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asymptotic distribution of the GMM estimator is described by a mixed normal 
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1 Introduction

The generalized method of moments (GMM) estimator defined and analyzed in Hansen

(1982) has been applied for a wide variety of economic problems that imply a set of eco-

nomic theoretical restrictions. Hansen (1982) and subsequent works in GMM literature

assume sufficient stationarity in the variables of the model. Little is known, however,

about the GMM estimator when there exist some nonstationary variables in the model.

Kitamura and Phillips (1997) study GMM estimation for a linear regression model with

some nonstationary variables. This is an important deficiency in the literature since

many economic time series are regarded as nonstationary processes characterized by

the unit root hypothesis, as documented by many researchers since Nelson and Plosser

(1982). This paper studies the GMM when the model contains some nonstationary time

series with a unit root.

In the presence of a unit root, the behavior of the GMM estimator is not standard, in

general, as in the case of most of the other classical estimators. In this paper we study

large sample properties of the GMM estimator, when some variables in the model con-

tain a unit root. We will show that the GMM estimator is a consistent estimator regard-

less of whether or not the model under study contains some nonstationary variables

with a unit root. - On the other hand, the asymptotic distribution of the GMM estima-

tor in such a situation is usually represented by a function of nonstandard stochastic

processes. Such nonstandard limiting behavior of the GMM estimator in the presence

of unit roots causes difficulty in statistical inference. However, under a reasonable

condition the asymptotic distribution of the GMM estimator is described by a mixed

normal distribution. Although the mixed normal distribution is not a standard distri-

bution, we can construct a chi-square test statistic for testing the validity of theoretical

restrictions implied in an econometric model.

The discussion of this paper goes as follows. Section 2 studies consistency of the

GMM estimator in the presence of nonstationary variables. In section 3, we investigate

the asymptotic distribution of the GMM estimator. Section 4 develops a procedure

for testing the validity of moment restrictions of the model by applying the result of
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section 3. Section 5 concludes the paper.

2 Consistency of the GMM Estimator

Let xt be a p× 1 vector of stochastic processes defined on a probability space (Ω,F , P).

A finite segment of a particular realization of the process, i.e., {xt(ω0) : 1 ≤ t ≤ T} for

some ω0 ∈ Ω is the observed data.

The GMM procedure is based on the moment condition

(2.1) E[ f (xt, β0)] = 0,

where the function f (·, ·) represents an r × 1 vector of moment restrictions, and β is

a q× 1 vector of parameters. In economics, a set of theoretical restrictions are usually

given by functional relations among variables:

0 = F(x1t, β0)

where x1t is a p1 × 1 vector of variables. An econometric model for these theoretical

relations is given by

(2.2) ut = F(x1t, β0)

where ut is a disturbance. To estimate the model (2.2) we sometimes need a set of

instrumental variables zt that is obtained from x2t, a p2 × 1 vector of variables:

(2.3) zt = G(x2t, β0),

which, with the disturbance ut, satisfies a set of orthogonality conditions

(2.4) E[ut ⊗ zt] = 0.

Notice that ut may be a vector, and each element of zt in this case is applied to each

element of ut. Now, writing

(2.5) f (xt, β0) = F(x1t, β0)⊗ G(x2t, β0),
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where xt = (x′1t, x′2t)
′, we have the moment condition (2.1).

One of the key assumptions in the GMM literature is that the variable xt is station-

ary and ergodic. In recent years, however, many economic and financial time series

are found to be nonstationary processes, especially I(1) processes as defined by Engle

and Granger (1987). Little is known about the GMM estimator when there exist some

nonstationary variables in the model. In this paper we investigate large sample prop-

erties of the GMM estimator and discuss some inference issue when some of variables

in xt are nonstationary.

Thus, let xt = (x1t, · · · , xpt)′ be such that

xit = ρixit−1 + εit.

where ρi ≤ 1 is a constant. If ρi = 1 then xit is an I(1) process. While allowing that some

of variables in xt are I(1), we assume that the following is satisfied for the disturbance

ut, instrument zt, and the driving force εit:

Assumption 2.1 Let wt = ut ⊗ zt. Assume that (wt, εt) is jointly stationary and ergodic.

