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Abstract The paper examines the behavior of two agents who need to make a joint decision 
but they have conflicting preferences about the choice of the outcome. Conventionally such 
problem is considered as the bargaining problem described as the situation of dividing a pie. 
But we introduce the model that sheds a different light on the problem in question. The 
problem is described as the conflict situation modelled as a two-stage game. In the first stage 
players propose outcomes. The settlement is made if the proposed outcomes are the same. If 
not, the game moves onto the second stage where they play the concession game called the 
escalation game. In the escalation game, each player, in turn, has the choice between either to 
submit by accepting the other's demand or to escalate by way of insisting his demand to be 
accepted. Each escalation generates a probability of disagrement outcome. 
There are two main findings: (1) it is shown that the player's decision is determined by his 
risk limit which measures his intensity towards winning. (2) it is shown that there is a path of 
disagreement probabilities in which proposing the Nash cooperative solution is the optimal 
strategy for both players. 
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1 Introduction

One of the essential problems that must be dealt is that of the situation in which two
individuals have difficulty in reaching a settlement because they have conflicting prefer-
ences. The paper develops the model that analyzes such two-person conflict problem.
The objectives are twofold: (1) to examine the parameters that determine the behaviors
of players in conflict and (2) to characterize the extensive form game that implements
the solution concept proposed in the cooperative game theory.
The conflict process is modeled as a game with two stages. In the first stage, two

players simultaneously make demands in the bargaining set. If they have demanded
the same alternatives, then the game ends and both players receive the demand that
they have made. But if they have demanded different alternatives, then they play the
escalation game in the second stage. We first analyze the escalation game, then examine
the demand stage of the game.
The escalation game captures the conflict process when the players have made incom-

patible demands. Its outcome is either a settlement or a disagreement. The settlement
occurs when one of the players accepts the other’s demand. There is a risk of disagree-
ment each time the settlement is delayed. Hence, the model deals with three alternatives.
Two efficient alternatives; one preferred by player 1 and the other preferred by player 2.
And a disagreement outcome which is Pareto dominated by the other two alternatives.
Our model incorporates essential notions from four non-cooperative game theory mod-

els: the Nash model, the Zeuthen/Harsanyi model, the Crawford model and the Rubin-
stein model.
From the Nash (1950) model, it incorporates the notion that the presence of dis-

agreement outcome serves as a threat point to enforce players to come to a settlement.
By considering three alternatives, we embody the notion of risk limit, introduced by
Zeuthen (1930) and further developed by Harsanyi (1977), as the determining variable of
the player’s strategic choice.
Crawford (1982) argued that players do not consciously choose a disagreement out-

come, but they inadvertently run into it due to the result of their actions that are both
uncertain and irreversible. The escalation game embodies the similar notion of exoge-
nously chosen disagreement probabilities due to an imperfect decision making process in
a conflict situation.
Rubinstein (1982) studied alternating offer model where players make sequential bids

to divide the pie of size one. We also consider a sequential game where players move in
turn and thus they can observe each other’s actions.
Rubinstein created a powerful model capturing the process of two players reaching

an agreement. But his model mainly concerns characterizing the agreement under the
assumption that players have different time preferences. The purpose of our model is to
characterize the variable that determines the behavior of players in a conflict. Hence our
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model differs from Rubinstein’s model in three respects. First, we formulate the game
with a finite number of moves; hence backward induction can be applied in solving the
game. Second, we assume that players do not discount the future. Instead, we introduce
a risk of disagreement each time agreement is delayed. Third, in our model, the demands
cannot be changed once they have been chosen, while in Rubinstein’s model the proposals
can be revised in each period. The absence of revision of the initial proposals permits a
simple characterization of equilibria and facilitates clear analysis of optimal strategies.
The paper is organized as follows. Section 2 presents the problem that will be ana-

lyzed in the paper. Section 3 introduces the escalation game and derives the sequential
equilibrium of the escalation game with complete information. It is shown that the esca-
lation game with complete information lasts at most two periods. In Section 4, we study
the escalation game with endogenous demands where players first make simultaneous
demands in the bargaining set before playing the escalation game. We characterize the
escalation game with endogenous demands that results in the Nash cooperative solution.
Section 5 concludes the paper.

