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along with strictly self-interested preferences. The ability to detect others' preference types is 
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and defection are observed. These results complement the folk theorem and the standard 
evolutionary models by providing an alternative evolutionary logic of cooperation. 
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1 Introduction

Why do individuals, groups, and nations cooperate with others when there are incentives
to defect, free-ride, and exploit? The folk theorem (Fudenberg and Maskin 1986, 1991;
Rubinstein 1979) and the standard evolutionary models (Axelrod 1981, 1984; Axelrod
and Hamilton 1981) address this question from different directions, but provide similar
explanations; when interactions are repeated, cooperation is consistent with self-interest.
Critical to both explanations is the assumption that the prisoner’s dilemma is indefinitely
repeated with either a high continuation probability or low discount rate or both. In this
paper, I provide an evolutionary logic of cooperation without the assumption of indefinite
repetition.
The one-shot prisoner’s dilemma game is used to represent the class of dilemma sit-

uations in which rational, self-interested decision makers cannot achieve mutual cooper-
ation. These situations include pure one-shot interactions, finitely repeated interactions
with complete information, and indefinitely repeated interactions with a low continua-
tion probability or a high discount rate.1 Interactions between, for example, buyers and
sellers of items on internet auction sites, customers and waiters in restaurants in tourist
areas, and strayed travelers in a bad weather and local residents, are best characterized
as one-shot, or if ever repeated, with very low continuation probabilities. Our ancestors
lived in small groups in which interaction is repeated. But they often found themselves
in hard times in which surviving the day easily overshadowed any considerations for the
possible future gains. In those situations, what the ancestors faced was a repeated game,
but with very high discount rates. Whether individuals and groups facing these one-shot
like situations achieve mutual cooperation matters a great deal for themselves as well as
for their communities.
In a one-shot prisoner’s dilemma played by rational actors, cooperation is possible,

if not guaranteed, when some players have preferences that are not entirely dictated by
self-interest. The question is two fold. First, how do the conditionally cooperative pref-
erences survive if there is any evolutionary mechanism by which less successful traits are
selected against? Second, why is it the case that in most populations, neither conditional
cooperators nor the pure egoists are dominant, but they coexist in an evolutionary equi-
librium? The following summarizes the basic set up of the model and the logic of the
evolution of cooperation via the evolution of preference in one-shot prisoner’s dilemmas.
A population consists of three preference types: egoists, reciprocators, and altruists.

Each type is defined by its unique ordering of the four outcomes of a prisoner’s dilemma

1Kreps et al.’s (1982) seminal model is not one of the cases mentioned here, in that their model posits
types that are not strictly motivated by self-interest. Their model, thus, presents the same question as
the one raised in this paper: how can the types other than those motivated by self-interest evolve? Note
in their model the strictly self-interested ones obtain at least as large and often larger payoff than either
the “irrational” type (in Model 1) or the type that “enjoys” mutual cooperation (in Model 2).
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in objective payoffs. (A precise definition is provided in a later section.) The players are
randomly paired and play a one-shot sequential prisoner’s dilemma game in each evo-
lutionary stage. The interactions occur with limited information; sometimes the game
is played with players knowing the preferences of paired others and other times without
such knowledge. The preferences that are more successful in terms of obtaining objective
payoffs proliferate while the proportions of less successful preferences shrink over time.
These assumptions lead us to stable evolutionary equilibria, called attractors of the dy-
namic evolutionary system, in which egoists and reciprocators coexist without altruists,
a result consistent with our daily experience and the findings from controlled laboratory
experiments.2

2 What if the prisoner’s dilemma is not indefinitely repeated?

Axelrod’s (1981, 1984) studies suggest that strategies that are nice initially and retaliatory
when encountered with nastiness are most likely to evolve in the indefinitely repeated
prisoner’s dilemma. The most famous of such strategies is Tit for Tat. Later studies by
Boyd and Lorberbaum (1987), Foster and Young (1991), Lorberbaum (1994), and Bendor
and Swistak (1997) show that Tit for Tat, or any other pure or mixed strategy, is not
stable in the long run. That is, there are always possible combinations of strategies that
can invade a population composed of a single strategy. However, the researchers also note
that, in terms of relative stability, Tit for Tat style, conditionally cooperative strategies
have the best chance of evolving.(Bendor and Swistak, 1995; 1997)
While infinite repetition characterizes an important subset of the real world collective

action problems, there are also many collective action situations that are either one-shot
or repeated for a finite number of times. Interactions other than those repeat indefi-
nitely are more common among humans than among animals, and in advanced market
economies than in small-scale subsistence communities. One-shot games are an approx-
imation not only of single-play interactions in the real world, but also of the finitely
repeated settings and the indefinitely repeated interactions with low continuation prob-
ability or high discount rates. In all of these settings, cooperation cannot be achieved
or sustained among egoists. But contrary to the logical prediction based on the assump-

2If both players are strictly self-interested and it is common knowledge, the predicted outcome of
the sequential prisoner’s dilemma is mutual defection. A simple backward induction confirms this. The
second mover’s best response is defection whether the first mover defects or cooperates. The first mover
also defects because the payoff from (D,D) outcome is larger than that from (C,D) outcome for the first
mover. Thus the dilemma is preserved in the sequential version. The results of this paper does not
depend on the assumption that the game is played sequentially. I use a sequentially played prisoner’s
dilemma to highlight the problem of trust and trustworthiness, but a set of similar results can be obtained
if one assumed a one-shot simultaneous game. The basic logic of the extension to simultaneous game
is laid out in Appendix A2. A full analysis of the evolution with simultaneous play can be found in a
working paper of the author (Ahn, 2002).
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tion of rational and self-interested actors, many, if not all, individuals do cooperate in
such one-shot and one-shot like dilemma situations. Experiments on one-shot prisoner’s
dilemma games consistently report that between a third to two thirds of subjects partic-
ipating in such experiments do cooperate in various treatment conditions. For example,
one-shot prisoner’s dilemma experiments conducted using the same protocol in different
countries show that the rates of cooperation among the second movers who know that
their counterparts have already cooperated range from 75% in Japan, 73% in Korea, and
61% in the U.S. But when the second movers know that first mover has defected, the
rate goes down to 0% in Korea and the U.S. and 12% in Japan. The cooperation rates in
simultaneous prisoner’s dilemma and among the first movers of sequential games range
between 36% and 83% in these experiments. (See Ahn, Ostrom, and Walker 2004, Cho
and Choi 2000, Hayashi et al. 1999 for details of the experimental results and analyses.)
The experimental results as well as our daily experience tell us that many individuals

cooperate and, thus, contribute to sustaining a beneficial social order. But also abundant
are the incidents in which good intentions and cooperative initiations are betrayed. What
characterizes social interactions in the modern societies, therefore, is not universal coop-
eration, but a mixture of cooperation and defection. The relative rates of cooperation
and defection characterize an important aspect of culture in various societies. There-
fore, what needs to be explained in evolutionary models of the prisoner’s dilemma is the
heterogeneity of behavior and the heterogeneity of intrinsic motivations.
How can those preferences evolve that cooperate often times in spite of material self-

