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Ⅰ. Introduction

Borrowing and lending rates differ in the real world. The spread between 

them is ascribed to financial intermediation, which is costly due to market 

frictions. This is an easy example where the law of one price is violated in 

the face of market frictions.1) The arbitrage pricing theory which does not 

take market frictions into account may be unable to characterize asset prices 

in economies which are far from being ideal. The effect of market frictions 

on asset pricing must be properly understood to make an asset pricing theory 

come closer to reality.

The paper establishes the fundamental theorem of asset pricing (FTAP) in 

markets where transaction costs need not be proportional. The arbitrage 

pricing rules are independent of the marginal effect of transaction costs and 

determined by average costs for large transactions. Remarkably, no matter 

how complex the convex transaction cost functions are, the pricing rules are 

as simple and concrete as in the case with proportional transaction costs. Thus, 

asset valuation can be free from the intractability of convex transaction costs. 

The consequences of the paper are in sharp contrast to equilibrium pricing 

theory based upon the knowledge of the marginal effect of transaction costs 

and therefore, of transaction cost functions. The pricing rules are characterized 

by minimal information on the nature of transaction costs. It is also worth 

noting that marginal transaction costs are irrelevant to the determination of 

the pricing rules as far as they differ from average costs for large transactions.

There exists a large body of the literature on arbitrage pricing theory under 

proportional transaction costs. Garman and Ohlson (1981), Boyle and Vorst 

(1992), Jouini and Kallal (1995), Kabanov (1999), Kabanov and Stricker (2001), 

Delbaen, Kabanov, and Valkeila (2002), Zhang, Xu, and Deng (2002), 

Schachermayer (2004) among others examine the effect of proportional 

transaction costs on asset pricing. Leland (1985) and Boyle and Vorst (1992) 

1) Evidences of mispricing are abundant in the literature; stock index futures 

(Canina and Figlewski, 1995), primes and scores (Jarrow and O’Hara, 1989), 

closed-end funds (Pontiff, 1996), stock options (Conrad, 1989) among others.
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investigate option pricing in discrete time with proportional transaction costs. 

The consequences of the paper will be useful in extending those results to 

the case with convex transaction costs. 

The notion of arbitrage used here is appropriate to examining equilibrium 

asset prices. Viability of asset prices is an important criterion for asset pricing 

theory because it is fulfilled in equilibrium.2) The no arbitrage condition is 

shown to be equivalent to viability of asset prices. The consequence vindicates 

the coherence of arbitrage as a conceptual framework for equilibrium analysis. 

‘Arbitrage’ pricing theory would be almost vacuous if it undergoes serious 

failure in the viability test.3)

As mentioned earlier, arbitrage pricing theory has informational advantage 

over equilibrium pricing theory. What is required to capture the pricing rules 

is information on the average cost for large transactions which is independent 

of the local behavior of transaction cost functions. This point deserves remarks. 

The amount of information on the nature of market frictions which is necessary 

to describe the arbitrage pricing rules depends on the definition of arbitrage. 

Broadly speaking, the notions of arbitrage for frictional markets can be 

classified into two categories, ‘local arbitrage’ and ‘global arbitrage’.4) Local 

arbitrage is introduced to characterize the properties of optimal portfolios and 

equilibrium prices. Since they satisfy the first order conditions for utility 

maximization or cost minimization, the no local arbitrage conditions eventually 

depend on the current optimal positions. In particular, it requires the knowledge 

of the marginal effects of market frictions on asset pricing. Local arbitrage 

is used in most literature with convex transaction costs and taxation schedules.5)

In contrast, global arbitrage can be used to provide necessary conditions 

for equilibrium prices in a parsimonious way. The no global arbitrage con-

ditions are supposed to require minimal information on unobservable market 

2) Informally speaking, asset prices are viable if they allow agents to make an optimal 

choice in asset markets.

3) As shown later, the well-known notions of arbitrage do not pass the viability test.

4) ‘Global’ is used to contrast the latter to the former.

5) For deails, see Ross (1987), and Dybvig and Ross (1986), Prisman (1986), Dermody 

and Prisman (1993) among others.
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data such as risk preferences, the initial wealth, and the exact form of market 

frictions. In particular, they are free from the knowledge of the marginal effects 

of market frictions on asset pricing. Notably, Dammon, and Green (1987) 

characterize equilibrium prices and investigate the existence of the arbitrage 

pricing rules under progressive taxation from the viewpoint of global arbitrage. 

This paper takes the same line of research as Dammon and Green (1987).

The two notions of arbitrage usually lead to the same consequence of asset

pricing in the case with proportional transaction costs. This is not the case, 

however, with non-proportional transaction costs or taxes. As illustrated in 

the main text, asset pricing by local arbitrage tends to extremely underestimate 

the multiplicity of the pricing rules when transaction costs are convex and 

extremely overestimate it when they are non-convex.

Moreover, both notions of arbitrage drastically diverge in informational 

requirement to characterize the pricing rules. The marginal transaction costs 

or tax rates are placed in the pricing kernel in the presence of transaction 

costs and taxation. Thus they provide indispensable information to capture 

the pricing rules. If transaction costs or capital income taxes are proportional 

to the size of transactions, their marginal effect is constant over all positions. 

If transaction cost functions are nonlinear, however, the marginal transaction 

cost depends upon the functional form of market frictions as well as the position 

to be concerned about. In theory, local arbitrage leads to sharper results than 

global arbitrage in the case with nonlinear cost functions. In reality, however, 

it is hard to pick out the pricing rules which meet the status quo of the markets 

under the unobservable pricing kernel. For example, Ross (1987) and Dybvig 

and Ross (1986) introduce local tax arbitrage to address arbitrage pricing 

theory with progressive taxation. In this case, the marginal tax rate is 

calculable on the basis of the knowledge of both the tax schedule and the 

current portfolio position of individuals, which do not belong to publicdomain 

of information in general.

The paper is organized as follows. In Section Ⅱ, the finite-period markets 

and the structure of transaction costs are discussed. In Section Ⅲ, four types 

of transaction cost functions are described which display the same average 
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cost for large trades. It is also illustrated that the no arbitrage condition of 

the literature may not be compatible with viability. Transaction cost functions 

are characterized in terms of the average costs for large transactions in Section 

Ⅳ. In Section Ⅴ, the notion of arbitrage with transaction costs is presented 

and analyzed in terms of the average costs for large transactions. Section Ⅵ 

is devoted to verifying the equivalence between the no arbitrage condition and 

the existence of pricing rules. The pricing rules are characterized in a concrete 

form as in the case with proportional transaction costs. Section Ⅶ shows the 

triple equivalence between the no arbitrage condition, the existence of pricing 

rules and viability of asset prices. The paper is concluded with Section Ⅷ.