2 Problem

The problem that will be analyzed here is the situation where two individuals need
to make a joint decision, but they have conflicting preferences about which outcome
should be chosen. In the joint decision making, the outcome can be obtained only by the
mutual consent. Such situations include various social contexts, from friends going to a
restaurant together, to the form of a political regime, to trading of goods. The decision
is obtained immediately if they prefer the same outcome. But the problem arises when
their preferences are conflicting. We will provide the former description of such problem.
Let Ω denote the set of all alternatives that can be chosen in a particular situation.

For clear analysis, players’ preferences over the alternatives are expressed in value terms
represented by a von Neumann-Morgenstern utility function. Specifically, let there be
two individuals i = 1, 2. The utility function ui of individual i assigns values to each
alternatives ω ∈ Ω according to his preference relation. That is, ui : Ω −→ R, where for
all x, y ∈ Ω, x %i y if and only if ui (x) ≥ ui (y). It is assumed that both individuals’
preference rankings over the set of alternatives Ω are common knowledge. Let S denote
the set of payoff pairs that the individuals can obtain by the mutual consent. Hence, the
set S consists of utility pairs from the same alternative such that

S = {(u1 (ω) , u2 (ω)) | ω ∈ Ω} . (1)

Thus, any chosen outcome ωi ∈ Ω can be expressed (in value terms) as an element in
S ⊂ R2. Notice that the set S is equivalent to the Nash (1950) bargaining set.
Let P (Ω) denote the set of outcomes that are not Pareto dominated, hence P (Ω) ⊂ Ω

such that

64

Journal of Economic Theory and Econometrics



P (Ω) = {x ∈ Ω | if y Â1 x and y Â2 x, then y /∈ Ω} . (2)

If players have conflicting preferences, then the set P (Ω) contains more than two
alternatives. Hence the Pareto set

P (S) = {(u1 (ω) , u2 (ω)) ∈ S | ω ∈ P (Ω)} (3)

with more than two elements represents the preference relation of players with con-
flicting preferences in the joint decision making. Hence, the problem that we consider
here is the situation where an outcome must be chosen from the Pareto set P (S). If
players opt for the same alternative in the Pareto set, then their demands are compatible
where (u1 (ω) , u2 (ω)) ∈ P (S). But if each player opts for different alternatives; player
1 opts for the alternative ω1 ∈ P (Ω) and player 2 opts for the alternative ω2 ∈ P (Ω),
then their demands are incompatible where (u1 (ω1) , u2 (ω2)) /∈ P (S).

Now we will introduce the escalation game.

3 Escalation game

An escalation game is a model that captures the conflict process between two players
who have demanded different outcomes. Specifically, it is an n- period two player non-
cooperative game. The conflict is resolved if one of the players accepts the other’s demand.
The players move in a sequence. The player with the move either submits or escalates.
In case she submits, the game ends with the outcome proposed by her opponent. In case
she escalates, Nature has the move and determines with a known probability whether or
not the game ends. If Nature chooses to end the game, then the outcome ω0 is selected;
otherwise, the game moves on to the next period. The probability with which Nature
choose to end the game depends upon the period and is denoted by rt with t referring to
the period. It is assumed that rn = 1. We refer to ω0 as the disagreement outcome.
Formally, ui (ωi) denotes the payoff that player i receives when his demand ωi is ac-