A sufficient condition for the Assumption 2.1 is

Assumption 2.1′ The process (ut, zt, εt) is jointly stationary and ergodic.

Usually the equation (2.2) is specified as an approximation to an equilibrium relation

among components of xt. If the equilibrium concept is to have any relevance for the

specification of econometric models, it should be the case that the equilibrium error ut

usually has a small value and does not persist for a long time. Therefore, the assump-

tion of ut being stationary is reasonable. On the other hand, the assumption of the

instrumental variable zt being stationary seems difficult to make when some compo-

nents of xt are I(1). One candidate for the stationary instrument zt is obtained from

(2.6) zt = α′xt−1

where α is a cointegration vector. However, we could obtain an instrument from a

nonlinear relation G satisfying (2.3) and (2.4) that are better than α′xt−1 in (2.6).
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Assumption 2.2 The parameter space S is a convex subset of IRq that contains β0 in its inte-

rior, and the metric space (S, σ) is separable, where σ denotes a metric on S.

Assumption 2.3 f (·, β) is Borel measurable for each β ∈ S, and f (x, ·) is continuous on S

for each x ∈ IRq.

The GMM estimation combines cross equation information by a sequence of ran-

dom weighting matrices {aT, T ≥ 1} that is of (s× r) where q ≤ s ≤ r.

Assumption 2.4 The sequence of random weighting matrices {aT, T ≥ 1} converge to a

constant matrix a0 in probability.

We will denote

ft(ω, β) = f [xt(ω), β)]

and introduce some notations:

gT(ω, β) =
1
T

T

∑
t=1

ft(ω, β),

hT(ω, β) = aT(ω)gT(ω, β).

Definition 2.1 The GMM estimator {bT(ω) : T ≥ 1}, for ω ∈ Ω and for a suitably chosen

aT(ω), is a sequence of random vectors such that

bT(ω) = arg min
β

hT(ω, β)′hT(ω, β).

Under Assumptions 2.2-2.3 the GMM estimator is well defined for any given aT. Hansen

(1982) finds an optimality condition for the choice of aT. In the case of the variable xt

being stationary the optimal choice of aT is such that a′TaT = Ŝ−1 where Ŝ is a consistent

estimator of the long-run variance-covariance of the series {wt}.

To get consistency of the GMM estimator, we introduce the following condition.

Assumption 2.5 Let U(β0, η) be an open neighborhood of β0 (an open ball in S centered at

β0) with radius η. For any η > 0 there exists k(η) > 0 such that

lim sup
T↗∞

P[ sup
S\U(β0,η)

[hT(β0)′hT(β0)− hT(β)′hT(β)] ≤ −k(η)] = 1,

where lim P[hT(β0)′hT(β0) < ∞] = 1.
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The above assumption is essentially an identification condition for β0. Usually this

condition is more easily satisfied when xt contains some I(1) processes than the case

of pure stationarity. This is because hT(β0) → 0, while hT(β) ↗ ∞ for β 6= β0 as

T ↗ ∞, which is shown by the following: By a law of large numbers, it can be shown

that

hT(β0) ≡ aT
1
T

T

∑
t=1

wt
P−→ a0E[ f (β0)] = 0

for {wt} satisfying Assumption 1, where “P” denotes “in P-probability.” To see that

hT(β) ↗ ∞ for β 6= β0 as T ↗ ∞, consider a linear model, without loss of generality:

(2.7) x1t = β10 + β20x2t + β30x3t + wt,

where x2t and x3t are scalr processes such that

x2t = ρx2t−1 + e3t, |ρ| < 1,

x3t = x3t−1 + e3t

where e3t is an iid random variable. Thus, x2t is a stationary process, and x3t is an I(1)

process. Suppose that (2.7) can be written by

f (xt, β0) = wt,

where

f (xt, β) = x1t − β1 − β2x2t − β3x3t.

For β 6= β0,

(2.8) T−1
T

∑
t=1

f (xt, β) = T−1
T

∑
t=1

f (xt, β0) + {T−1
T

∑
t=1

f (xt, β)− T−1
T

∑
t=1

f (xt, β0)}

= T−1
T

∑
t=1

f (xt, β0) + (β1 − β10) + (β2 − β20)T−1
T

∑
t=1

x2t + (β3 − β30)T−1
T

∑
t=1

x3t.