Ⅱ. The Model

Asset markets are assumed to persist over finite time periods, t =  1 ,  . . .  ,  T. 

Let Ω = 1, 2, , S  denote a finite set of the states of nature. The revela-

tion of information is described by a collection of partitions of Ω, 

F =   F0,  F1,  . . . ,  FT  , where FT  is finer than Ft−1  (i.e., σ Ft  and σ
�

Ft−1  

imply that σ ⊂  σ
�
  or σ∩σ

�
 =   ) for all t =  1 ,  . . .  ,  T.6) We assume that 

F0 =  Ω . The information available at time t =  1 ,  . . .  ,  T  is described by the 

set σ Ft  of the states of nature. We set D =  ∪T
t = 0Ft  and D−T =  ∪T−1

t = 0Ft . 

An element in D  is called a node or an event and D  is called an event tree. 

In particular, σt  in D  denotes an event in Ft . For each σt Ft , let σ
−
t  denote 

the event which immediately precedes σt , σ+
t  the set of events which 

immediately succeed σt . For some positive integer n , let (D−T,   R
n )  denote 

the collection of all R
n
-valued functions on D−T . For brevity, 

n
 will be used 

instead of (D−T,   R
n ). Let #D and #D−T  denote the number of elements in 

6) For more details on the stochastic economy, see Magill and Shafer (1991) or Magill 

and Quinzii (1996).
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D  and #D−T. Then 
n
 is the Euclidean space of dimension (#D−T ) n. Let 

 denote the set of all real-valued functions defined on D. We set 

+ = x L : x (σ )≥ 0 ,σ D  and ++ = x L : x (σ )> 0,σ D .

There are J  long-lived assets issued at time 0 and traded in each state 

of time t = 0 , ..., T − 1 . Allowing for some notational abuse, we also denote 

the set of assets by J . A price process of asset j  is a function qj : D−T  →  R  

and a trading strategy is a function θ : D−T  →  RJ
. Thus, q = (q1, ..., qJ)  and θ  

are a point in 
J
. More specifically, q

j(σ )  and θ
j (σ )  denote a price and a 

position of asset j , and q (σ ) RJ
 and θ (σ ) R J

 denote prices and positions 

of J  assets at the node σ D . For a price-event pair (q,σ )  in 
J D , let 

R ( , q  ;  σ ) : J  →  R  denote the net return schedule which is derived from 

deducting transaction costs from the gross return. Specifically, if a trading 

strategy θ
J
 is chosen at the price q, the net return R(θ, q  ;  σ)  will be 

delivered to the investor in the event σ. For a price q
J
, let R ( ,   q )  denote 

the function which assigns each σ D  to R( , q  ;  σ ). Thus, for a trading 

strategy θ
J
, R (θ, q )  is a #D-dimensional net return vector.

Transaction costs are incurred in buying and selling assets. For a net trade 

and a price (v ,  q )  in J J
, let Cj

σ (vj(σ),  q j(σ ))  denote the transaction cost 

for the positional changes v
j (σ )  with asset j J  in the event σ D . We set7)

C (v (σ ), q (σ ) ;  σ ) = Σ
j J

C j
σ (vj (σ ), q j (σ ) .

The function C (v (σ ), q (σ ) ; σ )  indicates the variable transaction costs for the 

portfolio changes v (σ )  in the event σ D . We exclude the effect of fixed 

transaction costs on asset pricing.8)

7) Dermody and Prisman(1993) indicate that transaction costs on trading each in-

dividual asset is a function of the number of shares traded, and transaction costs 

on a trade is the sum of the transaction costs on trading each individual stock.

8) This exclusion is not totally unrealistic. If there exist investors or financial in-

stitutions which are rich enough to cover fixed transaction costs, then they can 

always benefit from any portfolios which could provide arbitrage opportunities in 
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For each σ D , let Rσ RJ
 denote the gross returns of assets which are 

available before transaction costs are deducted. Then for each (θ ,  q )

J J
, the net return process R(θ, q  ;  σ)  is represented by

R (θ, q  ;  σ ) =







−q (σ ) θ (σ )−C (θ (σ ), q (σ ) ; σ ),  σ = σ0

 Rσ θ (σ− )−q (σ ) (θ (σ )−θ (σ− ))

      −C (θ (σ )−θ (σ− ), q (σ ) ; σ ), σ D−T      σ0

 Rσ θ(σ−),                                                                                                                σ FT                                                                       

Ⅲ. Examples

Four transaction cost functions are presented in the first example which 

look quite distinct but give the same average cost for large transactions. As 

shown later, they give the same consequence in terms of asset pricing. It is 

illustrated in the second example that the no arbitrage condition of Dermody 

and Prisman (1993) may be far from being a necessary condition for viability 

when the transaction cost function is convex, piece-wise linear and diff-

erentiable at zero. Specifically, the no arbitrage condition of Dermody and 

Prisman (1993) explains only a ‘small’ part of viable prices.9)

Example 1. Transaction cost functions are given which locally differ but 

behave asymptotically in the same manner. As shown later, they are 

indistinguishable in terms of arbitrage pricing. Let q  denote the price of an 

asset. For each i = 1 , ..., 4 ,  we define Ci( , q ) :  R  →  R  as the transaction cost 

function for the asset. They are depicted in <Figure 1>.

frictionless markets. In this case, the presence of fixed transaction costs does not 

matter to arbitrage pricing.

9) This result is true in general when transaction cost functions are convex and dif-

ferentiable at zero.
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<Figure 1>

The function C1 ( , q)  is piecewise linear with kinks at −1/q  and 1/q, and 

flat at zero while C2 ( , q)  is strictly convex and differentiable. The function 

C3 ( , q)  jumps regularly and represents transaction costs with indivisible 

assets. In contrast to the first three functions which are free from fixed cost 

component, C4 ( , q )  has the fixed transaction cost denoted by K . If K  is 

ignored in C4 ( , q ) , it is the same as C3 ( , q) .

Despite their local difference, they have the same asymptotic property. We 

set Ci (θ, q ) = lim
λ→∞

Ci (λθ, q )/λ . It is easy to see that for each i =1, ...,4,Ci(θ, q )  

is equal to the function

C (θ, q ) =




q
20

θ,               if     θ ≥ 0

−
q

30
θ ,        if     θ   < 0

 (1)

ⅰ) Piecewise linear and differentiable at zero ⅱ) Convex and differentiable at each point

ⅲ) Indivisible Assets ⅳ) Non-convex with jump at zero
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This function represents proportional transaction costs in such a way that 
q
20  

is a transaction cost for buying one unit of the asset and 
q
30  is a transaction 

cost for selling one unit of the asset. The average transaction cost of the four 

cases for large transactions is all the same as that of the proportional 

transaction cost function C ( , q ) . <Figure 2>.