cepted. Similarly, ui (ωj) denotes the payoff that player i receives when the opponent’s de-
mand, ωj, is accepted and ui (ω0) denotes the payoff when the game ends in disagreement
ω0; with j 6= i. It is assumed that accepting the other’s demand is preferred to ending
in disagreement. Hence, ui (ωi) ≥ ui (ωj) > ui (ω0). Observe that (u1 (ω0) , u2 (ω0)) ∈ S,
but (u1 (ω0) , u2 (ω0)) /∈ P (S).
The triple (ui (ωi) , ui (ωj) , ui (ω0)) is essential information and is called the type of

player i. Before the game starts each player is informed about her type. Furthermore, the
payoffs do not depend upon the period in which the outcome is reached. In particular,
there is no discounting.
We assume (i) that players are expected utility maximizers, and (ii) that a player

submits in case he cannot strictly gain by escalating. As players are expected utility
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maximizers, the equilibrium is independent of a positive linear transformation of the pay-
offs. For a given type (ui (ωi) , ui (ωj) , ui (ω0)), we consider the following normalization:
subtract ui (ωj) and divide by ui (ωi)−ui (ω0). As such, the type (ui (ωi) , ui (ωj) , ui (ω0))

transforms into (ki, 0, ki−1) with

ki =
ui (ωi)− ui (ωj)

ui (ωi)− ui (ω0)
, 0 ≤ ki ≤ 1 (4)

The normalized winning payoff k, also known as the risk limit (Zeuthen 1930, Harsanyi
1977), is the loss of submitting divided by the loss of disagreeing, and is invariant under
positive linear transformations. Apparently, the risk limit is sufficiently rich to summarize
the essential information of a player.
Now we can define the escalation game.

Definition 1: An escalation game is a quadruple Γ = (n, b, r, k), with n ≥ 2 the number
of periods, b in {1, 2} the player with the move in period 1,

r = (r1, r2, . . . , rn = 1) in [ 0, 1 ]n the disagreement probabilities, and k = (k1, k2) in
[ 0, 1 ]2 is a couple of risk limits of each players.

The game tree of the escalation game is depicted in Figure 1. N refers to Nature,
and rt is the probability of ending in disagreement in period t. In order to know which
player has the move in a certain period, it suffices to know the player with the move in
the first period. Sometimes, we will refer to the player with the move in period t (> 2)

as ‘player t’. This will cause no confusion. For example, outcome ωn−1 is the outcome
most preferred by player n− 1.

1 N 2 N n-1 n

Escalate

ω2

Submit

1-r1

r1

ω0

Escalate

Submit

ω1

1-r2

r2

ω0

Escalate

Submit rn

ωn-2 ω0

Figure 1

3.1 Subgame perfect equilibrium

An equilibrium outcome results from players’ behaviors that follow optimal strategies.
The optimal strategies specify the best response of a player given his expectation about
his opponent’s action. Lemma 1 shows that player i’s strategic choice is driven by his
risk limit ki.

Lemma 1: The two- period escalation game (2, 1, (r1, 1), k) has a unique equilibrium.
The normalized equilibrium payoffs are equal to (0, k2) if k1 ≤ r1, and (k1 − r1, 0) if
k1 > r1.
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Proof. Player 1 receives 0 if he submits. If period 2 is reached, then Nature ends the
game and outcome ω1 is selected. Thus, player 1 receives r1(k1− 1)+ (1−r1)k1 = k1− r1
if he escalates. As a consequence, player 1 escalates if k1− r1 > 0. Also, player 1 submits
if k1 − r1 < 0. Finally, in case escalating and submitting generate the same payoff, then
(by assumption) player 1 submits. ¥

Lemma 1 implies that if player i knows the value of kj, then player i knows whether
player j will escalate or submit at her decision node. Hence players’ decisions at each
decision node are known to each other when both players risk limits are known.

Lemma 2 characterizes the equilibrium behavior of players in the escalation game
when both players know one another’s risk limits.

Lemma 2: Let Γ be an n - period escalation game with complete information. Assume
that the game has reached period t. Let player i have the move in period t. In that case,
player i escalates if and only if (a) ki > ri and (b) player j submits.

