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A Modified Cox Test for Time 

Series Models

Donggeun Kim*

We propose a new approach based on conditional means and variances 

to avoid the computational difficulties of the traditional Cox test.  This ap-

proach can be extended to more complicated time series models. Monte 

Carlo experiments are performed to investigate the potential applicability of 

the proposed test. Empirical applications to two different non-linear error 

equation models are also examined.1)
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I. Introduction

Since testing non-nested specification models was pioneered by Cox (1961, 

1962) as a modification of the Neyman-Pearson maximum-likelihood ratio, it 

has been one of the main interests among econometricians. However, the appli-

cation of the non-nested Cox test has been restricted to rather simple linear 

or non-linear regression models because of mainly its complicated and, in many 

cases, intractable derivation of the pseudo-true value in the second component 

of the Cox test. [see, for example, Pesaran and Deaton (1978), Gourieroux, 
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Monfort, and Trognon (1983), and Mizon and Richard (1986)]. The maximum 

likelihood estimate (MLE) of a non-linear model does not have a closed form 

and obtaining the analytical derivation of the pseudo-true value and its finite 

sample estimation may not be possible.

There have been alternative studies to avoid these computational difficulties. 

To examine these, see the artificial nesting model of Davidson and Mackinnon 

(1981) and the method of stochastic simulation by Pesaran and Pesaran (1993) 

among them. Especially, Bera and Higgins (1997) [BH, hereafter] apply the 

stochastic simulation method to the non-linear equation error models of the 

autoregressive conditional heteroscedasticity (ARCH) and the bilinear models. 

BH assume conditional normality in each model. However, applying the tradi-

tional Cox test in time series models and possibly in dynamic panel data models 

is very challenging because potentially very severe computational efforts arise 

from computing the unconditional expectation of the differenced log likelihood 

functions.

In this paper we reexamine the problems of applying Cox test to univariate 

time series models and propose a new approach based on the first two condi-

tional moments given all past information. Like BH, we use a Gaussaian 

log-likelihood function. We think this approach improves on BH approach in 

several ways. First, our approach is computationally simpler than the BH ap-

proach because we apply the Cox logic not to the joint distribution of all T 

observations, but to the sequence of conditional distribution. Second, our ap-

proach can be more robust than the BH approach because we focus on the 

conditional density for each time period. Also, we can test other distributional 

features such as conditional variance because our approach uses the first two 

conditional moments.

The plan of this paper is as follows. In section 2 we briefly review of the 

traditional Cox test, describe how to modify and apply our approach to a se-

quence of conditional distributions and obtain tests under normality condition. 

In section 3 we provide Monte Carlo experiments of this modified Cox test. 

ln section 4 we apply our proposed tests to three time series data sets studies 

by BH and we draw conclusions in section 5.
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Ⅱ. A Modified Cox Test for Time Series

1. Motivation and General Concepts

Suppose that y t, t=1,2,⋯,T  are T individually, identically distributed ran-

dom variables. Let M 1 : f (y t, α )  and M 2 :g (y t, β )  denote two competing prob-

ability density functions, where α,β  are their unknown parameters, 

respectively. Let the null hypothesis be that M 1
 is correctly specified and the 

alternative hypothesis be that M 2
 is correctly specified. If M 1

 is not nested 

in M 2
, and M 2

 is not nested in M 1
, then it is said that the two hypotheses 

are non-nested. Under the null hypothesis, the traditional Cox test is 

Tf={Lf ( α̂ )-Lg(β̂ )}-E α̂{Lf ( α̂ )-Lg(β̂ )}  (1)

where Lf ( α̂ ),Lg ( β̂ )  are the maximized log likelihood functions under M 1
 and 

