{
supz≥y {Fn0 (z)−Fn1 (δ + z)}−F0 (y)

1−Fn0 (y)
,0
}
,1
}

;

Ψ̂
U
y (δ ) = max

{
min

{
1+

infz≥y {Fn0 (z)−Fn1 (δ + z)}
1−Fn0 (y)

,1
}
,0
}

for y such that Fn0 (y) ∈ (0,1).
To tighten these bounds, we need to estimate conditional distribution func-

tions nonparametrically. Let G j (x) be Pr [X ≤ x|D = j] for j = 1,0 and

plimGn j (x) = ∑
n j

i=1 Kγ (Xi,x) = G j (x)

for a multivariate kernel function Kγ (·, ·). Then

Fn j (y|x) =
1
n j

∑
n j
i=1 1{Y ji≤y}Gn j (x)
1
n j

∑
n j
i=1 Gn j (x)

.

We can also define Λ̂L
y (δ |x), Λ̂U

y (δ |x), Ψ̂L
y (δ |x), and Ψ̂L

y (δ |x) by simply replac-
ing Fn0 (·) by Fn0 (·|x) and Fn1 (·) by Fn1 (·|x) in (8) for a y such that:

y ≥ Yjn(1) for Λ̂
L
y (δ ) and Λ̂

U
y (δ ) ;

y < Yjn(n j) for Ψ̂
L
y (δ ) and Ψ̂

U
y (δ ) .

The estimators for tightened bounds for F∆ (δ ) are:

̂EX [FL(δ |X)] =
1

n1 +n0

(
∑

n1

i=1 FL
n (δ |Xi)+∑

n0

i=1 FL
n (δ |Xi)

)
; (9)

̂EX [FU(δ |X)] =
1

n1 +n0

(
∑

n1

i=1 FU
n (δ |Xi)+∑

n0

i=1 FU
n (δ |Xi)

)
where FL

n (δ |x) and FU
n (δ |x) are

FL
n (δ |x) = supy max{F1n(y|x)−F0n(y−δ |x),0} ,

FU
n (δ |x) = 1+ infy min{F1n(y|x)−F0n(y−δ |x),0} .
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The tightened bounds for Λy (δ ) and Ψy (δ ) are defined in the same manner.

Statistical inference on F∆(δ ) and Q∆(p) is dealt in Fan and Park (2010,
2012) but that on Λy (δ ) and Ψy (δ ) is not done yet. I am working on the problem
and will only provide estimation results on the bounds of Λy (δ ) and Ψy (δ )
without statistical inference in this paper.

4. ESTIMATION RESULTS

4.1. BOUNDS FOR UNCONDITIONAL DISTRIBUTION OF TREATMENT
EFFECTS

Like Ding and Lehrer (2008), I first used the kindergarten data for the reading
test. Of the three types of classes, I considered ‘small class’ as the treatment(D=
1) and ‘regular class’ as the control(D = 0). The reading score of a student in a
‘small class’ is Y1 and that of a student in a ‘regular class’ is Y0. The following
table shows some simple descriptive statistics.

D = 1 D = 0
# of students included in the analysis 1731 1977
Avg. reading scores 440.57 434.85
(Std. dev.) (32.55) (31.04)

The average treatment effect (ATE) is, then, 440.57− 434.85 = 5.72 and the t-
statistic is 5.72√

32.552
1731 + 31.042

1977

= 5.45 under H0 : E [Y1] = E [Y0], hence the hypotheses

is rejected at α = 0.01 i.e. a statistically significant positive ATE.
Figure 3 shows estimation results for bounds of F∆(δ ). The horizontal axis

is δ . The ‘(K)’ in titles of both panels stands for ‘Kindergarten’. The left panel
of the figure presents FL

n (δ ) and FU
n (δ )(black lines) and CI0.95 in Fan and Park

(2010) (red lines). For δ = 0, FL
n (0) = 0.0 and FU

n (0) = 0.9160. The 95% con-
fidence interval for F∆ (0) is [0.0,0.9495]. If the treatment effects was constant
at ∆ = 0 (i.e. no effects) then F∆ (0) would be a step function at δ = 0 hence
FL(0) had to be 0 and FU(0) had to be 1. Therefore, the 95% CI for F∆ (0)
being strictly included in [0,1] implies the constant zero treatment effects (or no
treatment effects to all students) would be rejected. FU

n (0) = 0.9160 implies
about 8.4% of population (kindergarten students) are estimated to be harmed by
the CSR. The bounds for F∆ (5.72) are estimated [0.034,0.994] and the 95% CI
for it is [0.002,1]. Therefore the hypothesis of H0 : ∆ = 5.72 for all students is
rejected at 5% as well.
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Figure 3: Bounds for F∆

The right panel of 3 compares two bounds: the blue lines are the bounds in
(7) and the red lines are the tightened bounds in (9). To estimate the tightened

bounds, I used a Gaussian kernel with bandwidths hs = 1.06σ̂Xc
k
n
−1/(4+dim(XC))
j

where σ̂Xc
k

is the sample standard deviation of k-th continuous covariate and
dim

(
XC
)

the number of continuous variables. I used 0.05 for the tuning param-
eter for discrete covariates arbitrarily. See Qi and Racine (2007).