Proof. In order to allow for escalation, we assume that n ≥ 2. If n = 2, then the lemma
follows from Lemma 1.
Now let n > 2. Assume the lemma holds at t+1. Thus, player j escalates if and only

if player i submits and kj > rt+1.
Suppose player j escalates. Then, player i is better off submitting since he receives

(ki − 1) (rt + (1− rt) rt+1) ≤ 0 if he escalates.
Suppose player j submits, then player i receives r1(k1− 1) + (1−r1)k1 = k1− r1 if he

escalates.
Hence, player i escalates if and only if player t + 1 submits and ki > rt. Otherwise,

player i submits. It follows that the lemma holds at t if the lemma holds at t + 1. By
Lemma 1, the lemma holds at n− 1. By backward induction the lemma holds at t ≥ 1.
¥

Lemma 2 asserts that the player with the move submits and would never escalate if
she knows that her opponent escalates in the next period. It follows that the escalation
game with complete information lasts at most 2 periods. In the first period, player 1 will
either escalate or submit. He will escalate only if he is certain that player 2 submits in
the second period. Otherwise, he will submit and the game will end immediately.

Lemma 3: Let Γ be an n - period escalation game with complete information. Then,
either player 1 submits at t = 1 or player 2 submits at t = 2.
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Proof. By backward induction and Lemma 2. At t = 3, there are only two possibilities:
either player 1 submits or he escalates. If he submits at t = 3, then it is better for him
to submit at t = 1. If he escalates at t = 3, then player 2 submits at t = 2. ¥

The following examples provide some insights into the equilibrium behavior of the
escalation game with complete information. In example 1, we consider the escalation
game with a small constant risk of disagreement outcome.

Example 1 n > 3 period escalation game with complete information where rt = ε > 0

for all t < n. There are four possible cases: (i) k1 > ε, k2 > ε. (ii) k1 ≤ ε, k2 ≤ ε.
(iii) k1 ≤ ε, k2 > ε. (iv) k1 > ε, k2 ≤ ε. Assume n is even. Then in case (i) player
1 escalates at n− 1. By backward induction and Lemma 2, player 1 escalates in the first
period upon which player 2 submits in period 2. In cases (ii) and (iii) player 1 submits
in the first period. In case (iv) player 1 escalates in the first period knowing that player
2 submits in the second period. Assume n is odd. Then in case (i) player 2 escalates at
n−1. By backward induction and Lemma 2, player 1 submits in the first period. In cases
(ii) and (iii) player 1 submits in the first period. In case (iv) player 1 escalates in the
first period knowing that player 2 submits in the second period.

Example 1 shows that for case (i) the outcome of the game depends on whether the
game ends in odd period or in even period. For cases (ii) , (iii) and (iv), the outcome is
independent of the number of periods. If kt ≤ rt, player t submits in period t. It follows
that the identity of the last mover is important only if kt > rt for all t < n.

Example 2 n > 3 period escalation game with complete information where rt = ε > 0

for all t < n − 1 and rn−1 = 1 − ε. Assume n is even. Let us consider the following
cases: (i) k1 > 1− ε, k1 > ε, k2 > ε. (ii) k1 ≤ 1− ε, k1 > ε, k2 > ε. In case (i) player 1
escalates at n − 1, and knowing this player 2 submits at n − 2. By backward induction,
player 1 escalates in the first period upon which player 2 submits in period 2. In case (ii)
player 1 submits at n − 1. By backward induction, player 2 escalates in period 2, and
knowing this player 1 submits in the first period. Assume n is odd. Let us consider the
following cases: (i) k2 > 1 − ε, k2 > ε, k1 > ε. (ii) k2 ≤ 1 − ε, k2 > ε, k1 > ε. In case
(i) player 2 escalates in period n − 1 and knowing this player 1 submits at n − 2. By
backward induction, player 2 escalates in period 2, and knowing this, player 1 submits in
the first period. In case (ii), player 2 submits at n−1, and knowing this player 1 escalates
in period n− 2. By backward induction, player 2 submits in period 2, and knowing this
player 1 escalates in the first period.