interest? Recently, many researchers utilize the indirect evolutionary approach, foretold
by Frank (1987) and fully developed by Werner Güth and his colleagues (Güth and
Kliemt, 1998; Güth, Kliemt, and Peleg, 2000; Güth and Yaari, 1992) to explain the
existence and survivability of the preferences that are not strictly egoistic. These studies
include Bohnet, Frey and Huck (2000), Friedman and Singh (2002), Samuelson (2001),
and Sandholm (2001). The indirect evolutionary approach separates objective payoffs
and utilities. Objective payoffs drive evolution and correspond to the concept of fitness
in the standard evolutionary game models. Utilities represent preferences and, thus, guide
choice of strategies in any given evolutionary stage.
In the evolutionary ecology studied in this paper, there are three different types of

players — altruists, reciprocators, and egoists. A player’s type is defined by his preference
ordering over the four outcomes of a one-shot prisoner’s dilemma. At any given evolu-
tionary stage, each player plays a sequential version of the one-shot prisoner’s dilemma
with a randomly matched another player. Since types are defined not by strategies but
by the underlying preferences, players do not carry fixed strategies. Instead, they play
the stage game rationally, i.e., to maximize expected utility.
In this evolutionary environment, the level of information plays a key role in determin-

ing which type(s) of preferences and behavior will evolve in the population. Information
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about others’ preference types in a single-shot interaction can be obtained from various
biological and social signals and symbols (Ahn, Janssen, and Ostrom 2004). The recipro-
cators, who have preferences for conditional cooperation, are most dependent on the level
and accuracy of the information about others’ types. When a reciprocator knows the type
of a paired other player, she can protect herself from an egoistic counterpart while har-
vesting the gains from mutual cooperation when encountered with another reciprocator
or altruist. If the individual specific information is not available, a reciprocator plays the
prisoner’s dilemma based on his prior about the overall distribution of different prefer-
ences types. This lack of information often results in outcomes in which the reciprocator
is getting exploited by an egoist or fails to cooperate with another reciprocator for fear of
getting exploited. The altruists, whose preference implies unconditional cooperation, are
not able to protect themselves when paired with egoists even when they know that they
are interacting with egoists. In most general specification of an evolutionary dynamics
that take into account mutations, the altruists will die out eventually, analogous to the
ALL C strategy in the indefinitely repeated prisoner’s dilemma setting. But the altru-
ists’ existence has significant ramifications; it affects the relative success of egoists versus
reciprocators. The larger the proportion of altruists in a population, the better it is for
the egoists, regardless of the level of information. Thus, egoists can invade a population
with large proportions of altruists initially. What happens eventually depends on how
often the players interact knowing others’ preferences.
There are several ways in which one is able to guess with reasonable accuracy whether

a random encounter is trustworthy. Biological signals such as facial expressions, body
movements, and voice tones are spontaneous signals that most people are not capable
of consciously controlling (Frank 1988; Schmidt and Cohn 2001). Certifications (Rao
1994), eBay reputation scores (Resnick and Zeckhauser 2001; Resnick et al. 2003), and
sometimes mere appearances (Bacharach and Gambetta 2001) are examples of effective
sociocultural symbols that are hard to fake and, thus, help people to judge unfamiliar
others’ trustworthiness. Experimental evidence abounds that when people can see and/or
talk to each other the probability of accurately predicting others’ future behavior signif-
icantly increases (Frank, Gilovich, and Regan 1993; Kikuchi, Watanabe, and Yamagishi
1997; Scharlemann et al. 2001). But these signals and symbols are neither always avail-
able nor always reliable. Thus, people often have to rely on their general belief about the
trustworthiness of others when deciding whether or not to trust others.
Several other studies also explain cooperation in single-shot prisoner’s dilemma games.

Orbell and Dawes (1993) find that when subjects in one-shot prisoner’s dilemmas have an
option of not playing the game, the intended cooperators are more likely to choose to play
the game and obtain the gains from mutual cooperation (see also Morikawa, Orbell, and
Runde 1995; Orbell and Dawes 1991; Orbell, Schwartz-Shea, and Simmons 1984). Orbell
et al. (2004), using computer simulations, show that cooperation can evolve along with

5

Journal of Economic Theory and Econometrics



“Machiavellian intelligence,” the capacity for manipulation and mindreading. While these
studies rely on the exit option and use laboratory experiments or computer simulations,
I use the standard one-shot game, treat the question as one of preference evolution, and
provide analytical results.
The current study is most closely related to the study by Güth and Yaari (1992) who

show that the trustworthy preference types do better than strictly self-interested ones in
a trust game, and the study by Güth, Kliemt, and Peleg (2000) who treat investment in
information as an individual-level trait. This paper complements Güth and his colleagues’
studies by using the standard prisoner’s dilemma game, positing three preference types,
and studying a mixed information condition.
The remaining sections of this paper are organized as follows. In the next section, the

stage game and the three preference types are defined. In the fourth section the evolu-
tionary environment is introduced by defining the population state space, the replicator
functions, and the stable and unstable steady states. In the fifth section, I analyze the
equilibria of the stage games under complete and incomplete information conditions and
calculate the average objective payoffs to the three preference types. In the sixth section,
the evolutionary trajectories under complete and incomplete information conditions are
analyzed. In the seventh section I study the evolution of preferences under mixed infor-
mation condition and formalize the strongly stable population states, called attractors,
with heterogenous preferences and behaviors. In the final section, I conclude the study
and provide some of the implications for future studies of preference evolution.

3 Egoists, reciprocators, and altruists

The standard representation of prisoner’s dilemma posits T (temptation), R (reward), P
(punishment), and S (sucker’s payoff) as the four payoffs and assumes T > R > P > S.
In search of simpler parameters that characterize the cardinal incentive structure of a
prisoner’s dilemma, Rapoport and Chammah (1965) propose normalized greed (Gn =
T−R
T−S ) and normalized fear (Fn =

P−S
T−S ). Ahn et al. (2001) find that these normalized

measures are strongly related to the rates of cooperation in one-shot prisoner’s dilemmas.
The payoffmatrix we will be utilizing throughout this paper is a normalized version of the
prisoner’s dilemma with symmetric fear and greed, shown in the upper panel of Figure
1. The current representation of the prisoner’s dilemma sets both Fn and Gn to be x.3

3The game also has an interpretation as a simple public-good provision game involving two individuals
and two strategies of contributing and free-riding. In the linear public goods provision interpretation of
the game, each of the two individuals, i and j, possesses an initial endowment of x (0 < x < 0.5, which
ensures that the game is a prisoner’s dilemma). Each must choose whether to contribute for the provision
of a public good, or to free-ride. Contribution costs 1 to the contributor, but returns 1 − x to each of
the two individuals. In other words, 1−x is the marginal per capital return from a unit contribution. If
both individuals choose to free-ride, the public good is not provided at all, and both are worse off than
they can be if they both contributed.
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Objective payoffs
Individual j