<Figure 2>

Example 2. It is illustrated that the no arbitrage condition of Dermody and 

Prisman (1993) explains only a small part of viable prices. This means that 

a significant portion of viable prices may allow arbitrage in the sense of 

Dermody and Prisman (1993). They use the following notion of arbitrage in 

a two-period world.

Definition DP. The price q R J
 admits no arbitrage if it satisfies 

max − θ q−C (θ, q ) : R θ≥0 = 0  and

R θ = 0  for all optimal solution θ R J
.10)

10) Let x  and x
�
 be vectors in a Euclidean space. Then x ≥ x

�
 implies x  is greater 

than or equal to x
�
 in a component-wise manner; x > x

�
 implies that x ≥ x

�
 and 

x≠ x
�
; x ≫ x

�
 implies that each component of x  is greater than the counterpart 

of x
�
.
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To be more specific, we consider a two-asset one-state economy with convex 

transaction costs. Both assets pay one dollar in the state of the next period. 

Thus the gross return structure is represented by the 1 2  matrix R=  [ ]1               1 . 

Let q
1
 and q

2
 denote the price of the two assets. We assume that transaction 

costs are incurred only for trading the second asset according to the cost 

schedule

Cf (θ
2 , q 2 ) =





(q 2θ2 −1 )/20, if     θ2≥ 1/q 2

0, if    − 1/q 2≤ θ2 < 1/q 2 (2)

− (q 2θ2 + 1 )/30, if         θ2 <− 1/q 2

This function is depicted in the first diagram of <Figure 1>. Clearly, Cf(0, q
2 ) = 0  

and Cf(θ
2, q 2 )  is piece-wise linear, continuous and convex. 

Let ΛDP  denote the set of prices which admit no arbitrage in the sense of 

Definition DP. Then (q 1, q 2 ) ΛDP  if and only if it satisfies

max −θ1q 1− θ2q 2−Cf(θ
2, q 2 ) : θ1 +θ2 ≥ 0 = 0  and

θ1 + θ 2 = 0  for all optimal solution (θ
1, θ 2 ) .

We claim that

ΛDP = (q 1, q 2 ) R2
++ : q 1 = q 2

.

Let (θ
1, θ 2 )  denote the solution to max −θ1q 1− θ2q 2− Cf(θ

2, q 2 ) : θ1 +θ2 ≥ 0

= 0 . Suppose that q 1 = q 2
. Then it is easy to see that θ1 + θ2 = 0  and 

max −θ1q 1− θ2q 2−Cf(θ
2, q 2 ) : θ1 +θ2 ≥ 0 = 0 . Therefore, (q 1, q 2 )  satisfies 

the no arbitrage condition of Definition DP. 

We show that any (q
1, q 2 )  with q

1≠ q 2
 admits an arbitrage in the sense of 

Definition DP. Suppose that q
1> q 2

. We set η
1 =− 1/2q 2

 and η
2 =− 1/2q 2

. Then 

−1/q 2≤ η2< 1/q 2
 and η 

1 + η 2≥ 0 . Moreover,
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−η1q 1−η2q 2−Cf(η
2, q 2 )    =  −η1q 1− η2q 2

                                    =  −
1
2

(1−
q 1

q 2
) > 0         (3) 

Suppose that q
1< q 2

. We set η
1 = 1/2q 2

 and η
2 =− 1/2q 2

. Then −1/q 2≤ η2

< 1/q 2
 and η

1 + η2≥ 0 . Moreover,

−η1q 1−η2q 2−Cf(η
2, q 2 )   =  −η1q 1−η2q 2

=  
1
2

(1 −
q 1

q 2
) > 0    (4) 

It follows that for any (q
1, q 2 )  with q

1≠ q 2
, 

max −θ1q 1− θ2q 2−Cf(θ
2, q 2 ) : θ1 +θ2≥ 0 > 0 .

Thus, whenever q
1≠ q 2

, (q
1, q 2 )  does not satisfies the no arbitrage condition 

of Definition DP. 

To do a viability test with prices in ΛDP , we introduce the set ΛV  of viable 

prices. Any prices in ΛV  would allow agents with monotonic preferences to 

have an optimal choice in asset markets. We claim that

ΛV = (q 1, q 2 ) R2
++ :  (29/30 )q 2≤ q 1≤ (21/20 )q 2

.

(This claim is verified in the Appendix.) Prices in ΛV  are viable but any with 

q 1≠ q 2
 does not satisfy the no arbitrage condition of Dermody and Prisman 

(1993). Thus, the no arbitrage condition of Dermody and Prisman (1993) 

explains a very small part of viable prices.

Ⅳ. Transaction Costs in the Large

Transaction cost functions are characterized in terms of average costs for 

large transactions. We demonstrate that there exists the proportional 

transaction cost which shares arbitrage pricing rules with the original nonlinear 
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transaction cost functions. The proportional function is determined inde-

pendently of the local curvature of the original functions. We assume the 

convexity of transaction cost functions.

Assumption 1：For all q
J,  j J  and σ D, C j

σ ( , q j(σ ))  is a convex 

function and Cj
σ (0, q j(σ )) = 0 .

This condition states that transaction cost functions are convex and no 

transactions cost nothing. For each q
J ,  j J  and σ D , we set

b j(q j (σ);σ) = lim
z→∞

Cj
σ (z, q j(σ ))

z
 and s

j(q j (σ );σ ) = lim
z→−∞

Cj
σ (z, q j (σ ))

z
.

Then b
j(q j (σ);σ)  and s

j(q j (σ);σ )  are the average transaction cost for large 

long positions and short positions in asset j , respectively. If average transaction 

costs are unbounded at infinity, then marginal costs increase progressively 

and eventually, go to infinity. This means that nobody wants to possess long 

or short positions beyond a certain large size of trade volumes even when 

asset prices are negative. In this case, any asset prices, whether positive or 

negative, do not admit arbitrage opportunity. Thus, the case with unbounded 

average costs at infinity is trivial in terms of arbitrage pricing theory because 

any prices are arbitrage-free.

To be more specific, suppose that b j(q j (σ);σ) =∞  for some j J  and 

σ D−T . Let θ  be a nonzero portfolio with θ (σ ) − θ (σ− )> 0 , i.e., non-trivial 

long position with asset j  in the event σ. For any λ> 0 , the net return of 

asset j  in σ  generated by λθ  is 

λ R j
σ θ

j (σ− 1 )− q j (σ )[θ (σ )− θ (σ− 1 )]−
C j

σ [λ (θj (σ−1 )− θ (σ )), q j (σ )]
λ .   (5)

Since C j
σ [λ (θj(σ−1 )− θ (σ )), q j(σ)]/λ =∞, for sufficiently large λ  the term 

inside the bracket of (5) is negative and therefore, the net return in (5) goes 

to minus infinity as λ→∞ . Such a consequence holds for any θ  and q  in 
J
. 
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In particular, as the size of long positions with asset j  increases, the net return 

goes to minus infinity even at prices q
j(σ )< 0 11). This is quite unrealistic. 