Example 2 shows that when n is an even period (player 2 being the last mover) and
k1 > ε and k2 > ε, then player 1 is first to submit if k1 ≤ 1− ε. On the contrary, when
n is an odd period (player 1 being the last mover), and k1 > ε and k2 > ε, then player
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2 is first to submit if k2 ≤ 1 − ε. Hence, in the game where player 1 moves at n − 1, if
k1 ≤ 1 − ε, k1 > ε and k2 > ε, then the game ends in the first period. Similarly, in the
game where player 2 moves at n − 1, if k2 ≤ 1 − ε, k1 > ε and k2 > ε, then the game
ends in the second period. It follows that if the game has reached t and the player who
moves at t submits, then he submits in his first move. This is shown in example 3.

Example 3 Assume (i) kτ > rτ where rτ > 0, rτ−1 > 0 for all τ < t and (ii) kt ≤ rt
for some odd t. At t player 1 submits. At t− 1 player 2 escalates since by assumption
kt−1 > rt−1. By backward induction, player 1 submits in the first period. Similarly for
even t, player 1 escalates in the first period, upon which player 2 submits in the second
period.

Let t∗1 ∈ arg min
1≤2t+1≤n

{r2t+1 | k1 ≤ r2t+1} , t∗2 ∈ arg min
1≤2t≤n

{r2t | k2 ≤ r2t}. Hence, t∗1 is
the first (odd) period in which player 1’s risk limit is smaller than the disagreement
probability of that period, given that the game reaches the period t∗1. Similarly, t

∗
2 is

the first (even) period in which player 2’s risk limit is smaller than the disagreement
probability of that period, given that the game reaches the period t∗2.

Proposition 1: n > 2 period escalation game with complete information Γ has a unique
subgame perfect equilibrium. (i) If t∗1 < t∗2, then the normalized equilibrium payoffs are
equal to (0, k2) where player 1 submits immediately. (ii) If t∗1 > t∗2, then the normalized
equilibrium payoffs are equal to (k1 − r1, 0) where player 2 submits in her first move.

Proof. If t∗1 > t∗2, then for some even t (a) k2 ≤ rt and (b) k1 > rτ where rτ > 0, rτ−1 > 0
for all τ ≤ t−1. Hence, at t player 2 submits and at t−1 player 1 escalates. By Lemma 2
and backward induction, player 2 submits in period 2 and knowing this player 1 escalates
in period 1. Similarly, if t∗1 < t∗2, then for some odd t (a) k1 ≤ rt and (b) k2 > rτ where
rτ > 0, rτ−1 > 0 for all τ ≤ t − 1. Hence, at t player 1 submits and at t − 1 player 2
escalates. By Lemma 2 and backward induction, player 1 submits immediately in the
first period. ¥

Proposition 1 specifies the property of the disagreement probabilities r = (r1, r2, . . . , rn=
1) that constitute the equilibrium outcome. Next, we will examine the disagreement prob-
abilities that provide incentives for the player with lower risk limit to submit.

Lemma 4: Consider the escalation game with complete information Γ. Assume k1 6= k2.
Then, if the following property holds

r1= 0 , r t+1= Min [rt + ε, 1] , ε < |k1 − k2| for all t ≥ 1 (PR)

then player i submits in his first move if and only if ki < kj.
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Proof If r1 = 0, rt+1 = Min [rt + ε, 1] , ε < |k1 − k2|, then t∗i < t∗j if and only if ki
< kj. Hence by Proposition 1 if k1 > k2, then player 1 escalates in the first period upon
which player 2 submits in the second period. Similarly, if k2 > k1, then player 1 submits
immediately in the first period. ¥
Lemma 4 shows that the player with the lower risk limit would submit to the other

player if the disagreement probabilities r = (r1, r2, . . . , rn = 1) increase gradually with
the rate that are smaller than |k1 − k2|. Hence some escalation games follow the Zeuthen
(1930) principle where it argues that if ki > kj, then player i makes the first concession.