M 2
, respectively and α̂, β̂  are their maximum log likelihood estimators. The 

test statistic is based on the difference between the log likelihood ratio and 

its expected estimate under the null hypothesis. If E α̂Lf ( α̂)-Lg ( β̂ ) =0, then 

the Cox test statistic is just simplified to the form of log likelihood ratio sta-

tistic, but, in general, this term is non-zero under non-nested hypotheses. So 

the Cox test takes the deviation between the maximum log likelihood ratio 

and its expected value under the null hypothesis. If M 1
 is correctly specified 

model, Tf  should be close to zero while a large deviation from zero constitutes 

evidence against the null hypothesis. The standardized Cox test statistic, 

T Tf

V̂ 1/2
f

, where V̂ f
 is a consistent estimator of the asymptotic variance 

of  , is asymptotically distributed as N(0,1). [see, White (1982)]

What makes difficult to apply the Cox test is that it requires computing 

the unconditional expectation of the differenced log likelihood functions under 

the null hypothesis that is not significantly analytical or tractable in many 
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cases. White (1994) shows the difficulties of computing the expected value 

of the average log likelihood ratio under the null hypothesis.

EM 1
[ L̂ fn

- L̂ gn
]≡

1

T
⌠
⌡( log fT (y

T, α̂ )-loggT (yT, β̂ ) )f T (yT, α̂ )dvT(yT )      (2)

 = ⌠
⌡

1

T
∑
T

t=1
( log f t (y t, α̂) - logg t (y

t, β̂ ))∏
T
t=1 f t (y

t, α̂)dvT(yT )  (3)

 =
1

T
∑
T

t=1
[⌠⌡ ( l og f t (y

T, α̂) - logg t (y
T, β̂ ) )f t (y

t, α̂)dv t (y t )]        (4)

          where fT≡ ∏
T
t=1 f t

The vt-fold integration in equation (4) causes severe computational diffi-

culties of the unconditional expectation. Cox (1961, 1962) assumed that ob-

servations are independent. This reduces the computational difficulties in some 

degree and the vt-fold integral in equation (4) is reduced as v-fold integral

=
1
T ∑

T

t=1
[⌠⌡ ( l og f t (y t, α̂ )- logg t (y t, β̂ ))f t (y t, α̂ )dv t (y t )]  (5)

However, the computational effort still remains, even though it is much more 

tractable than before. In addition, the analytical intractability outlasts when 

we apply the Cox test to the time series applications that include the lagged 

dependent variables as conditioning variables. To avoid these difficulties, we 

propose an alternative approach to computing the conditional expectation for 

each time t. By doing so, we can achieve some substantial simplifications of 

the Cox test in some important applications including ARCH and GARCH in 

time series.

2. A Modified Cox Test

Let {y t,z t ; t=1,2,⋯,T }  be a sequence of observable random variable with 

y t 1 × J, and z t 1 × K ;y t  is the vector of dependent variables, and   is the vector 

of explanatory variables. Define x t= (z t, y t- 1, z t- 1, ⋯, z 1, y 1 )  for each t. We 

assume that the conditional distribution, D (y t | x t ), follows a normal distri-
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bution. Suppose the two competing non-nested parametric models f t  and gt  

representing D (y t | x t )are given as 

M 1 : f t (y t |x t ;θ ),θ∈Θ⊆Rp, t=1, 2,⋯,T (6)

M 2 :g t (y t |x t;δ ),δ∈Δ⊆R q, t=1,2,⋯,T (7)

Let θ̂ , δ̂  be the maximum likelihood estimates that maximize
1

T
∑
T

t=1

log [ f t (y t |x t ;θ )]  and 
1

T
∑
T

t=1
log[g t (y t |x t ;δ )]  respectively

1).