The same is true for the case with s j (q j (σ );σ ) =∞ . To exclude these 

unrealistic cases, we can assume that for each q
J
, j J  and σ D ,

−∞ < s j (q j (σ );σ) ≤ b j (q j (σ );σ )< ∞.     (6)

We define the function

C jσ (z, q j(σ )) =





b j(q j(σ );σ)z,                       z≥ 0

s j(q j(σ );σ)z,                        z< 0
 (7)

This function can be considered a proportional transaction cost for the change 

of the position z  for asset j  in markets where b
j(q j (σ);σ)  and s

j(q j (σ);σ )  are 

charged as the unit transaction cost for long and short positions, respectively. 

Remarkably, the function in (7) displays the asymptotic behavior of C j
σ  for 

a given position z  because for a nonzero z,

           lim
λ→∞

C  j
σ (λz, q j(σ))

λ
      =     lim

λ→∞
C  j

σ (λz, q j(σ ))
λz

z

=





b j(q j(σ);σ )z,           z> 0

s j (q j(σ );σ )z,           z< 0
        (8)

    = C jσ (z, q j(σ))

For each q, v  in 
J
 and σ D , we set

C (v (σ ), q (σ );σ ) = lim
λ→∞

C (λv (σ ), q (σ );σ )
λ

. (9)

It follows that

11) Any price q j(σ )  whether it is positive or negative would not admit an arbitrage 

opportunity because sufficiently large long position with asset j  necessarily gen-

erates loss.
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C (v (σ ), q (σ );σ ) = Σ
j J

C jσ (vj (σ ), q j (σ )) .    (10)

We define the following notion of transaction cost function.

Definition 4.1. For each q J
 and σ D , C jσ ( , q j (σ)) : R→R  and 

C ( , q (σ );σ ) : RJ→R  are the transaction cost function in the large (LTC 

function) for asset j J  and for the asset structure J , respectively.

The LTC function represents average transaction costs for large net trades. 

Clearly, it is a convex and positively homogeneous function.

Lemma 4.1. For each q
J
, j J  and σ D , C jσ ( , q j (σ))  is convex and 

C jσ (λz, q j (σ)) =λC jσ (z, q j(σ ))  for all z R  and λ≥ 0 .

If the transaction cost function is proportional, it coincides with the LTC 

function. Let b 
j (σ ) [0, 1 )  and s 

j (σ ) [0, 1 )  denote the transaction cost rate 

for buying and selling j  at σ. Clearly, b j(σ )q j(σ ) = b j (q j (σ);σ )  and 

s j (σ )q j (σ ) =− s j (q j (σ );σ )  for all q
J
, j J  and σ D . In this case, the 

LTC function has the form

C  jσ (z, q j (σ )) =





b j (σ )q j (σ )z,   z≥ 0

(11)

− s j (σ )q j (σ )z,   z< 0

For each q, θ  in 
J
 and σ D , we define the set

G (θ, q   ;  σ ) = v J : R(θ+ λv, q   ;   σ )≥ R (θ, q      ;     σ )          ∀λ≥ 0 .

The set G(θ, q      ;     σ )  contains portfolios represented by a direction in which the 

net return is improved from the current position in the event σ. By convexity 

of transaction cost functions, R( , q   ;   σ )  is a concave function for all q  and 
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σ D . Thus, it coincides with the recession cone of the level set 

θ J : R (θ, q      ;     σ )≥ c .12) For notational ease, we set G(q   ;   σ) = G(0, q      ;      σ)

for each q
J
. By Theorem 8.7 of Rochafellar (1970), G(θ, q   ;   σ ) = G (q      ;      σ)  

for each θ J
. We set G(q) =∩σ DG(q   ;   σ). A nonzero v G (q )  

represents a change of the position which adds nonnegative income to any 

positions in each state if the positional change is sufficiently large in the 

direction v . Clearly, G (q )  is a cone. We make the following assumption.

Assumption 2：For each q
J
 and σ D      −T , let v  be a point in G(q      ;      σ)  

with R(v, q   ;   σ )> 0 . Then the following holds true.

lim
λ→∞

λC (v (σ ), q (σ );σ )− C (λv (σ ), q (σ );σ )
R (λv, q   ;   σ )

< 1 .

This condition requires that as the size of v  increases indefinitely, the 

asymptotic proportion of the difference between the proportional and original 

transaction costs to the net returns is less than one. Assumption 2 trivially 

holds when the transaction cost function C  is proportional to the positional 

changes. The following provides a class of transaction cost functions which 

satisfy Assumption 2.

Lemma 4.2. For each q
J
 and σ D      −T, let v  be a point in G(q      ;      σ)  

with R(v, q   ;   σ )> 0 . Suppose that lim
λ→∞

R (λv, q   ;   σ )   →   ∞  and there exists 

( , q (σ );   σ ) : Rj   →   R  such that supz RJ (z, q (σ );   σ )<∞  and for all x R J
,

C (z, q (σ);  σ) = C (z, q (σ);   σ )+  (z, q (σ );   σ).

Then Assumption 2 holds true.

12) For a convex set C  in a Euclidean space E , v E  is a direction of recession of 
C  if v + x C  for all x C . The recession cone of C is a set of directions of re-

cession of C. For details, see Rockafellar (1970).
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PROOF：Since lim
λ→∞

R (λv, q   ;   σ )   →   ∞  and supz RJ (z   ;   σ )<∞ , it is easy to see 

that

lim
λ→∞

λC (v (σ ), q (σ );σ )− C (λv (σ ), q (σ );σ )
R (λv, q    ;   σ )

= lim
λ→∞

(λv (σ ), q (σ );σ )
R (λv, q      ;      σ )

= 0     □

For each q
J
 and σ D , we consider the function V ( , q   ;   σ) : J   →   R  

defined by

V (θ, q  ;  σ ) =







 −q (σ ) θ (σ )−C (θ (σ ), q (σ ) ; σ ),  σ = σ0

 (12)
 R (σ ) θ (σ− )− q (σ ) (θ (σ ) −θ (σ− ))

        −C (θ (σ )−θ (σ−), q (σ )   ;   σ ), σ D−T      σ0

 Rσ θ(σ−),                                                                                                                σ FT                                                                                               

Recalling that C (v (σ ), q (σ )  ;   σ) = lim
λ→∞

C (λv (σ ), q (σ )/λ  for each v
J
 and 

σ D , we see that for all θ
J
,

V (θ, q      ;     σ ) = lim
λ→∞

R(λθ, q   ;   σ)
λ

. (13)

The function V ( , q   ;   σ)  represents the net return schedule at the price q  in 

the event σ  if transaction costs were to be charged according to the LTC 

function C ( , q (σ )   ;   σ ).