Contribute Free-Ride
Individual i Contribute 1− x, 1− x 0, 1

Free-Ride 1, 0 x, x
∗0 < x < 0.5

Utility Payoffs for Individual i
Individual j

Contribute Free-Ride
Individual i Contribute 1− x 0 + βi

Free-Ride 1− αi x
∗0 < x < 0.5, 0 ≤ βi ≤ αi < 1− x

Figure 1: Objective and utility payoffs

To incorporate intrinsic motivations other than pure self-interest, this paper uses a
utility payoff matrix shown in the lower panel of Figure 1. The utility matrix adds αi

and βi to the objective payoffs. The parameter αi can be interpreted as the magnitude
of individual i’s guilt when he defects while j cooperates. The parameter βi can be
interpreted as the strength of individual i’s altruism in the sense that with a large enough
βi, individual i cooperates even when individual j defects. The restriction βi ≤ αi reflects
the experimental regularity that an individual is more likely to cooperate when the other
also cooperate than when the other defects (Ahn, Ostrom, and Walker, 2003). The
restriction αi < 1−x implies that the outcome (D,C) is always preferred to the outcome
(D,D), in which C denotes contribution and D denotes free-riding. Given the set of
restrictions on αi and βi, we have three substantive preference-ordering types that are
jointly determined by αi, βi, and x. For a given vector of type parameters (αi, βi) of
individual i, his preference ordering depends also on the objectively given magnitude x
of the gain and loss that results from different combinations of choices.
Individual i is called an egoist if αi < x (which also implies βi < x) since his sense of

guilt is not strong enough to overcome the temptation to defect when the other person co-
operates. An egoist has preference ordering of u(D,C) > u(C,C) > u(D,D) > u(C,D).

Therefore, an egoist prefers the outcomes in which he free-rides no matter what the other
does. An individual is called a reciprocator if βi < x < αi. A reciprocator has a prefer-
ence ordering of u(C,C) > u(D,C) > u(D,D) > u(C,D) and, thus, prefers to cooperate
if and only if the other player cooperates. Finally, individual i with x < βi is called
an altruist because the person has an altruistic propensity strong enough to make him
cooperate even when the other person defects. An altruist has a preference ordering of
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u(C,C) > u(D,C) > u(C,D) > u(D,D), which implies that cooperation is the dominant
strategy.
The preference type of an individual is quite different from the way a type is defined

in the standard evolutionary game theory. One’s preference-ordering does not necessarily
dictate her strategy. The actual strategy choice of a given preference-ordering type is
based on the principle of utility-maximization. Therefore, a reciprocator playing as a
second mover in the sequential version of the prisoner’s dilemma cooperate when the first
mover cooperates, but defects if the first-mover defects. An egoist, playing the sequential
prisoner’s dilemma as a first mover may cooperate if he assesses the probability of the
second mover being a reciprocator at a high enough level.4 More precise analyses of the
equilibrium behavior are presented in the fourth section.

4 The evolutionary setting

For a given value of the temptation parameter x (0 < x < 0.5), a population can be
represented by the relative proportions of altruists, reciprocators, and egoists. Let γ
and δ be the proportions of altruists and reciprocators in a population whose size is
normalized to 1; the proportion of egoists is 1−γ− δ. A vector (γ, δ), then, characterizes
the relative proportion of the three types. Figure 2 shows the triangular population state
space: ∆ = {(γ, δ) : (0, 0), (1, 0), (0, 1)}. The horizontal axis of the triangle represents the
proportion of altruists; the vertical axis represents the proportion of reciprocators. Each
point in the triangle represents a composition of the three preference types. For example,
the origin (0, 0) is a population state consisting entirely of egoists; the upper limit of the
vertical axis (0, 1) is a population consisting entirely of reciprocators. The right-limit of
the horizontal axis (1, 0) is a population state consisting only of altruists. Other points
of the state space represent populations with two or more preference types.
In each evolutionary stage, every player is randomly matched with another player and

plays a sequential version of the prisoner’s dilemma game shown in Figure 1. A player has

4One might think that, because preferences ultimately translate into strategies in a given game con-
text, modeling different types in terms of preferences is just another way of modeling them in terms of
strategies. But this is not exactly true. A type defined in terms of preferences has much more flexibility,
unless the type’s preference implies a dominant strategy under all circumstances such as the altruistic
preference in this paper. First, they can respond to the overall distribution of types in the population
when information is incomplete. This implies that the stage game can be analyzed using the Bayesian
Nash equilibrium concept and the equilibria will differ as the relative proportions of different types
changes as a result of evolution. Even under complete information a type’s strategy depends upon the
type of the other player. A later section analyzing the stage game equilibria shows the details of this
flexibility of strategies for egoists and reciprocators. Though some level of complexity is introduced by
defining types in terms of preferences, it also is more realistic when applied to human interactions. After
all, most humans in social dilemmas wish to obtain information about the types of specific individuals
or the population in general and make conditional choices.
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Figure 2: State space of a population defined by proportions of altruists, reciprocators,
and egoists

an equal probability of playing the game as a first mover and as a second mover. With
probability q the game is played with complete information, meaning that each player
knows the preference type of the player with whom she is matched. With probability
1 − q, the one-shot game is played with incomplete information. When information is
incomplete, a player’s preference type is his private information, but players know the
overall distribution of different preference types in the population.
Let πe,t, πa,t, and πr,t denote the average objective payoffs (fitness) to egoists, altruists,

and reciprocators, respectively, at time t. The proportions of altruists and reciprocators at
time t+1 are defined by the following standard, time-independent, replication functions:
γt+1 = γt×πa,t/π̄t and δt+1 = δt×πr,t/π̄t, where π̄t denotes the average payoff of players
in the entire population at time t. The replicator functions imply that the proportion of
a type at time t+1 depends on its relative proportion at time t and the average objective
payoff of the type at time t relative to the average payoff to all players in the population.
The replication rule can be characterized as “linear proportional,” and is used in Bendor
and Swistak (1997, see equation (5) on page 295) who also point out that this is the
replication rule used in Axelrod’s tournaments.
The steady states of this evolutionary system can be studied by analyzing a vector

field θ̇ = (γ̇, δ̇)0, where γ̇ = γt+1 − γt, and δ̇ = δt+1 − δt. A population state is steady if
γ̇ = δ̇ = 0. In other words, when a population is in a steady state, the relative proportions
of the three types do not change over time: γt+1 = γt and δt+1 = δt. However, steady
states differ from one another in terms of the consequences that a small disturbance causes
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to the steady states. It is assumed that small mutation — change of type composition
which is not caused by the deterministic replication rules — occurs whenever a population
is in a steady state. A steady state of a population is stable if after a small disturbance
caused by mutation, the population returns to the steady state before the mutation or
its close vicinity. Otherwise, the steady state is unstable. A stable steady state is called
an attractor if after repeated stochastic mutations at steady states, a large set of initial
conditions reach the stable steady state.
The problem posed in this paper is finding stable distribution of preference types

as functions of x, a cardinal measure of the incentive to defect, and q, the degree of
information. We will see that for a wide range of reasonable (x, q) combinations, there
exist stable populations composed of egoists and reciprocators, but not altruists. In
addition, the observed behaviors in such stable populations are also heterogenous, i.e.,
both cooperation and defection occur with substantial frequencies.