But, by a functional central limit theorem,

(2.9) T−3/2
T

∑
t=1

x3t =⇒
∫ 1

0
W(r)dr,

6

Kim, J.-Y. (2008) / JETEM 19(1) 1-16



where W(·) is a standard Wiener process, and ‘=⇒’ denotes weak convergence of one

process to another, so that

P
[
|T−1 ∑T

t=1 x3t| > M
]

= P
[
|T1/2T−3/2 ∑T

t=1 x3t| > M
]
−→ 1

as T ↗ ∞, where M is a big real number. Hence from (2.8) T−1 ∑T
t=1 f (xt, β) diverges

as T ↗ ∞ for β = (β10, β20, β3) with β3 6= β30. Notice that from (2.9)

(2.10) lim
T↗∞

P[|T−1
T

∑
t=1

x3t| = 0] = 0,

in other words, |T−1 ∑T
t=1 x3t| > 0 in probability.

(2.9) and (2.10) implies that

(2.11) (β3 − β30)T−1
T

∑
t=1

x3t = Op(T1/2)

for β3 6= β30. By a similar argument, we have for i = 1, 2

(2.12) (βi − βi0)T−1
T

∑
t=1

xit = Op(1)

for βi 6= βi0. It follows, then, that for β ∈ S \U(β0, η)

(2.13) hT(β0)′hT(β0)− hT(β)′hT(β) = Op(T)

as the dominant term of the left hand side of (2.13) is of Op(T) from (2.11) and (2.12).

Thus, we have the condition in Assumption 2.5 satisfied for the model (2.7).

Assumptions 2.1-2.5 are sufficient for the existence and consistency of the GMM

estimator.

Theorem 2.1 Under Assumptions 2.1-2.5, a GMM estimator bT exists and converges to β0

in probability.

Remark 1: (1) When all components of xt are I(1) variables, the convergence of the

GMM estimator is usually achieved only in “in probability” sense as the limiting be-

havior of some parts of the model is characterized in the sense of “weak convergence”
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as in (2.9).

(2) The assumption 2.1 and 2.5 are introduced for a model with some I(1) processes.

On the other hand, the other assumptions (2.2-2.4) are not particular for a model with

I(1) variables.

(3) A key condition for the consistency of the GMM estimator is the identification con-

dition (Assumption 2.5). As is explained above Assumption 2.5 is more easily satisfied

in the case of I(1) variables than in the case of pure stationarity. Thus, consistency

of the estimator is in a sense more easily established in the former case, following the

approach of Wooldridge and White (1985).

3 The Asymptotic Distribution of the GMM Estimator

In this section we investigate the asymptotic distribution of the GMM estimator when

some of variables in the model (2.1) are I(1) processes. As in the previous section, we

begin our discussion by describing assumptions needed to obtain the result.

Assumption 3.1 ∂ f (·, β)/∂β is Borel measurable for each β ∈ S, and ∂ f (x, ·)/∂β is contin-

uous on S for each x ∈ IRq.

We need some conditions for the first “moment” of ∂ f (xt, β)/∂β. When xt contains

some I(1) variables, the usual arithmetic sample mean T−1 ∑T
t=1 ∂ f (xt, β)/∂β does not

have a finite limit since each component of ∑T
t=1 ∂ f (xt, β)/∂β does not have a homo-

geneous order of magnitude. To see this, consider the example (2.7). By a law of large

numbers and by a functional central limit theorem, respectively, we have

(3.1) T−1
T

∑
t=1

∂ f (xt, β)
∂β2

= T−1
T

∑
t=1

x2t → E[x2t],

(3.2) T−3/2
T

∑
t=1

∂ f (xt, β)
∂β3

= T−3/2
T

∑
t=1

x3t =⇒
∫ 1

0
W(r)dr,

which implies that
T

∑
t=1

∂ f (xt, β)
∂β2

= Op(T),
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but
T

∑
n=1

∂ f (xt, β)
∂β3

= Op(T3/2).