Definition 4.2. For each q
J
 and σ D , V ( , q   ;   σ)  is the return function 

in the large (L-return function) for the asset structure J .

The following properties of the L-return function V ( , q   ;   σ)  are immediate 

from Lemma 4.1.

Lemma 4.3. For each q J
 and σ D , V ( , q   ;   σ)  is concave and 

V (λθ, q   ;   σ) = λV (θ, q      ;      σ)  for all θ
J
 and λ≥ 0 .



The Fundamental Theorem of Asset Pricing with Convex Transaction Costs 37

Ⅴ. Arbitrage with Transaction Costs

The following provides an extension of the notion of arbitrage with 

frictionless markets to the markets with transaction costs.

Definition 5.1. An asset price q
J
 admits no arbitrage opportunities if 

there is no θ G (q )  which satisfies R (θ, q )> 0 .

The notion of arbitrage in Definition 5.1 has several desired properties. First, 

it will allow us to characterize as easily the pricing rules in markets with 

non-proportional transaction costs as in markets with proportional transaction 

costs. Second, it turns out to exactly match viability of asset prices. This is 

one of the virtues that no arbitrage conditions must satisfy as a conceptual 

framework for equilibrium analysis. Third, the no arbitrage condition does not 

depend on the initial position. This property is particularly useful in 

characterizing the pricing rules when marginal transaction costs are an 

information not to be observed. If transaction costs is nonproportional, 

information on the cost function and the initial position is usually required 

to calculate marginal transaction costs. But such information is specific to 

individuals and does not belong to the public domain of information. Finally, 

it subsumes as a special case the existing notions of arbitrage with proportional 

transaction costs used in Garman and Ohlson (1981) and Zhang, Xu, and Deng 

(2002) among others.

The set of no arbitrage prices is given by

Λ = q J : R (v, q )>  for all v G (q ) ,

where >  denotes the negation of the vector inequality > .

We show that the no arbitrage condition can be characterized by the L-return 

function.

Proposition 5.1.  Under Assumptions 1-2, q Λ  if and only if there exists 

no nonzero v
J
 which satisfies V (v, q )> 0 .
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PROOF：Suppose that there exists a nonzero v
J
 such that V (v, q )> 0 . 

By the convexity of C , we have C (λv (σ ), q (σ )   ;   σ )≥ λC (v (σ ), q (σ )   ;   σ )  for all λ> 1  

and therefore,

lim
λ→∞

C (λv (σ), q (σ)   ;   σ)/λ = C (v (σ), q (σ)   ;   σ)≥C (v (σ ), q (σ)   ;   σ).    (14)

Thus, it follows that for σ= σ0 ,

         V (v, q   ;   σ )    =   −q (σ ) v (σ )−C (v (σ ), q (σ);   σ )

  ≤   − q (σ ) v (σ ) −C (v (σ ), q (σ );   σ )            (15)

This implies that for σ= σ0 , R(v, q      ;      σ )≥ V (v, q      ;      σ).

By applying the same arguments to the case with σ D       σ0 , we can show 

that R(v, q   ;   σ )≥V (v, q    ;  σ). Recalling that V (v, q )> 0 , we have R (v, q )> 0 . 

By Lemma 4.3, V (λv, q ) = λV (v, q )> 0  and therefore, R (λv, q ) > 0  for all 

λ> 0 . This implies that v G (q   ;   σ). Thus, v  provides an arbitrage op-

portunity, which contradicts the fact that q Λ .

Suppose that there exists a nonzero v G (q )  such that R (v, q )> 0 . Since 

v G (q   )  and R(0, q   ;   σ ) = 0  for each σ D, R(λv, q   ; σ )> 0  for all λ> 0 . 

This implies that for all σ D , 

V (v, q    ;  σ ) = lim
λ→∞

R (λv,q     ;     σ)/λ≥0 .                 (16)

Since V (v, q )≥ 0 , we have only to show that there exists σ D  such that 

V (v, q    ;  σ )> 0 . Recalling that R (v, q )> 0 , we can pick σ D  such that 

R(v, q    ;  σ )> 0 . If σ FT , we are done because

V (v, q    ;  σ ) =R (v, q      ;    σ ) =R
σ

v (σ − ).                (17)

Thus without loss of generality, we can assume that σ D      FT.

We consider the case with σ = σ0 .
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0  <   R(λv,q  ;  σ0 )

=  −λq (σ0 ) v (σ0 )−C (λv (σ0 ), q (σ0 )  ;  σ0 )

=  −λq (σ0 ) v (σ0 )−λC(v (σ0 ), q (σ0 )  ;  σ0 )  

          +[ λC (v (σ0 ), q (σ0 )  ;  σ0 ) −C (λv (σ0 ),  q (σ0 )  ;  σ0 )]

=  λ [−q (σ0 ) v (σ0 )−C (v (σ0 ), q (σ0 )  ;  σ0 ) ]

          +[ λC (v (σ0 ), q (σ0 )  ;  σ0 ) −C (λv (σ0 ),  q (σ0 )  ;  σ0 )]

Then it follows from Assumption 2 that for sufficiently large λ> 0 ,

λ
R (λv, q   ;    σ0 )

[− q (σ0 ) v (σ0 )− C (v (σ0 ), q (σ0 )  ;  σ0 )] =  

               1 −
λC (v (σ0 ), q (σ0 )  ;  σ0 ) − C (λv (σ0 ),  q (σ0 )  ;  σ0 )

R (λv, q   ;  σ )
> 0

This result implies that V (v, q    ;  σ0 ) =− q (σ0 ) v (σ0 )−C (v (σ0 ), q (σ0 )  ;  σ0 )> 0. 

By applying the same arguments to the case with σ≠ σ0  we can show that 

V (v, q    ;  σ )> 0 . Consequently, we have V (v, q )> 0                       □

By Proposition 5.1, the notion of arbitrage in Definition 5.1 is equivalent to 

the following.

Definition 5.1'.  An asset price q
J
 admits no arbitrage opportunities if 

there is no θ
J
 which satisfies V (v, q )> 0 .

The set of no arbitrage prices is expressed as

Λ = q J :  V (v, q )>0   fo r  all   v J
.