5 Stage game equilibria of one-shot, sequential prisoner’s dilemma games
and payoffs to different preference types

The first step towards finding the evolutionary consequences of the model is to analyze
the equilibrium behavior of the three preference types in the stage game and each type’s
relative success in obtaining objective payoffs. Both, of course, are functions of the relative
proportions of the three types at a given evolutionary stage, the temptation parameter x,
and the information level q. In this section, we analyze the equilibria of the game under
complete information and incomplete information and calculate the payoffs to the three
preference types. Under the complete information condition, a player knows the exact
type of the partner and knows that the other knows his own type, etc. That is, the types
of players are common knowledge. Under the incomplete information condition, a player
does not know the exact type of the other player. However, players are assumed to know
the distribution of types within a population. In the following analyses, we utilize two
simplifying assumptions that αi = 0 for all egoists, and αi = α (x ≤ α ≤ 1 − x) and
βi = 0 for all reciprocators.

5.1 Complete information condition

Because the second mover observes the first mover’s choice before making a decision, the
solution concept used to analyze the stage game played with complete information is a
subgame perfect equilibrium. Table 1 shows the subgame perfect equilibrium outcomes
for all of the nine possible combinations of types. The first panel of Table 3 reports
the average objective payoffs to the three preference types under complete information
condition as functions of the distribution of three preference types. For example, the
egoists’ average payoff under complete information condition can be calculated as follows.
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Second mover
Egoists Reciprocators Altruists

Egoists (D,D) (C,C) (D,C)
First mover Reciprocators (D,D) (C,C) (C,C)

Altruists (C,D) (C,C) (C,C)

Table 1: Equilibrium outcomes of complete information, sequential games

With probability γ, an egoist is matched with an altruist. Then, regardless whether
he plays the game as a first mover or as a second mover, the egoist defects while the
altruist cooperates. Therefore, the objective payoff to the egoist in this case is 1. With a
probability δ, the egoist will be matched with a reciprocator. There is a half probability
that the egoist will play the game as a first mover. Then the egoist cooperates and the
reciprocator also cooperates. The objective payoff in this case is 1 − x. There is also a
half probability that he will play the game in the second mover’s position. By backward
induction, the reciprocator first mover defects and the egoist also defects. His payoff in
this case, therefore, is x. Finally, there is a 1− γ − δ probability that the egoist will be
matched with another egoist. In this case, regardless whether he plays the game as a first
mover or as a second mover the outcome is mutual defection and the payoff is x. Therefore,
the average objective payoff to an egoist, denoted πe|c, under the complete information
condition is γ×1+δ×(1

2
(1−x)+ 1

2
x)+(1−γ−δ)×x = (1−γ−δ)x+ 1

2
δ+γ. The average

payoffs to the altruists and reciprocators under complete information condition, denoted
πa|c and πr|c respectively, can be calculated in the same manner: πa|c = (1 − x)(δ + γ),

and πr|c = 1
2
(1− γ − δ) + (1− x)(δ + γ). Notice that when the proportion of altruists is

larger than 1− 2x, egoists do better than reciprocators (πe|c > πr|c).

5.2 Incomplete Information Condition

When information is incomplete the stage game is played as a Bayesian game and the
proper solution concept for the stage game is a Bayesian Nash equilibrium. Under incom-
plete information condition, a player does not know the exact type of the other player
with whom he is randomly matched. However, the distribution of types within a popu-
lation at a given evolutionary stage is common knowledge. The incomplete information
condition features multiple equilibrium zones depending on the relative proportions of
the three types. The optimal strategies for egoists and reciprocators change as functions
of the distribution of types in the population.
There are three equilibrium zones under the incomplete information condition. The

equilibrium strategy of a second mover is a direct function of the player’s type in all
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Equilibrium Zone Equilibrium Outcome∗

Zone I x
1−x ≤ δ Ego1 : C, Ego2 : D always

Rec1 : C, Rec2 : copy first mover’s action

Zone II x−αγ
1−x ≤ δ < x

1−x Ego1 : D, Ego2 : D
Rec1 : C, Rec2 : copy first mover’s action

Zone III δ < x−αγ
1−x Ego1 : D, Ego2 : D

Rec1 : D, Rec2 : copy first mover’s action
∗Altruists always cooperate
∗∗Ego: Egoist; Rec: Reciprocator; Alt: Altruist; Ego1: Egoist first mover;
Ego2 : Egoists second mover; C : Cooperation; D : Defection

Table 2: Stage game equilibria of incomplete information game

Information Condition Average Objective Payoff

Complete Information
Altruists, πa|c (1− x)(δ + γ)

Reciprocators, πr|c 1
2
(1− γ − δ) + (1− x)(δ + γ)

Egoists, πe|c (1− γ − δ)x+ 1
2
δ + γ

Incomplete Information Zone I
Altruists, πa|1 1

2
(δ + γ + 1)(1− x)

Reciprocators, πr|1 1
2
(δ + γ + 1)(1− x)

Egoists, πe|1 1
2
((δ + γ)(1− x) + 1)

Incomplete Information Zone II
Altruists. πa|2 δ − δx+ γ − xγ

Reciprocators, πr|2 1
2
(2δ − 3δx+ 2γ − 3xγ + x)

Egoists, πe|2 1
2
(2x− δx− 2xγ + 2γ + δ)

Incomplete Information Zone III
Altruists, πa|3 1

2
(δ − δx+ 2γ − 2xγ)

Reciprocators, πr|3 1
2
(2x− 3xγ + 2γ)

Egoists, πe|3 x− xγ + γ

Table 3: Average payoffs to three preference types
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three zones: an egoist always defects, a reciprocator copies the first mover’s choice, and
an altruist always cooperates. The difference across the three equilibrium zones is the
behavior of first movers. In the zone I, where the proportion of reciprocators is quite large
( x
1−x ≤ δ), all three types of first movers cooperate. In the zone II, the proportion of
reciprocators is not large enough to make it rational for an egoist first mover to cooperate,
but it is still large enough to make a reciprocator first mover to cooperate. In the zone
III, only altruistic first movers cooperate. Table 2 summarizes the equilibrium behavior
of different preference types in the three equilibrium zones. Table 3 reports the average
objective payoffs to the three preference types.
In the equilibrium zone I, it suffices to show that cooperation is rational for an egoist

first mover. If she cooperates, the expected utility is (1−γ−δ)×0+δ(1−x)+γ(1−x) =
(δ+γ)(1−x). If she defects, the expected utility is (1−γ−δ)×x+δ×x+γ×1 = (1−γ)x+γ.
Therefore, an egoist prefers to cooperate if and only if (δ + γ)(1− x) ≥ (1− γ)x+ γ, or
x
1−x ≤ δ. Note that this equilibrium is only a function of the proportion of reciprocators.
In the equilibrium zone II, egoists defect and the reciprocators and altruists cooperate

as first movers. Since δ < x
1−x , there is no equilibrium in which first mover egoists

cooperate. Therefore, it suffices to show that cooperation in the first mover’s position is
rational for a reciprocator. If a reciprocator first mover cooperates, his expected utility
is (1 − γ − δ) × 0 + δ(1 − x) + γ(1 − x) = (γ + δ) (1− x) . If a reciprocator first mover
defects, the expected utility is (1−γ−δ)×x+δ×x+γ× (1−α) = x+γ−xγ−αγ. The
expected utility of cooperation is greater than or equal to that of defection if x−αγ

1−x ≤ δ.