To avoid the above difficulty in defining a sample moment of ∂ f (xt, β)/∂β, we intro-

duce a diagonal matrix ΥT that properly normalizes ∑T
t=1 ∂ f (xt, β0)/∂β: Thus, let

ΥT = diag(Op,1, ..., Op,q)

where Op,i = maxj{Op,ij} where Op,ij is the order of magnitude of the ijth element of

{∑T
t=1 ∂ f (xt, β0)/∂β} for i = 1, ..., r and j = 1, ..., q. In the following analysis it becomes

apparent that Op,i is the order of magnitude of the ith component of bT. Thus, ΥT is a

diagonal matrix whose ith diagonal element is related to the order of magnitude of the

ith element of a random process for which ΥT is applied. For in Theorem 3.1 the order

of magnitude of biT is the ith diagonal element of ΥT divided by
√

T. Using ΥT, we can

specify the following condition:

Assumption 3.2 Let dT(β) = {aT ∑T
t=1 ∂ f (xt, β)/∂β}Υ−1

T . Assume that dT(β0) converges

weakly to d0, where d0 is a stochastic process such that P[|d0,ij| < ∞] = 1 for all i = 1, ..., s,

j = 1, ..., q, and P[det(d′0d0) 6= 0] = 1.

If all the components of xt are stationary and ergodic, the normalizing matrix ΥT re-

duces to a degenerate matrix, ΥT = TIq, in which case

dT(β0) = aT

T

∑
t=1

∂ f (xt, β0)
∂β

Υ−1
T = aTT−1

T

∑
t=1

∂ f (xt, β0)
∂β

−→ a0E[
∂ f (xt, β0)

∂β
].

We may establish convergence of dT(β) in Assumption 3.2 under some conditions on

εt. For example, we can assume that the process εt is such that (a) E[εit] = 0 for all t;

(b) supt E|εit|β < ∞ for some β > 2; (c) A long-run variance of εt exists; (d) {εt}∞
1 is a

strong mixing with mixing coefficients αm that satisfy ∑∞
1 α

1−2/β
m < ∞.

We need a continuity condition for dT(β) with respect to β:

Assumption 3.3 Let λT(ω, β, δ) = sup{‖dT(ω, β)− dT(ω, α)‖ : α ∈ S, σ(β, α) < δ} for

9
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T ≥ 1, ω ∈ Ω, δ > 0, and ‖ · ‖ denotes the norm of a matrix.2 Assume that

lim
T↗∞

lim
δ↓0

P[λT(ω, β0, δ) < ε] = 1

for each ε > 0.

From the above conditions we have the following result:

Lemma 3.1 Suppose that Assumptions 2.1-2.5 and 3.1-3.3 are satisfied. Then

dT(bT) ≡ aTT
∂gT(bT)

∂β
Υ−1

T =⇒ d0.

Recall that

wt = f (xt, β0) for t = 1, 2, ...

Let

vj = E[wt+j|wt, wt−1, ...]− E[wt+j|wt−1, wt−2, ...] for j ≥ 0.

Notice that the basic properties of vj does not depend on the index t since {wt} is

a stationary process. Also, notice that {vj} is a martingale difference sequence. The

processes wt and vj satisfy the following conditions:

Assumption 3.4 E[wtw′
t] exists and is finite, E[wt+j|wt, wt−1, ...] converges in mean square

to zero, and ∑∞
j=0 E[v′jvj]1/2 is finite.

The Assumption 3.4 provides sufficient conditions for applying a central limit theorem

for the stationary and ergodic process wt by Gordin (1969). Now denote

Rw(j) = E[wj+1w′
1]

and

Sw =
∞

∑
j=1

Rw(j).

The (r × r) matrix Sw is the long-run variance-covariance matrix of the process {wt}.

The following result is a central limit theorem due to Gordin (1969):

2The norm of an n× n matrix A is defined by ‖A‖ = sup{|Ax| : x ∈ IRn, |x| ≤ 1} where |Ax| is the

usual Euclidean norm on IRn.
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Lemma 3.2 Under Assumptions 2.1 and 3.4,

T−1/2
T

∑
t=1

wt =⇒ Zw,

where Zw ∼ N(0, Sw).

We can also establish joint convergence of (dT(bT), T−1/2 ∑T
1 wt):

(dT(bT), T−1/2
T

∑
1

wt) =⇒ (d0, Zw)

under the same conditions for Lemmas 3.1 and 3.2. Now we obtain the following

result:

Theorem 3.1 Suppose that Assumptions 2.1-2.5 and 3.1-3.4 are satisfied.