Under standard regularity conditions, see, for example, Wooldridge (1994), 

the conditional MLE is consistent and T -asymptotically normal. If   is 

a correctly specified model, θ̂  is consistent for θ
0
, a true value of θ, and 

asymptotically normal but δ̂  generally converges not to its true value  , but 

to some value δ * , the "pseudo-true" value of δ  that depends on θ
0
. Define

Ct(x t ;θ 0, δ
*
)≡EM 1

[ log f t(y t |x t ;θ 0 )- logg t(y t |x t;δ
*
) |x t]  (8)

Using equation (8) we can derive a modified Cox test

TM 1
=

1

T
∑
T

t=1
[ ( log f t(y t |x t :θ 0 )- logg t (y t |x t ;δ

*
))-Ct (x t ;θ 0,θ

*
)] (9)

We can express equation (9) more formally when we parameterize the condi-

tional means and variances of the two competing models, M 1
 and M 2

, by 

θ
0 ∈Θ  and δ 0 ∈ Δ. Assume that we have two competing models for condi-

tional mean and variance:

M 1 :E (y t |x t )=mt (θ 0 )     (10)

Var (y t |x t )= h t (θ 0 ) where ut (θ 0 )≡y t-mt (θ 0 )  (11)

and

M 2 :E (y t |x t )= μ t (δ 0 )     (12)

1) We assume that the conditions for each process to be independent are satisfied.
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Var (y t |x t )= η t (θ 0 ) where ε t (δ 0 )≡ y t-μ t (δ 0 )  (13)

Note that, for M 1
 and M 2

, the first two conditional moments in each model 

depend not on all elements of , but on all of (z t, y t- 1, ⋯, y 1, z 1 ).  Under 

normality, log f t (yT |x t ;θ )  and logg t (y t |x t ;δ )  are

log f t (y t | x t ;θ )=-
1

2
log2π-

1

2
logh t (θ )-

1

2

(y t-mt (θ ))
2

h t (θ )
(14) 

logg t (y t | x t ;δ )=-
1

2
log2π-

1

2
logη t (δ )-

1

2

(y t-μ t (δ ))
2

η
t (δ )

 (15)

Plug equation (14) and (15) into equation (9) and replace the unknown pa-

rameters with the estimates, then the modified Cox test has a form of

T̂ M 1
=

1

T
∑
T

t=1
[(y t-mt ( θ̂ ) )

mt ( θ̂ )-μ t ( δ̂ )

η
t ( δ̂ )

+
ut( θ̂ )

2
-ht ( θ̂ )

2
(

1

η
t( δ̂ )

-
1

ht ( θ̂ )
)]

 (16)

A similar procedure holds for TM 2
 when the null hypothesis is that M 2

 is 

correctly specified but we do not cover it here. Furthermore, we prove the 

validity of all the inference procedures under the null hypothesis that M 1
 is 

correctly specified.

Next, following Wooldridge (1990), Bolleslev and Wooldridge (1992), and 

White (1994), we can derive a test statistic and find the asymptotic variance 

of T T̂ M 1
 fairly easily. First, replace all estimates with the population param-

eters except ut ( θ̂ )  and ut ( θ̂ )
2
-ht ( θ̂ )  in equation (16). Second, apply 

mean-value expansion argument and replace the mean values with their prob-

ability limits,  , and multiply T  on both sides,2) then 

2) T T̂ M 1
 depends on both θ̂  and δ̂  but only the asymptotic distribution of 

T ( θ̂ -θ 0 )  affects the limiting distribution of T T̂ M 1
.
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T T̂ M 1
= T TM 1

(θ 0,δ
*
)-

1

T
∑{E [ {

mt(θ 0 )-μ t (δ
* )

η
t(δ

*) }▽θmt (θ 0 )

 +
1

2
E [ (

1

η
t(δ

*
)
-

1

ht(θ 0 )
)∇θht (θ 0 )] T ( θ̂ -θ 0 )+op (1)    (17)

where ∇θ  is the gradient operator.