It is worth noting that the effect of transaction costs on V (v, q )  is determined 

by the LTC function which describes the behavior of average costs for large 

transactions. Thus, transaction costs affect asset pricing only via the LTC 

function. Any other parts of transaction costs beyond proportionality are 

irrelevant to the determination of pricing rules.
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Ⅵ. Arbitrage and the Existence of Pricing Rules

It is demonstrated here that the no arbitrage condition of Definition 5.1 allows 

us to extend the classical fundamental theorem of asset pricing to the case 

with non-proportional transaction costs.13) For each q Λ , we define the set

Z (q ) = y L : y≤ V (v, q )  for  some   v LJ  .

We introduce the following technical lemma.

Lemma 6.1.  For all q
J
, the set Z (q )  is closed.

PROOF：See the appendix.

The following result shows the equivalence between the no arbitrage condition 

and the existence of pricing rules.

Theorem 6.1.  Under Assumptions 1-2, q Λ  if and only if there exists 

π L++  such that π V (v, q )≤ 0  for all v
J
.

PROOF：Suppose that q Λ . Then by Proposition 5.1 there exists v
J
 

such thatV (v, q )> 0 . Since π L++, this implies that π V (v, q )> 0 , which 

leads to a contradiction.

Suppose that q Λ . By Lemmas 4.3 and 6.1, Z (q )  is a closed, convex cone. 

Let ∆  denote the set y L+  : Σ
 

 σ Dy (σ ) = 1  . Clearly, ∆  is compact and 

convex. Then q Λ  is equivalent to the condition that Z(q) ∩(L+ 0 )=  

or Z (q ) ∩∆ = . Since Z (q )  is a closed, convex cone, by the separating 

hyperplane theorem there exists a nonzero π L  such that

13) Magill and Quinzii (1996), and Dybvig and Ross (1989) are a great reference to 

the fundamental theorem of asset pricing in a frictionless market.
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supv Jπ V (v, q ) <  infy ∆π y.  (18)

In particular, we see that

0 =π V (0, q )≤ supv Jπ V (v, q )<  infy ∆π y  (19)

Thus we have   infy ∆π y> 0 , which implies that π L++. Let v
J
. Then 

for each λ> 0 , we have π V (λv, q ) = λπ V (v, q ) < infy ∆π y , or

π V (v, q )< infy ∆ (π y)/λ    (20)

By letting λ→∞ , we have π V (v, q )≤ 0 .                             □

The pricing rules which satisfy the no arbitrage condition are characterized 

in a concrete form as follows.

Theorem 6.2.  Under Assumptions 1-2, q Λ  if and only if there exists 

π L++  such that for each σ D  and j J ,

π (σ )[q j (σ ) + s j (q j (σ );σ )]≤ Σ
σ̂ Dσ σ

π (σ̂ )R  j

 σ
 ̂   
 

     
         ≤ π (σ )[q j (σ ) + b j (q j (σ );σ )]    (21)

PROOF：For each q
J
, j J  and σ D , the LTC function C  

j

 σ ( , q j(σ))  

in V ( , q;σ )  is proportional to the parameter which is equal to b
j(q j (σ);σ)  

if the changes of position are nonnegative and to s
j(q j (σ);σ )  if the changes 

of position are negative. Thus the proof of the theorem can be done by applying 

the same argument made in the proof of Theorem 3.1 and 3.2 of Zhang, Xu 

and Deng (2002) which assume that the original transaction cost function 

Cj
σ ( , q j (σ))  is proportional to the unit cost of transactions.            □

Theorems 6.1 and 6.2 shows that the pricing rules with convex transaction 

costs are as simple as in the case with proportional transaction costs.

The following examples show that compared to Definition 5.1, the notion 

of arbitrage used in Dermody and Prisman (1993) underestimates the 
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multiplicity of the pricing rules when transaction cost functions are convex 

and overestimates it when they are non-convex.

Example 3. We consider a two-asset one-state economy which is the same 

as in Example 2 except for the transaction cost functions. Both assets pay 

one dollar in the state. Then the return function is a 1 2  matrix R= [ ]1     1 . 

Let q
2
 denote the price of the second asset. We assume that the transaction 

cost function for trading the second asset is one of the four one of the four 

Ci( , q j(σ))'s depicted in <Figure 1>. For each i = 1 , ...,4 , let Λ i  denote the 

set of no arbitrage prices with Ci. Then it follows by Theorem 6.2 that for 

each i = 1 , ...,4 .

Λi = (q 1, q 2 ) R2
++ : (29/30 )q 2≤ q 1≤ (21/20 )q 2

.

It is worth noting that in the case with C1  and C2, ΛDP  defined in Example 

2 is equal to (q 1, q 2 ) R2
++ : q 1 = q 2

 and therefore, is much smaller than Λ1. 

Thus the no arbitrage condition of Dermody and Prisman (1993) extremely 

underestimates the multiplicity of the pricing rules which are shown to be 

viable in the next section.14)

Example 4.  We consider a two-asset one-state economy which is the same 

as in Example 2 except that the transaction cost function is replaced by the 

following function

Cnc (θ
2, q 2 ) =






(q2/2)|θ 2|, if      |θ 2|<  1

(q3/3)|θ 2|, if      1≤|θ 2|<  2 (22)

(q2/2)|θ 2|, if      |θ 2|<  1

This function is continuous and locally non-convex. We set

14) Such underestimation is a general phenomenon when transaction cost functions 

are convex and smooth at the origin.
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C  
j

nc (θ
2, q 2 ) = lim

λ→∞
Cnc (λθ

2, q 2 )/λ  (23)

Clearly, C nc(θ
2,q2 )=(q2/4 )|θ2|.

By Theorem 6.2, we have

Λ= (q 1, q 2 ) R2
++ : (3/4 )q 2≤ q 1≤ (5/4 )q 2

.

Let ΛDP  denote the set of no arbitrage prices in the sense of Dermody and 

Prisman (1993). It is easy to see that

ΛDP = (q 1, q 2 ) R2
++ : q 2/2 ≤ q 1≤ (3/2 )q 2

.

Clearly, Λ⊂ ΛDP. Thus, the no arbitrage condition of Dermody and Prisman 

(1993) overestimates the multiplicity of the pricing rules.15)

Ⅶ. Arbitrage and Viability

Most literature on asset valuation by arbitrage focuses on verifying the 

equivalence between the no arbitrage conditions and the existence of pricing 

functionals. If the notions of arbitrage do not pass viability test, however, they 

fail to exactly characterize asset pricing in equilibrium. We shows that the 

no arbitrage condition of Definition 5.1 is equivalent to viability. Thus the 

notion of arbitrage in Definition 5.1 provides a coherent conceptual framework 

for studying asset pricing, portfolio choice problem, or equilibrium in markets 

with general transaction cost structures.