Finally, if δ < x−αγ
1−x , only the altruists cooperate as first movers. The behavior of each

type in the second mover’s position is the same as that in zones I and II. Figure 3 shows
two examples of the division of the population state space into the three equilibrium
zones as a function of x and α using two numerical examples: (x = 1/3, α = 1/2) and
(x = 1/4, α = 1/2).

The average objective payoff to each of the three types in each of the three equi-
librium zones can be calculated based on the objective payoff matrix of Figure 1, the
equilibrium outcome statements of Table 1, and the relative proportion of types. For
example, the average objective payoff to altruists in the equilibrium zone I of the incom-
plete information condition, denoted πa|1, can be calculated as follows. In the zone
I, all three types of players cooperate in the first mover’s position and only egoists
defect in the second mover’s position. An altruist, if he plays the game as a first
mover, meets another altruist second mover with probability γ and obtains a payoff
of 1 − x, meets a reciprocator second mover with a probability δ and obtains an ob-
jective payoff of 1 − x, and meets an egoist second mover and obtains an objective
payoff of 0. If the altruist find himself in the second movers position his payoff is sim-
ply 1 − x since all three types of first movers cooperate and the altruist second mover
also cooperates. Adding up the objective payoffs with relevant probabilities, we have
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Figure 3: Division of population state space into three equilibrium zones of incomplete
information game

πa|1 = 1
2
(γ × (1− x) + δ × (1− x) + (1− γ − δ)× 0) + 1

2
(1− x) = 1

2
(δ + γ + 1)(1− x).

Other cases can be calculated in similar manners and the results are shown in Table 3.

5.3 Objective Payoffs Under Mixed Information Condition

Suppose that in each evolutionary stage, randomly matched players play the stage game
under complete information with probability q, and under incomplete information with
the complementary probability 1 − q. Call it a “mixed-information” condition. Under
the mixed-information condition, the expected objective payoff to a type is a linear sum
of the payoffs under complete and incomplete information conditions for the type. Thus,
when the population composition belongs to the equilibrium zone k (k = 1, 2, 3) of the
incomplete information condition, the average payoff to type θ, denoted πθ|k, is qπθ|c +
(1− q)πθ|k.

6 Evolution of preferences under complete and incomplete information

Using the stage game payoff results obtained in the previous section, it is now possible
to study the evolutionary trajectories under varying information conditions. This sec-
tion studies first how preferences evolve when information is complete, and then when
information is incomplete. The study of these two extreme cases provide benchmarks for
the evolution under mixed information conditions. Table 4 reports the vector derivatives
(γ̇, δ̇) and steady states in each equilibrium zone. The appendix at the end of the paper
derives the vector derivatives. The vector derivatives, when evaluated at any population
state (γ, δ), show the direction and the speed of the evolution at that population state.
If the derivative for a type is positive the type’s proportion increases; if the derivative for
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Condition [γ̇, δ̇] Steady States

Complete Info [γ̇ = −xγ(1−γ−δ)
x+δ+γ(1−2x) , (γ = δ = 0)∗; (γ + δ = 1, δ < 2x)∗

δ̇ = (1−2x)δ(1−γ−δ)
2(x+δ+γ(1−2x)) ] (γ + δ = 1, 2x < δ < 1)∗∗; (δ = 1)∗∗∗

Incomplete Info I [γ̇ = −xγ(1−γ−δ)
(1+δ+γ)−2x(δ+γ) , (γ + δ = 1)∗

δ̇ = −xδ(1−γ−δ)
(1+δ+γ)−2x(δ+γ) ]

Incomplete Info II [γ̇ = −γ(1−γ−δ)(2x+2xδ−δ)
2x+(1−2x)(2γ+δ+δγ+δ2) , (γ + δ = 1)∗

δ̇ = −δ(1−γ−δ)(x+2xδ−δ)
2x+(1−2x)(2γ+δ+δγ+δ2)]

Incomplete Info III [γ̇ = γ(δ−δx+2xγ−2x+2δxγ−δγ)
2x+γ(1−2x)(2+δ) , (γ = 0, 0 < δ < x

1−x)
∗∗

δ̇ = γδ(x−δ(1−2x))
2x+γ(1−2x)(2+δ) ] (γ = δ = 0)∗∗∗

∗ unstable steady state, ∗∗ weakly stable state; ∗∗∗ attractor

Table 4: Vector Derivatives and Steady States

a type is negative the type’s proportion decreases. When both derivatives are zero, the
population is at a steady state. The remaining of this section discusses the steady states
and their stability.

6.1 Evolution When Information Is Complete

The complete information condition favors reciprocators. If we assume a constant mu-
tation at the steady states the population will eventually evolve into one in which only
reciprocators exist. There are stable steady states with a large proportion of reciprocators
and some altruists in which invading egoists do worse than both reciprocators and altru-
ists. But whenever egoists invade this type of steady states, the proportion of altruists
slightly decreases in the recovered steady states. A long repetition of this process caused
by a constant invasion of egoists moves the population into one in which reciprocators
dominate. Figure 4 provides an illustration of the evolution under complete information.

Proposition 1 When individuals’ preference types are known to others, only the recip-
rocators exists in the attractor of the evolutionary system.
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The evolutionary dynamics under complete information can be studied by examining
the vector derivatives and the steady states shown in the first row of Table 4. First,
the proportion of altruists never increase: γ̇ = −xγ(1−γ−δ)

x+(δ+γ)(1−2x) ≤ 0. In fact, whenever the
population is not in a steady state, the proportion of altruists decreases. On the other
hand, the proportion of reciprocators never decreases: δ̇ = (1−2x)δ(1−γ−δ)

2(x+δ+γ(1−2x)) ≥ 0. Thus, when
mutations in steady states are taken into account, the altruists will keep decreasing and
the reciprocators will keep increasing. This gives hints to analyzing the relative stability
of different steady states under complete information condition.