Since θ̂  is the MLE using Gaussian log-likelihood function, with suitable 

regularity condition, T ( θ̂ -θ 0 ) = -A
0
T (θ 0 )

-1 1

T
∑
T

t=1
s t (θ 0)+op(1),  

where A0
T(θ 0 )≡ lim

t→∞

1

T
E [ht (θ 0 )], the limit of the expected value of the 

hessian of log f t (y t |x t ;θ 0 ),  and s t(θ 0)≡∇θlog f t(y t |x t ;a 0 ).  [see Bollerslev and 

Wooldridge (1992) and White (1994)] 

Then, we can establish the first-order representation

T T̂ M 1
=

1

T
∑
T

t=1
[ut (θ 0 ){

mt (θ 0 )-μ t(δ
*)

η
t(δ

*) }+
v t (θ 0)

2
(

1

η
t(δ

*)
-

1

h t(θ 0)
)

+Ψ 0
T (θ 0,δ

* )A0
T (θ 0)

- 1s t (θ 0 )]+op(1)     (18)

where 

    v t(θ 0 )=
ut (θ 0 )

2
-ht (θ 0 )

2
and

    
Ψ 0
T(θ 0,δ

*)=
1

T
∑
T

t=1 {E [ {
mt (θ 0 )-μ t (δ

*)

η
t(δ

*) }∇θmt(θ 0 )]

+
1

2
E [ (

1

η
t(δ

*)
-

1

h t (θ 0 )
)∇θh t (θ 0)]}

Note that the elements in the summand in equation (18) are martingale dif-

ference sequence random variables. Thus, T T̂ M 1
 is asymptotically normally 

distributed with mean zero and its asymptotic variance,

V (θ 0, δ
*
) =

1

T
∑
T

t=1
E [Dt+Ψ

0
T (θ 0,δ

*
)A

0
T (θ 0 )

-1
s t (θ 0 )]

2 (19)
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   where Dt≡[ut (θ 0 )(
mt(θ 0)-μ t(δ

* )

η
t (δ

*)
)+

v t(θ 0 )

2
(

1

η
t(δ

*)
-

1

ht (θ 0 )
)]

We can estimate this asymptotic variance by removing the expected value 

and replacing θ
0
 and δ *  with their MLEs:

VT̂=
1

T
∑
T

t=1
[ h t
ˆD̂ 2

t1+
ĥ 2
t

4
D̂ 2
t2 + Ψ̂

T Â
-1
T
Ψ̂ 'T ]    (20)

      where D̂ t1=
mt ( θ̂ ) -μ t ( δ̂ )

η
t( δ̂ )

and D̂ t2=
1

η
t( δ̂ )

-
1

h t ( θ̂ )

Note that only the conditional third and fourth moments under normality 

are used to obtain this result.

Under the null hypothesis, the statistic of the modified Cox test is asymptoti-

cally normally distributed with mean zero and variance, V̂ M 1
. Thus, the stand-

ardized modified Cox test, 
T T̂ M 1

V̂ 1/2
M 1

, is asymptotically distributed as N(0,1).

• Proposition

Assume that the following conditions are satisfied under the null hypothesis,

1. Regularity conditions in Wooldridge (1994) hold.

2. y t | x t  is normally distributed.

3. Conditional mean and conditional variance exist and are estimated by the 

Gaussian MLE.

Then, 

T̂ M 1
=

1

T
∑
T

t=1
[ (y t-mt ( θ̂ ))

mt ( θ̂ )-μ t( δ̂ )

η
t

+
ut( θ̂ )

2
-ht ( θ̂ )

2
(

1

η
t ( δ̂ )

-
1

ht ( θ̂ )
)]

(21)

and the standardized Cox test statistic, 
T T̂ M 1

V̂
1/2
M 1

 is asymptotically dis-
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tributed as unit normal, N(0,1), where V̂ M 1
 is the consistent asymptotic var-

iance of T T̂ M 1
.

Note that the equation (21) is a function of θ̂  and δ̂ , the MLEs of 

θ
0 and δ

*, respectively. Comparing to the Cox test (1961, 1962) and the simu-

lation method by Pesaran and Pesaran (1993), the modified Cox test does not 

require pseudo-true parameters or estimators from artificially generated data. 