To examine viability of arbitrage-free prices, we introduce an agent who 

has the endowment of consumptions e L+  and preferences represented by 

a utility function u : L+→R .16) For a price q J
, the agent chooses 

15) Such overestimation is a general phenomenon when transaction cost functions 

are not convex and smooth at the origin.

16) It is implicitly assumed that a single consumption good is available in each state 

of the economy.
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(x , θ ) L+
J
 which solves the optimization problem：

max(x,θ )u (x )

subject to the budget set

B (q ) (x, θ ) L+
J : x− e ≤ R (θ, q ) .

The demand correspondence ξ (q )  is the set of optimal choices in L+
J
 

which solve the above optimization problem.

Definition 7.1.  An asset price q
 J

is viable if ξ (q )≠ .

To investigate the relationship between the no arbitrage condition and viability, 

we make the following assumptions.

Assumption 3：For each q
 J

 and σ D , let v  be a point in G (q ;    σ)  with 

R(ν, q ;  σ) >  0 . Then for each θ LJ
, there exists λ> 0  such that

R (θ + λv, q;σ ) > R (θ, q;σ ) .

Assumption 4：u  is continuous, strictly increasing and quasiconcave.

Assumption 5：For a price q Λ , the following set is closed.

X (q ) = x L+;x − e≤ R(θ, q )          for     some    θ J
.

Let θ  be a point in L
J
. If v G (q;σ ) , by definition R (θ + λv, q;σ ) ≥ R (θ, q ;σ )  

for all λ > 0 . Assumption 3 requires that the inequality be strict for some λ > 0 . 

Assumption 4 is standard. Assumption 5 requires that the set of income 

transfers be closed. If V ( , q ) = R( , q )  for all q 
J
, then Lemma 6.1 

shows that Assumption 5 holds true. By the same argument used in proving 

Lemma 6.1, we can show that Assumption 5 is satisfied in the case where 

is R ( , q )  is piece-wise linear with finitely many kinks. It is also satisfied 
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with transaction cost functions with fixed cost component as in the fourth 

diagram of <Figure 4>.17)

The following result shows that the no arbitrage condition is fully compatible 

with viability of the pricing rules.

Theorem 7.1. Under Assumptions 1-5, q
J
 if and only if ξ (q )≠ .

PROOF：(← )  For a price q J
, suppose that ξ (q )≠ . Then there exists 

a point (x, θ ) ξ (q ) . Suppose that there exists a nonzero v G (q )  such that 

R (v, q )> 0 . Then R (θ + λv, q )≥ R (θ, q )  for all λ> 0 . Let σ  be the event in 

D  with R (v, q;σ ) > 0 . By Assumption 3, there exists λ> 0  such that 

R (θ + λv, q;σ ) ≥ R (θ, q ;σ ) . By the strict monotonicity of u , there exists 

x
�
 L+  such that u (x

�
) > u (x )  and (x, θ+ λv ) B (q ) , which contradicts the 

optimality of (x, θ )  in B (q ) . 

       (→ )  Let q  be a price in Λ . We set 

X (q ) = x L+;x − e≤ R(θ, q )          for     some    θ J
.

First, we show that X (q )  is compact. By Assumption 5, X (q )  is closed. Thus, 

we have to show that X (q )  is bounded. Suppose that it is unbounded. Then 

B (q ) is unbounded. Since B (q )  is closed and convex, by Theorem 8.4 of 

Rockafellar (1970), there must exist a direction of recession (y, η) L+ LJ
 

of B (q )  such that y  >  0,      η  ≠  0 , and for all (x, η )   B (q )  and 

λ > 0 , (y, θ )+ λ (y, η ) B (q ) . In particular, (e, 0 )+λ (y, η ) B (q )  for all 

λ> 0 . Then for all λ> 0 , λy≤ R (λη, q ) . Thus, we have y≤limλ→∞R(λη, q )/λ 

17) Assumption 5 holds true with transaction cost functions which is lower-semi-

continuous and piece-wise linear with finitely many jumps. This is the case 

with transaction cost functions with fixed cost component. Assumption 5, how-

ever, may be violated with indivisible assets. Transaction costs with indivisible 

assets are usually upper-semicontinuous as shown in the third diagram of 

<Figure 1>, implying that the net return functions are lower-semicontinuous. In 

this case, X(q)  is not closed in general for a price q J .
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= V (η, q ) . This implies that V (η, q )> 0 , which contradicts q Λ . Therefore, 

X (q )  is bounded.

Since X (q )  is compact, there exists x X (q )  which maximizes u  over X (q ) , 

and therefore, θ
J
 such that (x, θ ) ξ (q ) . Thus, q  is viable.        □

Theorem 7.1 shows the equivalence between the no arbitrage condition and 

viability of asset prices. Thus, Theorems 6.2 and 7.1 lead to an extension of 

the fundamental theorem of asset pricing stated in Harrison and Kreps (1979) 

and Dybvig and Ross (1989) to the case with transaction costs.

Theorem 7.2.  Under Assumptions 1-5, the following statements are equivalent.

(ⅰ) q Λ .

(ⅱ) There exists π L++  such that for each σ D  and j J , 

π (σ )[q j (σ ) +s j (q j (σ );σ )]≤ Σ
σ̂ Dσ  σ

π (σ̂ )R j
σ̂≤π (σ )[q j (σ ) +b j(q j(σ );σ )]       (24)

 (ⅲ) ξ (q )≠φ  

Ⅷ. Conclusion

The fundamental theorem of asset pricing is proved in the presence of 

transaction costs. It displays the triple equivalence among the no arbitrage 

condition, the existence of pricing rules, and the viability of asset prices. 

Transaction cost functions are convex and need not be proportional.

It is shown that no matter how complex the transaction cost structure looks 

like, the pricing rules which do not admit arbitrage opportunities are as simple 

as in the case with proportional transaction costs. In particular, the pricing 

rules do not depend on transaction choices and the local behavior of the 

transaction cost functions. The fundamental theorem of asset pricing makes 

sure that informational requirement to capture the form of pricing rules is 

minimal. Thus, the paper is differentiated from the literature which uses local 
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arbitrage as a conceptual framework for asset pricing in the presence of convex 

transaction costs. Another advantage of the paper comes from the equivalence 

between the no arbitrage condition and the viability of asset prices, which 

implies the exactness of the no arbitrage condition in explaining equilibrium 

prices. 

The consequence of the paper has important applications for asset valuation. 

For example, option pricing theories in discrete time with proportional 

transaction costs which are addressed in Leland (1985) and Boyle and Vorst 

(1992) among others can be straightforwardly extended to the case with convex 

transaction costs.
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Appendix

Proof of the Claim in Example 2：We show that

ΛV = (q 1, q 2 ) R2
++ : (29/30 )q 2≤ q 1≤ (21/20 )q 2

.