Figure 4: Evolution under complete information (q = 1 and x = 0.3)

The steady state (γ = δ = 0), a population consists only of the egoists, is funda-
mentally unstable. Whenever a small number of reciprocators, by themselves or along
with altruists, invade the population, the reciprocators do better than the egoists and,
consequently, there proportion increases.
The other class of steady states consist of reciprocators and altruists, but not egoists:

(δ+γ = 1). The stability of a steady state of this sort depends on the relative proportions
of the reciprocators and altruists in the steady state. If the proportion of reciprocators
is smaller than a threshold value 2x in the steady state, i.e., (γ + δ = 1 : δ < 2x), the
egoists do better than the reciprocators in the neighborhoods of the steady state.5 On
the other hand, in the neighborhoods of the steady states in which δ > 2x, not only do

5This can be verified from Table 3 where the average expected payoffs are shown. For egoists do
better than reciprocators, πe|c − πr|c = x+ 1

2γ − 1
2 > 0 or γ > 1− 2x, which implies δ < 2x.
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Figure 5: Evolution under incomplete information condition (q = 0 and x = 0.3)

the egoists do worse than the reciprocators, but they also do worse than the altruists.
Thus, the ranking of objective payoffs among the three preferences around these steady
states is in the order of reciprocators, altruists, and egoists. The invading egoists into
these steady states will be driven out quickly and other steady states with reciprocators
and egoists will be reached. However, since reciprocators do better than altruists in the
neighborhoods of these steady states, the recovered steady states will always have slightly
more reciprocators than those in the original steady states. Thus, though the steady states
are stable, they will eventually attracted to the most stable steady state in which only
the reciprocators exist (δ = 1). To summarize, the only attractor of the population state
space, when information is complete, is the one in which only reciprocators exist.

6.2 Evolution When Information Is Incomplete

The evolution under incomplete information condition can be summarized as follows.
There are steady states with egoists and reciprocators: (γ = 0, 0 < δ < x

1−x). Altruists
cannot invade the population. In the neighborhoods of these steady states, egoists grow
faster than reciprocators. If there is a constant stream of random mutations, the popu-
lation will eventually reach a point where only egoists exist. Figure 5 shows an example
of the evolutionary dynamics under incomplete information.

Proposition 2 When players know the distribution of preference types in the population
but not the exact preference types of the current partners, only the egoists exist in the
attractor of the evolutionary system.
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In zone I, all of the three types cooperate in the first mover’s position. Reciprocators
and altruists cooperate in return in the second mover’s position, but egoists defect. The
derivative for the altruists shows that the proportion of altruists is never increasing: γ̇ =
−xγ(1−γ−δ)

(1+δ+γ)−2x(δ+γ) ≤ 0.6 This is the same for the reciprocators whose proportion decreases
except when the population is in a steady state: δ̇ = −xδ(1−γ−δ)

(1+δ+γ)−2x(δ+γ) ≤ 0. Therefore, the
evolutionary trajectories in the equilibrium zone I are downward.
In the equilibrium zone II, reciprocators and altruists cooperate in the first mover’s

position, but egoists do not. In the second mover’s position, the egoists always defect, the
reciprocators copy first mover’s action, and the altruists always cooperate The sign of
the derivative for reciprocators ( δ̇ = − δ(1−γ−δ)(x+2xδ−δ)

2x+(1−2x)(2γ+δ+δγ+δ2)) can be positive if δ + γ < 1

and δ > x
1−2x . The sign of the derivative for altruists (γ̇ = − γ(1−γ−δ)(2x+2xδ−δ)

2x+(1−2x)(2γ+δ+δγ+δ2)) can

be positive if δ + γ < 1 and δ > 2x
1−2x . But because δ < x

1−x in the zone II, neither
condition can be satisfied. Therefore, proportions of both the reciprocators and altruists
are decreasing unless δ + γ = 1.

In the equilibrium zone III, only the altruists cooperate in the first mover’s posi-
tion. As second movers, the altruists always cooperate, the reciprocators copy first
mover’s action, and the egoists always defect. Notice that altruists never increase (γ̇ =
γ(δ−δx+2xγ−2x+2δxγ−δγ)

2x+γ(1−2x)(2+δ) ≤ 0) and the reciprocators never decrease ( δ̇ = γδ(x−δ(1−2x))
2x+γ(1−2x)(2+δ) ≥

0).7

In the zone III, there exists a continuum of steady states in which reciprocators and
egoists coexist but no altruists (γ = 0). These steady states are relatively stable in the
sense that after disturbance caused by invasion of altruists the population resettles in
the neighborhoods of the original steady states. However, whenever the proportion of
altruists becomes positive by their invasion, the average objective payoff to the egoists
is larger than that to the reciprocators.8 Therefore, in the recovered steady states, the
proportions of reciprocators is slightly smaller than those in the original ones. After a
long series of random mutations and recoveries, the population will be composed entirely
of egoists.

6The denominator can be rewritten as 1+(δ+γ)(1−2x), which is always positive because by definition
x < 0.5. The numerator is never positive.

7The constraint for zone III is δ < x−αγ
1−x which is smaller than x−xγ

1−x because α > x. For the proportion

of altruists to increase, δ − δx+ 2xγ − 2x+ 2δxγ − δγ > 0 or δ > 2(x−xγ)
1−x−γ(1−2x) . The numerator is never

smaller than x − xγ and the denominator is always smaller than 1 − x. Thus, the condition cannot be
met. For the reciprocators to decrease, x − δ(1 − 2x) < 0 or δ > x

1−2x . The numerator is greater than
x− αγ and the denominator smaller than 1− x. Again, the condition cannot be met.

8This can be verified by comparing the payoffs to egoists and reciprocators in the zone III: πe|3−πr|3 =
1
2xγ which is positive when γ > 0.
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7 Stability of population with heterogeneous preferences

The analysis of evolutionary dynamics under complete and incomplete information shows
that, even though there exist steady states with multiple types, the attractors contain
only one preference type: reciprocators when information is complete and egoists when
information is incomplete. Neither the assumption of a complete information nor that
of incomplete information is a realistic representation of the real world. What is more
reasonable to assume is a mixed information condition in which individuals can sometimes
tell the preference types of their encounters, but other times they have to interact without
knowing the preferences of their counterparts.
This section develops a general model of evolution in which the level of information is

treated as a variable. With probability q players play the sequential prisoner’s dilemma
game under complete information condition; with probability 1 − q they play the game
under incomplete information condition. The parameter q in the model represents the
extent to which the signals and symbols about others’ types are available and reliable.
The following analysis formally confirms our intuition that for a range of q, there must
be strongly stable population states with mixed preference types.
We start with a proposition that describes the stable population states as functions

of x, the degree of temptation to defect, and q, the degree of information.

Proposition 3 When preferences of other players can be detected accurately with some
positive probability, the attractor features either reciprocators only or a mixture of recip-
rocators and egoists. Specifically, if q > x

1−x , (γ = 0, δ = 1) is the only attractor of the
evolutionary system. If q < x

1−x , (γ = 0, δ =
x
1−x) is the only attractor. If q =

x
1−x , any

population states with (γ = 0, δ ∈ [ x
1−x , 1]) are attractors.

Figure 6 shows Proposition 3 graphically; all the possible combinations of initial
conditions (x, q) are mapped into two difference kinds of attractors. Any (x, q) condition
that is above the line ( x

1−x) has an attractor at (δ = 1). Any (x, q) condition that is
below the line had an attractor in which the proportion of reciprocators is the point on
x
1−x which is reached by the vertical extension of the point (x, q). Not shown in the figure
is the cases in which q is exactly x

1−x . In those cases, any population with the proportion
of reciprocators greater than of equal to x

1−x and that of altruists zero, are attractors.
Figure 7 and Figure 8 provide examples of two kinds of attractors when q 6= x

1−x . In
Figure 7, q is smaller than x

1−x and the unique attractor contains both reciprocators and
egoists. In Figure 8, q is greater than x

1−x and, thus, the unique attractor inhabits only
reciprocators: (γ = 0, δ = 1).