This approach, based on conditional mean and variance specifications, is a more 

convenient method for a computational purpose. Now we apply this proposition 

as follows;

• Procedure

1. Obtain θ̂  and δ̂ , the ML estimates of θ
0 and δ

*, save residuals, u t̂, 

and the conditional variance, h t̂  from the log likelihood function 

log f (y t |x t ; θ̂ ) and ê t , and η
t̂
 from the log likelihood function 

log g t (y t |x t ; δ̂ ).

2. Compute D̂ t1, D̂ t2, v t̂, s t̂, Ψ t̂, and Â T
.

3. Compute

       T T̂ M 1
=T

-1/2
∑
T

t=1
[ u t̂ D t1̂+

v t̂

2
D̂ t 2 + Ψ̂

TÂ
-1
T s t̂] and

      V̂ M 1
=T

-1
∑
T

t=1
[ ĥ t D̂

2
t1+

ĥ
2
t

4
D̂ t 2 + Ψ̂

TÂ
-1
T
Ψ̂ ' T ]

and use the standardized Cox text statistic, 
T T̂ M 1

V̂ 1/2
M 1

, as asymptotic unit 

normal under the null hypothesis.

Ⅲ. Simulation Experiments

We perform some simulation experiments to investigate the potential applic-
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ability of the modified Cox test. We take the generalized autoregressive condi-

tional heteroskedasticity (GARCH) by Bollerslev (1986) and bilinearity by 

Granger and Anderson (1978) as two competing models for non-linear depend-

ence in time series. Because GARCH and bilinear processes are both non-linear 

and have very similar unconditional distributions, although the conditional dis-

tributions are quite different, it is difficult to detect the true specification be-

tween these two models.

We specify an AR(1)-GARCH(1,1) model as the null hypothesis and a 

AR(1)-first order bilinear model as the alternative hypothesis.

M 1 : y 1, t= α 0+α 1y 1, t-1+u t,  u t | x t∼N (0,1)

E (y 1, t | I t-1 )=α 0+α 1y t-1

Var (y t | I t-1)=h t= κ+γ u
2
t-1 +δh t-1

and u t= h t v t ,where v t∼N (0,1)

 (22)

M 2 : y 2, t= β 0+β 1y 2, t-1+ ε t, ε t= b 11ε t-1
ξ
t-1+ ξ t, where ξ t∼N ( 0,1)

E (y 1, t | I t-1 )=β 0+β 1y 2, t-1 + b 11ε t-1
ξ
t-1

Var (y t | I t-1)=σ
2
ξ

  (23)

We generate the artificial data in following way. First, we generate the nor-

mally distributed random variables from RNDN GAUSS program to calculate 

the AR(1)-GARCH(1,1) model, y 1, t. Then, again we generate the normally dis-

tributed random variables from RNDN GAUSS program for the AR(1)-first 

order bilinear model, y 2, t. The pseudo-true population parameters for M 1
 are 

given as y 1, t= 0.15+0.85 y t-1+u t  with a GARCH effect; h t= 0.1+0.2u
2
t-1

+0.75h t-1
. For M 2

, the pseudo-true population parameters are given as

y 2, t= 0.19 + 0.80 y 2, t- 1 + ε t where ε t= 0.385ε t- 1
ξ
t- 1 + ξ t. The parameter 

values chosen for both models correspond to the empirical estimates of time 

series. Next, we combine these two data sets with weight λ  to generate a 

new data set y t=λy 1, t+ (1-λ)y 2, t. Using this newly generated data, we per-

form the testing experiments by setting different values of λ ;λ=0 and λ=1. 
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If λ=1,  then    , so M 1
 becomes the correctly specified one, while M 2

 

is correctly specified if λ=0. The MLEs of these two specifications are calcu-

lated based on BHHH algorithm and the simulation results are calculated from 

200 replications and with large sample sizes of 1000, 2000, 3000, and 5000 and 

250, 500, and 750 for relatively small sample size properties. Let T1 denote 

the modified Cox test when M 1
 is correctly specified and T2 denote the modi-

fied Cox test when M 2
 is correctly specified. When the null is true, the test 

value (T) should be approximately zero.

