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1. Introduction

We consider a model of state-contingent goods allocation. Each agent has a set of be-

liefs, or priors, and evaluates an allocation according to the minimum expected utility

over the set of priors. Preferences of this type are known as maximin expected utility

preferences and their axiomatic foundation is offered by Gilboa and Schmeidler (1989).

Our main objective is to study (allocation) rules satisfying the three well-known ax-

ioms, efficiency, individual rationality, and strategy-proofness (Gibbard 1973; Satterth-

waite 1975). Numerous authors have shown that the three axioms are incompatible in

exchange economies: see Hurwicz (1972), Dasgupta et al. (1979), Zhou (1991), Schum-

mer (1997), and Serizawa (2002), Serizawa and Weymark (2003), Ju (2003, 2005), etc.

Of particular relevance to our work is Ju (2005). This paper considers the model

of state-contingent goods allocation where agents have the common prior and expected

utility preferences. The main results in Ju (2005) show that when aggregate certainty

(constant aggregate endowments across states) prevails, the three axioms are compati-

ble; otherwise, they are incompatible. However, the family of rules satisfying the three

axioms in the aggregate certainty case is extremely restricted; they are fixed price se-

lections from Walrasian equilibrium allocations. We show that in the case of maximin

expected utility preferences, the family is larger due to the well-known indeterminacy

of equilibria. We characterize this family imposing the three axioms. It consists of

both Walrasian and non-Walrasian rules. When aggregate uncertainty holds, we find

results that give mixed messages, yet, closer to the negative side. When there are two

states and two agents with the same set of non-degenerate priors, only dictatorial rules

are efficient and strategy-proof. But when there is a degenerate prior, we provide a

characterization result similar to the aggregate certainty case.

The rest of this paper is organized as follows. Section 2. explains the model and

basic concepts. Section 3. offers the main results.
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2. The Model and Basic Concepts

Consider a society consisting of n ≥ 2 agents, N ≡ {1, · · · , n}. There is a finite number

S of uncertain states with S ≥ 2. Denote the set of states by S ≡ {1, . . . , S}. At each

state s ∈ S, a fixed amount Ωs of a single good, or money, is available in the society,

which is the sum of individual amounts owned by each agent i ∈ N. Let Ω ≡ (Ωs)s∈S

be the aggregate endowment. Aggregate certainty holds if the aggregate endowment

is composed of a constant amount across states, that is, Ω1 = · · · = ΩS. Otherwise,

aggregate uncertainty holds. Let W ≡ {(ωi)N ∈ RS×N
+ :

∑
N ωi = Ω} be the set of

(individual) endowments profiles. For each profile ω ≡ (ωi)N ∈ W, the ith component

ωi ≡ (ωis)s∈S indicates agent i’s endowment. Note that although we admit variability

of individual endowments, we assume the aggregate endowment to be fixed.

Agents can share their individual risks by allocating the aggregate endowment prior

to the realization of a state in S. An allocation is a list of state-contingent bundles

indexed by agents, (zi)N ∈ RN×S
+ , where for each i ∈ N, the ith bundle zi indicates

what agent i receives in various states. It is feasible if the sum of individual bundles

is less than or equal to the aggregate endowment,
∑

N zi ≤ Ω.1 The set of all feasible

allocations is denoted by Z, of which the generic element is z ≡ (zi)i∈N .

Each agent has multiple beliefs about uncertain states, or priors, and the set of

priors is revealed. For each i ∈ N , denote agent i’s set of priors by Πi. Agent i ∈ N

has the so-called maximin expected utility preferences (Gilboa and Schmeidler 1989),

briefly MEU preferences Ri that are represented by the set of i’s priors Πi and an index

function ui : R+ → R as follow: for each pair x, y ∈ RS
+,

x Ri y if and only if min
π∈Πi

∑
s∈S

πsui (xs) ≥ min
π∈Πi

∑
s∈S

πsui (xs) .

We assume that preferences are continuous, monotonic, and convex.2 Note that by

1Notation for vector inequalities are as follows. For each x, x′ ∈ RT , we write x ≥ x′ if for all s ∈ T,
xs ≥ x′

s and for some r ∈ T , xr > x′
r. We write x > x′ if for all s ∈ T, xs > x′

s.
2A preference is continuous if for each bundle x, both the set of all bundles weakly preferred to x

and the set of all bundles to which x is weakly preferred are closed. A preference is monotonic if for
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continuity, monotonicity and convexity, ui (·) is continuous, strictly increasing and con-

cave. We further assume that for each i ∈ N , the set of i’s priors Πi is convex and

compact and that the set of common priors Π∗ ≡ ∩i∈NΠi is full dimensional, that is,

the interior of Π∗ in ∆S−1 is non-empty. Let Ri be the family of such preferences of

agent i ∈ N . Note that by full dimensionality of Π∗, if x is not a full insurance bundle,

then there is π ∈ Π∗ such that
∑

s∈S πsui (xs) > minπ′i
∑

s∈S π′
sui (xs).

3

An economy is characterized by a preference profile R ≡ (Ri)i∈N ∈ ×i∈NRi and

a profile of individual endowments ω ≡ (ωi)N ∈ W . Let E ≡ [×i∈NRi] × W be the

family of economies. A risk sharing rule, or simply a rule on E is a function φ : E → Z

associating with each economy a single feasible allocation.