Let DT = ΥT/
√

T. Then

DT(bT − β0) =⇒ B−1
2 B1

where B1 = d′0a0Zw and B2 = d′0d0.

Remark 2: (1) The limiting random process B−1
2 B1 = (d′0d0)−1d′0a0Zw in Theorem 3.1

is a mixed normal process. When all the components of xt are stationary variables, the

limiting process becomes a normal random variable.

(2) The assumptions in this section can be easily checked for a linear model. For a

nonlinear model the assumptions may not be easy to check depending on the form of

the nonlinear specifications. However, once the order of magnitude of each component

of the sum {∑T
t=1 ∂ f (xt, β0)/∂β} is known, we can figure out what the behavior of the

GMM estimator is. For a given function f the exact forms of the limiting processes, B1

and B2, can be derived by a functional central limit theorem.

4 Testing Over-identifying Restrictions

If the number of orthogonality conditions r exceeds the number of parameters to be

estimated q, tests of the restrictions implied by the econometric model are available.

11

Journal of Economic Theory and Econometrics



When all the elements of xt are stationary, the test procedure is discussed in Hansen

(1982). The procedure is viewed as an extension of Sargan (1958)’s test for the valid-

ity of instruments and is often called a test for “over-identifying” restrictions. In this

section, we discuss a procedure for testing over-identifying restrictions when some

elements of xt are nonstationary processes.

In the last section we found that, if there exist some unit roots in a model, the stan-

dard GMM estimator has a mixed normal asymptotic distribution. It is not a standard

distribution, and its distribution function is unknown. Fortunately, however, we can

construct a test statistic for testing over-identifying restrictions which has a chi-square

asymptotic distribution. Our test is based on the following statistic:

Ξ = (T)−1
T

∑
t=1

f (xt, bT)′Ŝ−1
T

T

∑
t=1

f (xt, bT)

where ŜT is a consistent estimator of Sw.

The asymptotic distribution of the test statistic Ξ is given by the following theorem:

Theorem 4.1 Under Assumptions 2.1-2.5 and 3.1-3.4,

Ξ d−→ χ2(r− q)

where χ2(r− q) is a chi-square random variable with (r− q) degrees of freedom.

The above theorem extends the test of over-identifying restrictions of Hansen (1982) to

the case of nonstationary variables.

5 Conclusions

We have considered the GMM when the model contains some nonstationary time se-

ries with a unit root. We have shown that the GMM estimator is a consistent estimator

regardless of the existence of the unit roots. However, different from the case of sta-

tionarity the rate of convergence of the estimator depends on the location of the unit

roots. On the other hand, the asymptotic distribution of the GMM estimator is non-

normal and depends on the functional form of the theoretical restrictions implied by
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an econometric model. However, under a reasonable condition that implies that the

economic relations usually have mild and non-persistent fluctuations around the state

of equilibrium, the asymptotic distribution of the GMM estimator is described by a

mixted normal distribution. We have shown that in this case it is possible to test overi-

dentifying restrictions based on the usual chi-square test in the GMM framework.
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Appendix: Mathematical Proofs

Proof of Theorem 2.1

Given Assumptions 2.3-2.4, the existence of the GMM estimator is a direct conse-

quence of lemma 2 of Jennrich (1969). Also, given Assumptions 2.2-2.5, the consistency

of the GMM estimator is a direct consequence of theorem 2.3 of Wooldridge and White

(1985).

Proof of Lemma 3.1

Under Assumptions 2.1-2.5, bT is well defined and bT → β0 as is shown in Theorem

2.1. By adding Assumption 3.1 to these assumptions, dT(bT) is well defined. Now, by

Assumption 3.3 ‖dT(bT)− dT(β0)‖ → 0 as bT → β0. But by Assumption 3.2 dT(β0) ⇒
d0.

Proof of Lemma 3.2

By Theorem 1 in Hannan (1973), the conclusion follows.