The use of covariates tightened the bounds a little bit. The bounds for F∆ (0)
now became [0.1238,0.7688], that is to say the CSR was estimated to be harmful
at least 12.38% of kindergarten students and at the worst this proportion can go
up to 76.88%. The bounds for F∆ (5.72) is now [0.1778,0.8368]. At least 17.78%
of students benefit less than the estimated ATE.

Figure 4 presents bounds for Λy (δ ) and Ψy (δ ) for δ = 0 (blue lines) and
the tightened version of them (red lines) for various values of y from 15%-tile to
85%-tile of Y0 on the horizontal axis.

The bounds for Ψy (0), for y = F−1
n0 (0.8) = 456 or the upper quintile, are

estimated [0.0004,0.7598] by the tightened bounds. This reads that if a student
performs within the upper quintile in a regular class room environment, the prob-
ability that he/she will do better in a small class environment is at most 0.7598.
Or, in other words, at most 75.98% of upper quintile students in an large class
environment will benefit by the CSR. On the other hand the bounds for Λy (0) for
y = F−1

n0 (0.2) = 410 are estimated [0.4556,0.9994] by the the tightened bounds.
It reads at least 45.56% of lower quintile students will benefit from the CSR. Had
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Figure 4: Estimation of Λy (δ ) and Ψy (δ )

these bounds been tighter so that ΨU
F−1

n0 (0.8)
(0)<ΛL

F−1
n0 (0.2)

(0) then we would have
been able to tell definitively that the CSR would benefit the lower quintile stu-
dents than the upper quintile ones. Since, however, the bounds overlap for all y
considered here, nothing can be said definitively.

For y= 431, the median of {Y0i}n0
i=1, the bounds for Ψ431 (0) are [0.0059,0.8288]

and Λ431 (0) are [0.3467,0.9921]: at most 82.88% of ‘better-than-median’ stu-
dents benefit meaning that at least 17.12% of ‘better-than-median’ students will
be harmed by the CSR; at least 34.67% of ‘worse-than-median’ student benefit.

4.2. ANALYSIS OF SUBGROUPS

To see how the heterogeneity in treatment effects differs with students’ char-
acteristics, I split the whole sample into eight subgroups according to student’s
race, sex, and socioeconomic status. The socioeconomic status is measured by
whether or not student received free lunch. The subgroups5 and related descrip-
tive statistics are shown in Table 1.

Graphs in Figure 5 show the tightened bounds for F∆ (δ ) for indicated sub-
groups. The horizontal axis is δ .

5As is evident, the subgroups are not mutually exclusive. I did not construct mutually exclusive
subgroups due to the concern about the number of observations in each subgroup. Another method
that can be used is a nonparametric or semiparametric estimation with covariates.
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Table 1: Subgroup Categories

Reading
Subgroup categorization Class # of obs. Average
Ethnicity White S 1183 443.7

R 644 425.6
Non-White S 548 433.8

R 1333 439.3
Sex Male S 889 438.3

R 962 439.8
Female S 842 442.9

R 1015 430.1
Socio-Economic Rich (No Free Lunch) S 913 448.3
Status R 946 425.5

Poor (Free Lunch) S 818 431.9
R 1031 443.4

Figure 5: Bounds for F∆ (0) for subgroups

The left panel of Figure 5 presents the bounds and confidence intervals and
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the and the right panel the tightened bounds like Figure 3. The graphs in the
upper right corner compare White vs. Non-White groups, the graphs in the lower
left corner Boys vs. Girls, and finally the lower right ones Rich vs. Poor. The
White and Non-White comparison groups show quite noticeable differences on
the upper bound. The Rich seems to have strictly larger bounds than the Poor for
all δ .

The estimated bounds for F∆ (0) are:

White Non-White Boy Girl Rich Poor
FL

n (0) 0.1115 0.1190 0.0932 0.1315 0.1063 0.1190
FU

n (0) 0.7907 0.7485 0.7588 0.8025 0.7970 0.7620

Overall there are not noticeable differences between subgroups. It appears: at
least 13.15% of Girls are harmed whereas the minimum fraction of Boys who
get harmed is only 9.3%. However Girls have higher upper bounds.; the Poor
has slightly higher lower bounds and low upper bound, which may indicate the
CSR may work against the Poor.

Next, the bounds for Ψy (0) and Λy (0) are plotted against various y from
the15%-tile to 85%-tile of Y0 for different comparison subgroups on Figures 6∼
8.

Figure 6: Bounds for Ψy (0) and Λy (0) for White vs. Nonwhite
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Figure 7: Bounds for Ψy (0) and Λy (0) for Boys and Girls

Figure 8: Bounds for Ψy (0) and Λy (0) for the Rich and the Poor

The bounds for Ψy (0) reveal some noticeable differences in White-Non
White comparison and Rich-Poor comparison. Bounds of White are higher than
that of Non-White. Bounds of Rich are higher than that of Poor.