<Table 1> Simulation Results when GARCH (1,1) is true

sample

size

N=1000 N=2000 N=3000 N=4000

T1 T2 T1 T2 T1 T2 T1 T2

mean 0.056 -19.498 0.129 -34.577 -0.027 -44.458 0.054 -59.661

s.d. 0.846 7.045 0.986 3.986 0.945 2.353 1.019 0.678

skew -0.062 1.770 -0.030 5.692 -0.369 6.129 0.449 -0.276

kurt 2.866 4.423 2.386 39.269 3.782 44.359 3.630 3.138

R.F.( α =.05) 0.020 0.960 0.040 0.995 0.045 1.000 0.055 1.000

too high 0.005 0.000 0.030 0.000 0.010 0.000 0.040 0.000

too low 0.015 0.960 0.010 0.995 0.035 1.000 0.015 1.000

 Note: 1) two-tailed test with α=.05 and λ=1.

       2) R.F. is rejection frequency.

In <Table 1>, we report the simulation results under the null hypothesis 

that the GARCH(1,1) model is correctly specified with λ= 1. The four mo-

ments of the unconditional probability distribution of the simulated test are 

very close to normal for all four sample sizes. The actual size is also very 

close to the nominal size for all sample sizes except for N=1000, in which the 

actual size is slightly understated.

Table 2 reports the simulation results when the bilinear model is correctly 

specified for N=1000, 2000, 3000, and 5000. The unconditional distribution of 

the simulation results appear to be very close to the standard normal dis-

tribution for all sample sizes. And the actual size is very close to the nominal 

size.
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<Table 2> Simulation Results when Bilinear (1,1) is true

sample

size

N=1000 N=2000 N=3000 N=4000

T1 T2 T1 T2 T1 T2 T1 T2

mean -9.236 -0.063 -13.045 -0.145 -15.883 -0.039 -20.811 -0.136

s.d. 3.125 1.029 4.050 0.923 4.631 0.969 5.394 0.905

skew 2.002 0.022 2.203 -0.118 2.369 0.022 2.548 -0.241

kurt 5.949 2.794 6.851 2.439 8.069 2.745 8.720 2.625

R.F.( α =.05) 0.945 0.050 0.945 0.045 0.995 0.050 0.980 0.030

too high 0.000 0.020 0.000 0.005 0.000 0.025 0.000 0.000

too low 0.945 0.030 0.945 0.040 0.995 0.025 0.980 0.030

 Note) 1) two-tailed test with α=.05 and λ=0 .

       2) R.F. is rejection frequency.

<Table 3> Simulation Results when GARCH (1,1) is true

sample

size

N=250 N=500 N=750

T1 T2 T1 T2 T1 T2

mean -0.277 -5.507 0.024 -11.027 -0.007 -15.509

s.d. 0.760 3.466 0.875 4.973 0.936 6.106

skew -0.446 0.411 -0.223 1.107 -0.177 1.519

kurt 3.015 1.485 2.871 2.667 3.104 3.736

R.F.( α =.05) 0.030 0.725 0.020 0.880 0.040 0.935

too high 0.000 0.000 0.005 0.000 0.020 0.000

too low 0.030 0.725 0.015 0.880 0.020 0.935

 Note: 1) two-tailed test with α=.05 and λ=1.

       2) R.F. is rejection frequency.

<Table 3> reports the simulation results with relatively small sample sizes 

of N=250, 500, and 750. The mean and standard deviation for N=250 slightly 

deviate from the standard normal N(0,1) but close to normal for other sample 

sizes. The simulation results undersize for all three sample sizes and the re-

jection frequency of T2 is lower than 0.95 for N=250 and 500.

In <Table 4>, the means are slightly bigger than zero in absolute value 

for all three sample sizes but this deviation decreases as sample size increases. 