4 Escalation game with endogenous demands

The escalation game analyzes the conflict process after players have opted for different
alternatives in the Pareto set P (S). In this section we will examine whether there is the
settlement (a point in the Pareto set) that both players would accept if they know the
result of the escalation game. Hence, we introduce the model that extends the escalation
game by permitting players first to demand outcomes in the Pareto set P (S).

Definition 2: The “Escalation Game with Endogenous Demands” is a two-stage game.
In the first stage players simultaneously make demands in the Pareto set P (S). In
the event that demands are compatible, the game ends with the proposed demand as the
outcome. But in the event that demands are incompatible, the game proceeds to the second
stage, in which players play the escalation game with the two demands.

Hence the "Escalation Game with Endogenous Demands" consists of two games;
the demand game and the escalation game. The demand game is a simultaneous-
move one-shot game where player i demands an alternative ωi ∈ P (Ω) with the payoff
(ui (ωi) , uj (ωi)) ∈ P (S). Thus, he determines his own risk limit ki =

ui(ωi)−ui(ωj)
ui(ωi)−ui(ω0) given

the other player’s demand ωj ∈ P (Ω). Notice that if players make compatible demands
(opts for the same point in P (S)), then the value of both players’ risk limits are equal to
zero ki = 0. The escalation game is reached only when the demand game ends with the
incompatible demands. Hence if there is the settlement that is accepted by both players,
then the escalation game becomes the subgame that lies off the equilibrium path.
The settlement will be accepted by both players when neither of them could gain

by deviating from it. Nash (1950) characterized such settlement as the solution to his
bargaining game. He considers the game (S, d) in which players have to choose the
agreement in the set S. In the event that they fail to reach the agreement, then a given
disagreement outcome d = (u1 (ω0) , u2 (ω0)) is the result. Nash proposes the solution
FN (S, d) ∈ S that satisfies a set of axioms. This Nash solution FN prescribes, as the
outcome of the game (S, d), that point in S for which the product (x1 − d1) (x2 − d2) is
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maximal, hence
FN (S, d) ∈ argmax

x∈S
(x1 − d1) (x2 − d2) . (5)

There is a close relationship between the risk limit and the Nash solution FN such
that (i) if a player demands the Nash solution then he will have the highest risk limit and
(ii) the demand of the player with the highest risk limit gives the largest Nash product.
Specifically, let ωN ∈ P (Ω) denote the alternative that corresponds to the Nash

solution FN . Suppose player i demands the Nash solution. Then, for any other demand
ω ∈ P (Ω) by player j

(ui (ωN)− ui (ω0)) (uj (ωN)− uj (ω0)) (6)

> (ui (ω)− ui (ω0)) (uj (ω)− uj (ω0)) .

The equation (6) is equivalent to

ui (ωN)− ui (ω)

ui (ωN)− ui (ω0)
− uj (ω)− uj (ωN)

uj (ω)− uj (ω0)
(7)

= ki − kj > 0

Similarly, for any demand ωi ∈ P (Ω)made by player i and for any demand ωj ∈ P (Ω)

made by player j observe that

ki − kj (8)

=
ui (ωi)− ui (ωj)

ui (ωi)− ui (ω0)
− uj (ωj)− uj (ωi)

uj (ωj)− uj (ω0)
.

ki − kj > 0 is equivalent to

(ui (ωi)− ui (ω0)) (uj (ωi)− uj (ω0))

− (ui (ωj)− ui (ω0)) (uj (ωj)− uj (ω0)) (9)

> 0.

Hence if the player with lower risk limit is forced to submit in the escalation game,
then it is the optimal strategy for the player to propose the Nash solution in the demand
game. This is shown in the next proposition.