We consider an agent who has preferences represented by a utility function 

u (x 0, x 1 ) =
√

x 0 +
√

x 1  and the initial endowment of consumption goods 

(1, 1 ) .18) Then he faces the following optimization problem

max






√
x 0 +

√
x 1│x 0− 1≤− θ1q 1− θ2q 2− C (θ2, q 2 )

x 1− 1≤ θ1 + θ2 .

The above maximization problem is reduced to the following

max
√

1 − θ1q 1 − θ2q 2 − C (θ2, q 2 ) +
√

1 + θ1 + θ2 .

Let (θ̂ 
1,   θ̂ 2 )  denote the solution to the maximization problem.

  i) 21q
1 =20q 2

.

Clearly, we have

(θ̂ 1, θ̂ 2 )








(θ1 , θ2 ) : θ1 + θ2 =
21/20 − (q 1 )2

(q 1 )2 + q 1
, θ2≥ 1

q 2 .

  ii) 30q 1 = 29q 2

Similarly, we have

(θ̂ 1, θ̂ 2 )








(θ1 , θ2 ) : θ1 + θ2 =
31/30 − (q 1 )2

(q 1 )2 + q 1
, θ2≥ − 1

q 2 .

  iii) (29/30 )q 2< q 1< (21/20 )q 2
.

The maximization problem has a solution because the following set is compact.

(θ1, θ2 ) R2 : θ1q 1 + θ2q 2 + C (θ2, q 2 ) ≤ 1, θ1 + θ2≥− 1 .          □

18) The argument below do not depend on the form of utility functions and the size 

of the endowments as far as the utility functions are monotonic.
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Proof of Lemma 6.1：Let q be a price in. First we show that the following 

set is closed.

Y (q ) = y L : y = V (v, q ) , v J .

Let v  be a point in 
J
. For some j J   and σ D , it follows that if 

vj (σ ) − vj (σ− ) ≥ 0 , then 

C jσ (vj(σ) −vj(σ−), q j(σ )) = b j(q j(σ);σ)(vj(σ) −vj(σ−))

C jσ (vj(σ− )−vj(σ), q j(σ )) = s j(q j(σ);σ)(vj(σ) −vj(σ−)) ,

and if v
j (σ ) − vj (σ− ) < 0 , then

C jσ (vj(σ) −vj(σ−), q j(σ )) = s j(q j(σ);σ)(vj(σ) −vj(σ−))

C jσ (vj(σ− )−vj(σ), q j(σ )) = b j(q j(σ);σ)(vj(σ) −vj(σ−)) .

(In the above, we follow the notational convention that vj (σ−
0 ) = 0 for all 

j J .) Let y n
 be a sequence in Y (q )  which converges to a point y . Since 

0 Y (q ) , without loss of generality we may assume that y≠ 0 . Then y
n≠ 0  

for sufficiently large n . For each n  we choose v
n
 in 

J
 such that y

n = V (v n, q ) . 

Since D  is finite, there exists a subsequence v m   such that vjm (σ ) − vjm (σ− )   

has the same sign for a given pair (j,σ ) J D . Thus there exists a 

(#D ) [J (#D−T)]  matrix Ψ  such that V (vm , q ) = Ψ vm .

We define the sets

Θ+ (q ) = v J|vj (σ ) − vj (σ− ) ≥ 0      for     each    (j,σ )       with 

vjm (σ ) − vjm (σ− )≥ 0     fo r    all      m

Θ− (q ) = v J|vj (σ ) − vj (σ− ) ≤ 0       for      each  (j,σ )    with 

 vjm (σ ) − vjm (σ− )< 0       fo r    all        m  .

Since J D  consists of finitely many elements, Θ
+ (q )  and Θ

− (q )  are the 

intersection of finitely many closed half spaces which contain the origin on 

the boundary, and therefore, they are a polyhedral cone. By construction, v m   
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is in Θ
+ (q )∩Θ− (q ). We set

Y (q ) = y L : y = V (v, q )     fo r      some       v Θ+ (q )∩Θ− (q ) .

Since Ψ v = V (v, q )  for any v Θ+ (q )∩Θ− (q ) , by Theorem 19.3 of 

Rockafellar (1970) the set Y (q )  is a polyhedral cone. In particular, it is closed. 

Since y m   is inY (q ), y  is in Y (q ). Noting that Y (q )⊂ Y (q ), y  is in 

Y (q ) . Thus, Y (q )  is closed.

Now show that the set Z (q ) = y L : y≤ V (v, q ) , v J  . Let y n   be 

a sequence in Z (q )  which converges to a point y . For each n  we choose v
n
 

in 
J
 such that y

n≤ V (vn, q ) .

For each  n , we set z
n = V (vn , q ) . We claim that z n   is bounded. Suppose 

that z n →∞ . By positive homogeneity of V ( , q ) , we have

z n/ z n = V (vn, q )/ z n  = V (vn/ z n , q ).

This implies that z n/ zn Y (q )  for each n . Clearly, z n/ z n
 is 

bounded. Thus, it has a subsequence convergent to a point ż . Since Y (q )  is 

closed, ż  is in Y (q ) . Thus there exists v
J
 such that V (v, q ) = ż. On the 

other hand, we have yn/ zn ≤ z n/ zn
. Since y  n → y  and z n →∞ , 

yn/ zn →0 . By passing to the limit we have ż≥ 0 . Recalling that ż≠ 0 , 

we must have V (v, q )> 0 , which contradicts the fact that q Λ . Since z n
 

is bounded, it has a subsequence convergent to a point z  in Y (q ) . Recalling 

that y
n≤ zn

 for each n , we have y≤ z . Thus y Z (q ) .                □
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[Abstract]

볼록거래비용하에서 자산가격결정의 기본정리

원  동  철

본 논문의 목적은 볼록거래비용하에서 자산가격결정의 기본정리를 정립

하는 것이다. 아비트라지 가격결정함수는 거래비용의 한계적 영향을 받지 

않으며 대형 거래의 평균비용에 의해서 결정된다. 이러한 사실은 가격결정

원리가 거래비용의 성질에 관한 최소한의 정보에 의해 파악될 수 있음을 

의미한다. 또한 볼록거래비용함수가 아무리 복잡할지라도 가격결정원리는 

비례적 거래비용의 경우처럼 단순하고 구체적 형태로 도출된다. 이러한 결

과는 거래비용의 한계적 영향, 즉 거래비용함수의 국지적 형태에 좌우되는 

균형가격결정이론과 큰 대조를 이룬다. 더구나 아비트라지 부재조건은 자

산가격의 존속성과 일치한다.

핵심용어：아비트라지 가격결정, 볼록거래비용, 존속성
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