The evolutionary dynamics under zones II and III are rather obvious given that they
are linear combinations of complete and incomplete information conditions we analyzed
in the preceding subsection. In zone II, neither of the two extreme information condition
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Figure 6: Attractors of Population State as Functions of normalized greed (fear) and the
degree of information

— complete and incomplete — has stable steady states. Therefore, the population states
inside zone II evolve to either zone I or III. In zone III, reciprocators increase in both
complete and incomplete information conditions, thus, increase in mixed information con-
dition as well. The altruists, on the other hand, always decrease under both complete
and incomplete information conditions, thus, also decrease under mixed information con-
dition. Therefore, the only question worth formally analyzing is what happens in zone I,
in which while altruists (after taking disturbances into account) always decrease, but the
reciprocators may or may not. Intuitively, we can tell that there is a level of information
q, given x, such that the evolution in zone I favors either reciprocators or egoists. In the
former case we will have an attractor composed only of reciprocators. In the latter case
the attractor will consist of both egoists and reciprocators.
In the equilibrium zone I,

γ̇ =
γπa|m1

γπa|m1 + δπa|m1 + (1− γ − δ)πe|m1
− γ

=
−γx(1 + q)(1− γ − δ)

1 + (1− 2x)(γ + δ)− q(1− 2x)(1− γ − δ)
, and (6-1)

δ̇ =
δπr|m1

γπa|m1 + δπa|m1 + (1− γ − δ)πe|m1
− δ

=
δ(q(1− x)− x)(1− γ − δ)

1 + (1− 2x)(γ + δ)− q(1− 2x)(1− γ − δ)
(6-2)

By examining the derivatives, we can tell how the types fare in the zone. Note that the
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Figure 7: Evolution of preferences with a medium level of information (q = 0.4 and
x = 0.3)

denominator of the vector derivatives is positive.9 Setting (1)= 0 and (4)= 0, and solving
them simultaneously subject to δ ≥ x

1−x we can find the steady states of the population
in zone I. First (γ + δ = 1) is a steady state. However, since the sign of γ̇ is always
negative, unless γ + δ = 1, the steady state is unstable. Another family of steady states
is (γ = 0, δ = δ | q = x

1−x). The steady states imply that any points on the vertical
axis in zone I is a steady state if it happens that q = x

1−x . These are all stable in the
sense that the population recovers equilibrium, after small disturbance, at the original
steady state or it close neighborhood. If q > x

1−x , (γ = 1, δ = 0) is the unique stable
state and attractor since all the evolutionary trajectories are upward. On the other hand,
if q < x

1−x , the evolutionary trajectories in Zone I are downward and, thus, the mixed
population with (γ = 0, δ = x

1−x) is the unique attractor of the population.
Notice that the internal attractor (γ = 0, δ = x

1−x) when exists consists only of two
types — reciprocators and egoists. Since the internal attractor is the bordering point of all
the three equilibrium zone, we can assume that the observed behavior at and around the

9The denominator is positive if

1 + (1− 2x)(γ + δ)− q(1− 2x)(1− γ − δ) > 0

1 +
2((γ + δ)(1− 2x) + x)

(1− γ − δ)(1− 2x) > q.

The second term in the left-hand side is never negative and q, by definition is smaller than 1. Thus the
inequality always holds.
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Figure 8: Evolution with a high level of information (q = 0.7 and x = 0.3)

attractor would be a mixture of behaviors in all three zones. That is, both reciprocators
and egoists may or may not cooperate in the first mover’s position, though the probability
of cooperation is higher for the reciprocators than that for the egoists.

8 Discussion

This paper has shown that reciprocal preferences can evolve in the one-shot prisoner’s
dilemma, along with purely self-interested ones, when players are able to tell others’ pref-
erences with some positive probability. Thus, repetition of interactions, though important
both theoretically and practically, is not a necessary condition for the evolution of co-
operation. With ever increasing mobility and the expansion of the scope of interactions,
people frequently face situations that are closer to a one-shot prisoner’s dilemma than
they are to the indefinitely repeated prisoner’s dilemma with high continuation prob-
abilities. In addition, long-term relationships and networks of interactions must start
somewhere by someone who meets a stranger and tries to figure out whether to trust him
or not.
The indirect evolutionary method contributes explaining how cooperation might evolve

in one-shot dilemmas by separating preferences from fitness. The evolution of cooper-
ation in these one-shot interactions depends on the reciprocators who are rational, but
not strictly self-interested. Reciprocators are different from cooperators; reciprocators
prefer mutual cooperation and they are willing to cooperate if others also do so. But
as a rational decision maker they take into account the specifics of an action situation
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to achieve mutual cooperation and to protect themselves from getting exploited by ego-
ists. As a second mover they cooperate if and only if the first mover cooperate; they
are trustworthy but not naive. As first movers reciprocators rely on their perception of
the second mover’s preferences. If the information about the second mover’s preference
is available, they cooperate unless the second mover is an egoist. If the information is
not available they cooperate if and only if they believe that the population at large are
trustworthy enough. Unless we assume that the information about others’ preference is
always available, the reciprocators may not overtake the entire population. But inso-
far as the information is available, by means of signals and symbols, with some positive
probability, the reciprocators will comprise a significant proportion of a population in the
evolutionary equilibrium.

Appendix

A1: Derivation of the vector derivatives
Complete Information Condition: Using the payoffs to each of the three types shown
in Table 1 and applying them to the replicator functions defined in Section 4, we can
calculate the proportions of altruists and reciprocators at time t+ 1.

γt+1 =
(1− x)(δ + γ)γ

x− 2xδ − 2xγ + δ + γ
, and

δt+1 =
(1
2
(1− γ − δ) + (1− x)(δ + γ))δ

x− 2xδ − 2xγ + δ + γ
.

Then, the derivatives δ̇ and γ̇ can also be calculated as follows.

γ̇ = γt+1 − γt =
(1− x)(δ + γ)γ − γ(x− 2xδ − 2xγ + δ + γ)

x− 2xδ − 2xγ + δ + γ

=
−xγ(1− γ − δ)

x+ (δ + γ)(1− 2x) , and

δ̇ = δt+1 − δt =
(1
2
(1− γ − δ) + (1− x)(δ + γ))δ − δ(x− 2xδ − 2xγ + δ + γ)

x− 2xδ − 2xγ + δ + γ

=
δ(1− 2x)(1− γ − δ)

x+ (δ + γ)(1− 2x) .

Incomplete Information Condition:
Equilibrium zone I: All of the three types cooperate in the first mover’s position. Recipro-
cators and altruists cooperate in return in the second mover’s position, but egoists defect.
The proportions of altruists and reciprocators at time t+1 can be calculated as follows.