Proposition 2: If the condition in PR holds, then the “Escalation Game with Endogenous
Demands” has a unique subgame perfect equilibrium such that both players propose an
alternative ω ∈ P (Ω) which gives the payoff that corresponds to the Nash solution.

Proof. Let z = FN (S, d) denote the Nash solution. We will show that the demand
z = (z1, z2) is a subgame perfect equilibrium.
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Suppose player 1 demands the alternative ωN ∈ P (Ω) that corresponds to the Nash
solution such that z = (z1, z2) = (u1 (ωN) , u2 (ωN)), then in equilibrium player 1 will
receive the payoff z1 regardless of the demand that the opponent makes. This is because
if demands are compatible, then each player receives his demand (player 1 receives z1).
If demands are incompatible, then for any counter proposal y ∈ P (S) , y 6= z

z1 − y1
z1 − d1

− y2 − z2
y2 − d2

(10)

= k1 − k2 > 0.

Then, by Lemma 4, player 2 will have to submit in the escalation stage. Furthermore,
if player 1 proposes z, then player 2 cannot receive a higher payoff than z2 for the same
reason.
To see that no other demands is a subgame perfect equilibrium, suppose player 1

demands the alternative ω2 ∈ P (Ω) such that (u1 (ω2) , u2 (ω2)) = (x1, x2) where x1 < z1,
then 2’s best response would be to also demand ω2. But the demand ω2 is not an
equilibrium demand since we have seen that player 1 can assure himself z1 by demanding z,
regardless of player 2’s proposal. Similarly, if player 1 demands the alternative ω1 ∈ P (Ω)

such that (u1 (ω1) , u2 (ω1)) = (x01, x
0
2) where x

0
1 > z1, then any counter proposal y by

player 2 such that

(y1 − d1) (y2 − d2) > (x
0
1 − d1) (x

0
2 − d2) (11)

will yield player 2 a payoff greater than x02. ¥

Proposition 2 asserts that there is a path of disagreement probabilities r = (r1, r2, . . . , rn=
1) that ensures players to propose the Nash solution FN . This is shown in Example 4.

Example 4 Escalation game with Endogenous Demand where r1 = 0, rt+1 =Min [rt + ε, 1] , ε =
1
2
|k1 − k2| for all t ≥ 1 and k1 6= k2. As it is shown in Figure 2, when the disagree-
ment probabilities are determined by k1 and k2 such that r1 = 0, r2 =

1
2
|k1 − k2| , r2 =

2
2
|k1 − k2| , r3 = 3

2
|k1 − k2| , ..., then rt∗i (k1, k2) < rt∗j (k1, k2) if ki < kj where t∗i < t∗j .

Hence by Proposition 1, (i) if k1 < k2 , then player 1 submits immediately in the first
period and (ii) if k2 < k1, then player 1 escalates in the first period upon which player 2
submits. Then, by Proposition 2, it is the optimal strategy for the player to propose the
Nash solution. ¥
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5 Final remarks

We have analyzed the joint decision making problem with conflicting preferences, gener-
ally known as the bargaining problem. We have departed from the conventional approach
of analyzing the bargaining problem as the situation of dividing a cake which deals with
the Transferable Utility function. Instead our model permits players first to choose their
type (risk limit) by demanding the outcome in the Pareto set P (S). They proceed with
the concession game in the event that each players opts for two different outcomes. The
paper has made two contributions:
(1) The model facilitates a simple characterization of the variable that determines

players’ behaviors in a conflict situation. Hence it can be served as an instrument for
those who are interested in conflict management.
(2) The model characterizes the class of non-cooperative games that implements the

Nash solution. Hence, it establishes the relationship between the static axiomatic theory
of bargaining and the sequential strategic approach to bargaining.
The second contribution (2) is the result obtained by examining the restricted class

of the model where the risk of disagreement is determined by the initial proposals of
both players. Although we have not yet explored other environments that may induce
the same result, the implication of our model is to suggest that the intensity of conflict
is determined by the position that players place themselves in.
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