First thing noticeable is that ΨU
y (0)’s differ across comparison pairs whereas

both ΛL
y (0) and ΛU

y (0) are estimated similar in each pair except for Rich-Poor
comparison. The Rich-Poor subgroups show somehow different ΛL

y (0)’s. The
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bounds for Ψy (0) and Λy (0) for some y are:

White Non-White Boy Girl Rich Poor
ΨL

F−1
n0 (0.8)

(0) 0.0001 0.0016 0.0005 0.0003 0.0006 0.0

ΨU
F−1

n0 (0.8)
(0) 0.7910 0.7237 0.7887 0.7656 0.8216 0.7267

ΛL
F−1

n0 (0.2)
(0) 0.4164 0.4902 0.4662 0.4138 0.4469 0.4352

ΛU
F−1

n0 (0.2)
(0) 0.9998 0.9991 0.9992 1.0 1.0 0.9992

ΨU
F−1

n0 (0.8)
(0)>ΛL

F−1
n0 (0.2)

(0) in all subgroups hence whether or not the CSR works
for or against lower quintile students in each subgroup is not definitive.

5. CONCLUSION

When treatment effects are heterogeneous identification of ATE is not enough
as in Bitler et al. (2006). If possible, identification of the entire distribution of
treatment effects is desired. The idea and technique introduced and proposed in
this paper is using the bounding approach to partially identify the distribution. A
new finding is we are able to use bounds for conditional distribution of treatment
effects given pre-treatment outcome levels.

Application of the techniques for finding the bounds to Project STAR seemed
to have yield a bit wider bounds for the conditional distribution, which may limit
applicability or usefulness of the techniques. It is a fundamental limitation that
the approach can’t help but provide partial, hence imprecise, knowledge about
what we want to know however ‘how much imprecise’ depends on data and
probabilistic nature of them so having more tools in our toolbox is good. Even
current investigation with the Project STAR that was not very satisfactory in
terms of precision of empirical results (i.e. the width of identification region)
provided some useful insights about heterogeneity of CSR effects as mentioned
in Section 4.

Statistical inference of the conditional distribution of treatment effects on
pre-treated outcomes, which is yet to develop, is another unsatisfactory aspect of
current paper. It may require another paper.
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APPENDIX A. PROOF OF THEOREM 1

I will provide the bounds for Pr [∆≤ δ ,Y0 ≤ y0] then the bounds for Λy0 (δ )
can be computed by

Λy0 (δ ) = Pr [∆ > δ |Y0 ≤ y0] = 1− Pr [∆≤ δ ,Y0 ≤ y0]

Pr [Y0 ≤ y0]
.

Let X =−Y0. Then Pr [∆≤ δ ,Y0 ≤ y0] =Pr [∆≤ δ ,X ≥−y0]. Define W (u,v)=
max{u+ v−1,0} and M (u,v)=min{u,v}. Also define H (y1,x)=Pr [Y1 ≤ y1,X ≤ x].

Pr [∆≤ δ ,X ≥−y0] is the H-volume of upper left half plane surrounded by
the lines Y1 +X = δ and X =−y0.

As in Nelson (1999), Pr [∆≤ δ ,X ≥−y0] is bounded from below by supx≥−y0
H (δ − x,x).

Therefore,

Pr [∆≤ δ ,X ≥−y0]

≥ max
{

supx≥−y0
H (δ − x,x)−H (δ − x,−y0) ,0

}
≥ max

{
supx≥−y0

[max{F1 (δ − x)+FX (x)−1,0}−min{F1 (δ − x) ,FX (−y0)}] ,0
}

= max
{

supy≤y0
[max{F1 (δ + y)−F0 (y) ,0}−min{F1 (δ + y) ,1−F0 (y0)}] ,0

}
= max

{
supy≤y0

{F1 (δ + y)−F0 (y)−1+F0 (y0)} ,0
}
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For the upper bound, we know

Pr [∆≤ δ ,X ≥−y0]

≤ infx≥−y0 {1−FX (−y0)−H1 (δ ,x)}
= infx≥−y0 {1−FX (−y0)−{1−F1 (δ − x)−FX (x)+H (δ − x,x)}}
≤ infx≥−y0 {−FX (−y0)+F1 (δ − x)+FX (x)−max{F1 (δ − x)+FX (x)−1,0}}
= infy≤y0 {F0 (y0)+F1 (δ + y)−F0 (y)−max{F1 (δ + y)−F0 (y) ,0}}
= F0 (y0)+min{infy≤y0 {F1 (δ + y)−F0 (y)} ,0}

The proof for Ψy0 (δ ) require the bounds for Pr [∆≤ δ ,Y0 ≥ y0]. The proof
is analogous except that we have to start with

supx≤−y0
H (δ − x,x)

≤ Pr [∆≤ δ ,X ≥−y0]

≤ infx≤−y0 {FX (x)+H (δ − x,−y0)−H (δ − x,−x)} .
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