γt+1 =
γ(δ + γ + 1)(1− x)

2(δ + γ)(1− x) + (1− γ − δ)
, and

δt+1 =
δ(δ + γ + 1)(1− x)

2(δ + γ)(1− x) + (1− γ − δ)
.
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Then, the derivatives δ̇ and γ̇ are

γ̇ = γt+1 − γt =
−xγ(1− γ − δ)

(1 + γ + δ)− 2x(δ + γ)
, and

δ̇ = δt+1 − δt =
δ(δ + γ + 1)(1− x)− δ(2(δ + γ)(1− x) + (1− γ − δ))

2(δ + γ)(1− x) + (1− γ − δ)

=
−xδ(1− γ − δ)

(1 + γ + δ)− 2x(δ + γ)
.

Equilibrium Zone II: The proportions of altruists and reciprocators at time t+ 1 are

γt+1 =
2(δ − δx+ γ − xγ)

(1− 2x)(δ2 + δγ + δ + 2γ) + 2x
, and

δt+1 =
δ(2δ − 3δx+ 2γ − 3xγ + x)

(1− 2x)(δ2 + δγ + δ + 2γ) + 2x
.

The derivatives are

γ̇ = γt+1 − γt =
2(δ − δx+ γ − xγ)− γ((1− 2x)(δ2 + δγ + δ + 2γ) + 2x)

(1− 2x)(δ2 + δγ + δ + 2γ) + 2x

= − γ(1− γ − δ)(2x+ 2xδ − δ)

2x+ (1− 2x)(2γ + δ + δγ + δ2)
, and

δ̇ = δt+1 − δt =
δ(2δ − 3δx+ 2γ − 3xγ + x)− δ((1− 2x)(δ2 + δγ + δ + 2γ) + 2x)

(1− 2p)(δ2 + δγ + δ + 2γ) + 2p

= − δ(1− γ − δ)(x+ 2xδ − δ)

2x+ (1− 2x)(2γ + δ + δγ + δ2)
.

Equilibrium zone III: The proportions of altruists and reciprocators at time t+ 1 are

γt+1 =
γ(δ − δx+ 2γ − 2xγ)

(1− γ − δ)(2x− 2xγ + 2γ) + δ(2x− 3xγ + 2γ) + γ(δ − δx+ 2γ − 2xγ)
=

γ(δ − δx+ 2γ − 2xγ)
2x+ γ(δ + 2)(1− 2x) , and

δt+1 =
δ(2x− 3xγ + 2γ)

(1− γ − δ)(2x− 2xγ + 2γ) + δ(2x− 3xγ + 2γ) + γ(δ − δx+ 2γ − 2xγ)
=

δ(2x− 3xγ + 2γ)
2x+ γ(δ + 2)(1− 2x) .
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The derivatives δ̇ and γ̇ are:

γ̇ = γt+1 − γt =
γ(δ − δx+ 2γ − 2xγ)− γ(2x+ 2γ(1− 2x) + δγ(1− 2x))

2p+ 2γ(1− 2x) + δγ(1− 2x)
=

γ(δ − δx+ 2xγ − 2x+ 2δxγ − δγ)

2x+ γ(1− 2x)(2 + δ)
, and

δ̇ = δt+1 − δt =
δ(2x− 3xγ + 2γ)− δ(2x+ 2γ(1− 2x) + δγ(1− 2x))

2x+ 2γ(1− 2x) + δγ(1− 2x)
=

γδ(x− δ(1− 2x))
2x+ γ(1− 2x)(2 + δ)

.

A2: Extension to simultaneous game
Under complete information, only reciprocators exist in the attractor. Under incom-

plete information either both reciprocators egoists exit or only egoists exit in the attractors.
In the attractors with both reciprocators and egoists under incomplete information, the
two types are not behaviorally distinguished. That is, both defect always . There is a level
of information q, for a given x, such that the attractor features both reciprocators and
egoists.

The technical details can be found in the author’s working paper (Ahn, 2002). Ego-
ists always defect and altruists always cooperate under both complete and incomplete
information conditions. Under complete information, reciprocators cooperate against al-
truists and reciprocators but not against egoists. Under incomplete information, recipro-
cators cooperate if the combined proportion of reciprocators and altruists is large enough
(δ + γ ≥ x

α
) and defect otherwise. Under complete information, altruists get the small-

est objective payoff under all possible distribution of types whenever egoists are present.
After altruists are wiped out of the population, reciprocators do better than the egoists.
The reason is that while egoists always get the mutual defection payoff of x, reciprocators
can get the mutual cooperation payoff of 1−x when they are matched with another recip-
rocator. When two reciprocators are matched with each other, there are two equilibria
(D,D) and (C,C). Insofar as the reciprocators play (C,C) with positive probability, the
evolution favors the reciprocators over the egoists. The attractor (δ = 1) absorbs all other
steady states such as continuum of (δ + γ = 1) and (γ = 0). Around the neighborhoods
of steady states (δ + γ = 1; δ ≥ x

1−2x) reciprocators do better than the egoists. Around
the neighborhoods of steady states (δ+γ = 1; δ < x

1−2x) egoists do better than the recip-
rocators and these steady states initially move to other population states with (γ = 0).
In these population states, the reciprocators do strictly better than the egoists insofar as
they play (C,C) with positive probability when match with another reciprocator.
Under incomplete information, egoists do at least as well as reciprocators for all possi-

ble distribution of types. The steady states that consist only of reciprocators and altruists
(γ+ δ = 1) are vulnerable to egoists’ invasion since egoists defect while both cooperators
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and reciprocators cooperate. All population states with (γ = 0, δ < x
α
) are attractors

because both reciprocators and egoists defect and altruists cannot invade.
If q

1−q < x
1−2x a mixed population (δ =

x
α
, γ = 0) is an attractor along with the ho-

mogenous population of reciprocators (δ = 1). If q
1−q ≥ x

1−2x , the only attractor is (δ = 1).
Reciprocators do better than egoists under mixed information condition if the combined
proportion of reciprocators and altruists are small. This is because, the reciprocators
protect themselves from getting exploited by egoists under incomplete information (by
defecting) while reaping the benefits of mutual cooperation under complete information.
Therefore, a population state with egoists only (δ = γ = 0) or with egoists and small
proportions of reciprocators (0 < δ < x

α
, γ = 0) are unstable and in which the proportion

of reciprocators increases. But as he proportion of the reciprocators gets large enough for
them to cooperate under incomplete information condition, there emerge two possibilities.
When the proportion of reciprocators is very large (δ ≥ x(1−q)

(1−2x)q ) the reciprocators more
than compensate their loss in the incomplete information game by the gains they obtain in
the complete information game. Thus, all the population states with (δ ≥ x(1−q)

(1−2x)q ) evolve

towards the attractor (δ = 1). On the other hand, if (δ < x(1−q)
(1−2x)q and δ+γ ≥ x

α
) there are

not enough reciprocators and altruists combined for the reciprocators to recover, in the
complete information game, their loss incurred in the incomplete information game. Of
course, if δ+γ < x

α
, there does not exist a Bayesian equilibrium of incomplete information

game in which reciprocators cooperate, the reciprocators do as well as the egoists in the
incomplete information game, do strictly better than egoists in the complete information
game and the proportion of reciprocators increases, and the population evolves towards
the attractor with mixed reciprocators and egoists.
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