Proof of Theorem 3.1

Write DgT = ∂gT/∂β. Let

DgT(β1, ..., βr) =


∂g1

T
∂β (β1)

...
∂gr

T
∂β (βr)

 .
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By Taylor’s theorem and Assumptions 2.2 and 3.1, for sufficient large T we can write

gT(bT) = gT(β0) + DgT(b̄1
T, ..., b̄r

T)(bT − β0),

where b̄i
T is on the line segment between β0 and bT for i = 1, ..., r. Premultiplying by

a∗T = dT(bT)′aT, we get

(1) a∗TgT(bT) = a∗TgT(β0) + a∗TDgT(b̄1
T, ..., b̄r

T)(bT − β0).

From the first order condition for maximization, a∗TgT(bT) = 0, so that for sufficiently

large T, the equation (1) can be written as

(2) (bT − β0) = −[a∗TDgT(b̄1
T, ..., b̄r

T)]−1a∗TgT(β0).

Rewriting the above equation,

(3) DT(bT − β0) = −[a∗TTDgT(b̄1
T, ..., b̄r

T)Υ−1
T ]−1a∗T

√
TgT(β0)

= −[d′TaTTDgT(b̄1
T, ..., b̄r

T)Υ−1
T ]−1d′TaT

√
TgT(β0)

where DT = ΥT/
√

T. Since bT
p→ β0 under Assumptions 2.1-2.5, it follows that b̄i

T
p→

β0 for i = 1, ..., r. Thus, Lemma 3.1 implies that aTTDgT(b̄1
T, ..., b̄r

T)Υ−1
T ⇒ d0. Notice

that
√

TgT(β0)
d→ Zw by Lemma 3.2. Also, the joint convergence of (dT(bT), T−1/2 ∑T

1 wt)

is established under the same conditions as in Lemmas 3.1 and 3.2. Then, by a func-

tional central limit theorem and the continuous mapping theorem as in Herrndorf

(1984) and Chan and Wei (1988),

DT(b∗T − β0) =⇒ (d′0d0)−1d′0a0Zw.

Proof of Theorem 4.1

By Taylor’s theorem and Assumptions 2.2 and 3.1, for sufficient large T we can

write

(4) T−1/2
T

∑
t=1

f (xt, bT) = T−1/2
T

∑
t=1

f (xt, β0)

+(TDgT(b̄1
T, ..., b̄r

T)Υ−1
T )

ΥT√
T

(bT − β0),
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where b̄i
T for i = 1, ..., r, and TDgT(b̄1

T, ..., b̄r
T) are as defined in the proof of Theorem

3.1. Also from (3) in the proof of Theorem 3.1, we have the following results

DT(bT − β0) = −[dT(bT)′(aTTDgT(b̄1
T, ..., b̄r

T)Υ−1
T )]−1dT(bT)′aT

√
TgT(β0).

Hence, (4) can be rewritten as

(5) T−1/2
T

∑
t=1

f (xt, bT)

= {I − (TDgT(b̄1
T, ..., b̄r

T)Υ−1
T )[dT(bT)′(aTTDgT(b̄1

T, ..., b̄r
T)Υ−1

T )]−1

× dT(bT)′aT}T−1/2
T

∑
t=1

f (xt, β0).

Let

AT = I − (TDgT(b̄1
T, ..., b̄r

T)Υ−1
T )[dT(bT)′(aTTDgT(b̄1

T, ..., b̄r
T)Υ−1

T )]−1dT(bT)′aT.

We can check that AT is an idempotent matrix with rank r− q. Also, Ŝ−1
T AT ⇒ S−1

w A0

where S−1
w A0 is a symmetric matrix with Ŝ−1

T = a′TaT for optimality of the GMM esti-

mator. Then,

Ξ =
[

T−1/2 ∑T
t=1 f (xt, bT)

]′
Ŝ−1

T

[
T−1/2 ∑T

t=1 f (xt, bT)
]

=
[
S−1/2

w T−1/2 ∑T
t=1 f (xt, β0)

]′
MT

[
S−1/2

w T−1/2 ∑T
t=1 f (xt, β0)

]
where MT = (Ŝ−1/2

T ATS1/2
w )′(Ŝ−1/2

T ATS1/2
w ). Notice that

MT ⇒ (S−1/2
w A0S1/2

w )′(S−1/2
w A0S1/2

w ) = S−1/2
w A0S1/2

w ,

which is a symmetric and idempotent matrix with rank r − q. Then, with Lemma 3.2

the conclusion follows.
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