The actual size and the rejection frequency are approximately equivalent to 

the nominal levels.
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<Table 4> Simulation Results when Bilinear (1,1) is true

sample

size

N=250 N=500 N=750

T1 T2 T1 T2 T1 T2

mean -4.952 -0.417 -6.806 -0.348 -8.274 -0.256

s.d. 1.493 1.047 2.017 1.028 2.530 0.968

skew 2.406 -0.015 2.198 -0.325 2.076 -0.004

kurt 9.508 2.730 7.411 2.573 6.253 2.560

R.F.( α =.05) 0.935 0.070 0.940 0.070 0.945 0.055

too high 0.005 0.010 0.000 0.000 0.000 0.005

too low 0.930 0.060 0.940 0.070 0.945 0.050

 Note: 1) two-tailed test with α=.05 and λ=0.

       2) R.F. is rejection frequency.

Ⅳ. Empirical Application

We apply the proposed test to two competing non-linear error equation mod-

els with three time series data sets studied by BH: the daily percentage changes 

of the S&P 500 stock index, the daily log price changes of the British pound 

in terms of the U.S. dollar, and the annualized growth rate of the U.S. monthly 

index of industrial production (IP). Note that the first two data sets are high 

frequency financial time series and the third data set is a non-financial time 

series. The stochastic error equation follows non-linearity and we specify the 

GARCH model as the null hypothesis and the bilinear model as the alternative 

hypothesis or vise versa. The exogeneous variables are considered as autore-

gressive (AR) models. The model specifications are nested withen 

AR(2)-GARCH(1,1) and AR(2)-bilinear (2,1). We obtained these data sets from 

JBES data archives and follow the model specifications and the orders of autor-

egression that minimize the Schwarz criterion from BH. The two competing 

models are

M 1 : y t= α 0+α 1y t-1+α 2y t-2+u t

u t | x t∼ i.i.d (0, h t ) where h t=κ+γ u
2
t-1+ δh t-1

              (24)
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M 2 : y t= β 0+β 1y t-1+β 2y t-2+ ε t

where u t=b 11u t-1
ε
t-1+b 12 u t-2

ε
t-1+e t and ε t∼ i.i.d (0,σ

2
ε )

    (25)

<Table 5> Summary Statistics

Mean s.d. Skew Kurt Max Min sample size

S&P 500 0.060 0.820 -0.651 8.767 3.468 -5.877 1138

BP -0.023 0.477 0.032 4.762 1.960 -2.252 1210

IP 3.358 10.604 -0.646 5.669 37.699 -51.732 359

First, we take the daily S&P 500 stock index from January 4, 1978 to May 

28, 1993. Next, we take the daily log exchange rate of the British pound (BP) 

to the U.S. dollar in a sample period from December 12, 1985 to February 28, 

1991. As BH considered in their paper, we also take the annualized growth 

rate of the U.S. monthly index of industrial production (IP), a non-financial 

time series data set, from January, 1960 to March, 1993 for the third empirical 

application. These data sets are summarized in <Table 5>.

<Table 6> Estimated GARCH Models

S&P 500

y t= .053 +.066y t-1+ u t

     (.026) (.031)

h t= .012+.013u
2
t-1 +.968h t-1

    (.011) (.006)    (.019)

l ( θ̂ )= -1361.63

BP

y t= .023 +.u t
    (.013)

h t= .010+.059u
2
t-1 +.897h t-1

    (.004) (.015)    (.025)

l ( θ̂ )= -784.82

IP

y t= 2.688 +.278y t- 1+.104y t- 2+u t

     (.510) (.064)     (.055)

h t= 60.111+.236u
2
t-1 +.104h t-1

    (12.867) (.063)    (.132)

l ( θ̂ )= -1301.32

<Table 6> and <Table 7> report the estimation results of both models; the 

estimation results of GARCH models in <Table 6> and the bilinear models 

in <Table 7>.3)
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<Table 7> Estimated Bilinear Models

S&P 500

y t= .017 +.101y t- 1+ u t

     (.026) (.031)

u t= .053u t- 1
ε
t- 1+ εt

    (.012)

l ( θ̂ )= -1369.66

σ̂ 2
ε=.650

BP

y t= -.023 +u t

( .016)

u t=.0007u t-1
ε
t-1-.079u t-2

ε
t-1+ ε t

( .039) (.056)

l ( θ̂ )= -818.74

σ̂ 2
ε=.227

IP

y t= 2.340 +.321 y t-1+.125y t- 2+u t

(.661) (.073) (.055)

u t=-.006u t- 1
ε
t- 1+ε t

(.004)

l ( θ̂ )= -1311.15

σ̂ 2
ε=90.352

<Table 8> Test Results ( H 0 :GARCH vs. H 1 :Bilinear)

Bera & Higgins Modified Cox Test

S&P 500 .023 .204

BP .196 -.002

IP .533 -.022

<Table 9> Test Results ( H 0 :Bilinear vs. H 1 :GARCH)

Bera & Higgins Modified Cox Test

S&P 500 -.910 -6.195

BP -2.797 -5.413

IP -1.643 -23.094

<Table 8> and <Table 9> present the modified Cox test results. <Table 

8> reports the test results when the GARCH models is the null hypothesis 

3) We estimated these models with the same data sets that BH used. As expected, 

our estimation results are very close to those of BH. Followed by the comment 

from an anonymous referee, those regression results are not reported here but 

can be provided by request.
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and <Table 9> reports the test results when the bilinear model is the null 

hypothesis. In <Table 8>, when the GARCH model is the null hypothesis, 

our test results are close to zero for all three series, so we cannot reject the 

null hypothesis in those three data sets at any significance levels. In Table 

9, the absolute values of our test results are far much bigger than those of 

BH when the bilinear model is the null hypothesis and, although BH reject 

the British pound series as the null at 1% of significance level and reject the 

IP series at 10% of significance level when the null hypothesis is the bilinear 

model, all three series are rejected in our test results. In the test results by 

BH, S&P 500 cannot be rejected in both specifications but the GARCH models 

are preferred in all three data sets in our test results.

Ⅴ. Conclusion

A new approach based on the conditional mean and variance specifications 

has been proposed in this paper. This modified Cox test has some attractive 

features. The major attraction among them is its computational simplification 

because it does not require computing the pseudo-true values. As this proposed 

test is based on the specification of the first two conditional moments, we 

can also test other distributional features such as conditional variance. 

Furthermore, it can be easily extended to the more complicated non-linear 

models in time series and possibly dynamic panel data models. Monte Carlo 

experiments indicate that this proposed test seems to perform well for all dif-

ferent sample sizes. The actual size from this proposed test is almost always 

close to the nominal size but the actual size is slightly different from the nomi-

nal size for N=250, and 500. Further study needs to be done to examine the 

applicability to the finite-sample properties. Empirical applications have been 

also considered in this paper. The test results from three different time series 

data sets indicate that the bilinear models are misspecified and the GARCH 

models are preferred in those data sets.
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[Abstract]

시계열 모형 분석을 위한 보완된 콕스 검정법

김 동 근

본 논문은 전통적인 콕스 검정법이 가지고 있는 계산상의 어려움을 완화

시키기 위해 조건부 평균과 조건부 분산을 이용한 보완된 콕스 검정법을 

제시한다. 처음 두 조건부 적률을 이용한 이러한 접근방법은 주어진 관찰치 

전체의 결합밀도함수를 구하지 않아도 되는 계산상의 이점과 시계열모형에 

쉽게 적용될 수 있는 장점이 있다. 제안된 검정법에 대한 만족 할만 한 모

의실험 결과를 얻었으며 비선형 오차 방정식 모형에 대한 실증분석결과 

GARCH모형이 bilinear모형보다 더 올바른 모형으로 나타났다.

핵심용어：조건부 평균, 조건부 분산, 보완된 콕스 검정법, 비선형 오차 방정

식 모형
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