We now define three main axioms for rules. An allocation is efficient if it is feasible

and no other feasible allocation makes someone better off without making someone

else worse off. For each R ∈ ×i∈NRi, let P (R) be the set of all efficient allocations

for R. Note that this set depends not on individual endowments but on the aggregate

endowment, which is fixed; thus no extra argument ω. For each i ∈ N, let Pi (R) ≡ {zi :

z ∈ P (R)}. An allocation is individually rational if each agent receives a bundle that

is at least as good as his endowment. A rule φ is efficient if it always recommends an

efficient allocation. It is individually rational if it always recommends an individually

rational allocation. It is strategy-proofness if no one can ever benefit by misrepresenting

his preference, independently of others’ representations, that is, for each (R, ω) ∈ E ,

each i ∈ N, and each R′
i ∈ R, φi (R, ω) Ri φi ((R

′
i, R−i) , ω) .

A Walrasian (equilibrium) allocation for (R,ω) ∈ E is an allocation z ∈ Z with a

price vector p ∈ ∆S−1 such that p · zi ≤ p ·ωi and for each i ∈ N and each z′i ∈ RS
+ with

p · z′i ≤ p ·ωi, zi Ri z′i. We call p an equilibrium price. For each (R, ω) ∈ E , let W (R,ω)

all x, y, x is weakly preferred to y whenever x = y and x is preferred to y whenever x > y. It is strictly
monotonic if for all x, y, x is preferred to y whenever x ≥ y. Finally, a preference is convex if for all x,
the set of all bundles preferred to x is convex.

3If for each π ∈ Π∗,
∑

s∈S πsui (xs) = minπ′∈Πi

∑
s∈S π′

sui (xs), then Π∗ is a subset of {π ∈
∆S−1 :

∑
s∈S πsui (xs) = minπ′∈Πi

∑
s∈S π′

sui (xs)} which has no interior point in ∆S−1 because of
the constraint

∑
s∈S πsui (xs) = minπ′∈Πi

∑
s∈S π′

sui (xs). Note that this constraint is independent of∑
s∈S πs = 1 because x is not a full insurance bundle.
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be the set of Walrasian allocations. We refer to the set valued function W : E � Z

as the Walrasian correspondence. Since preferences are continuous, monotonic, and

convex, it is non-empty valued.4 A selection from the Walrasian correspondence is a

rule associating with each economy a single Walrasian allocation. When the selection

is made using a fixed equilibrium price, it is called a fixed price selection. Clearly, any

selection from the Walrasian correspondence is efficient and individually rational. Some

of our results will explain when there exist strategy-proof selections.

A rule φ is dictatorial if for each ω ∈ W , there is an agent i ∈ N, the “dictator”,

who always receives the entire aggregate endowment Ω independently of preferences,

that is, for each R ∈ ×i∈NRi, φi (R,ω) = Ω. Note that the dictator may vary across

endowments profiles. When preferences are strictly monotonic,5 any dictatorial rule is

efficient. Since for each ω ∈ W , dictatorial rules are constant across economies with

endowments profile ω, they are strategy-proof. However, since at least one agent receives

0, no dictatorial rule is individually rational. Another simple example is the no-trade

rule that always recommends endowments profiles. Clearly, no-trade rule is individually

rational and strategy-proof. However, it is not efficient because no-trade allocations are

not always efficient.

When there are only two states, for each agent i ∈ N , the following two priors

in Πi play crucial roles. Let πi1 ≡ arg max{π1 : π ∈ Πi} be the prior with the

greatest probability of state 1. Let πi2 ≡ arg max{π2 : π ∈ Πi} be the prior with

the greatest probability of state 2. Then for all index functions ui : R+ → R and all

x ∈ R2
+, if x1 > x2, minπ∈Πi

∑
s∈S πsui (xs) =

∑
s∈S πi2

s ui (xs) <
∑

s∈S πi1
s ui (xs) and if

x1 < x2, minπ∈Πi

∑
s∈S πsui (xs) =

∑
s∈S πi1

s ui (xs) <
∑

s∈S πi2
s ui (xs) . Thus each MEU

preference Ri coincides with the EU (expected utility) preference with prior πi2 over

{x ∈ R2
+ : x1 ≥ x2} and with the EU preference with prior πi1 over {x ∈ R2

+ : x1 ≤ x2}.

The following concepts or notation will be used later. A full insurance bundle is

a state-contingent bundle consisting of a constant amount of money across states. A

4See Mas-Colell, Whinston, and Green (1995).
5Preferences are strictly monotonic, when each agent’s priors are non-degenerate.
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full insurance allocation is an allocation consisting of only full insurance bundles. Let

BFI be the set of all full insurance bundles. Let AFI be the set of all full insurance

allocations. For all p ∈ RS
+ and all ω ∈ RS

+, let B (p, ω) ≡ {y ∈ RS
+ : p · y ≤ p · ω}.

For all X ⊆ RS
+, all i ∈ N, and all Ri ∈ Ri, let Max[Ri, X] be the set of all best

bundles for Ri in X. Let p ∈ RS
++, R ∈ ×i∈NRi, and i ∈ N. For each x ∈ RS

+, let

H (p, x) ≡ {y ∈ RS
+ : p · y ≥ p · x}, UC (Ri, x) ≡ {y ∈ RS

+ : y Ri x}, SUC (Ri, x) ≡

{y ∈ RS
+ : y Pi x}, and LC (Ri, x) ≡ {y ∈ RS

+ : x Ri y}.6 For each x ∈ RS
+, p supports

Ri at x if UC (Ri, x) ⊆ H(p, x). For each z ≡ (zi)N ∈ RN×S, p supports R at z if for

each i ∈ N, p supports Ri at zi.

3. Results

3.1. Aggregate Certainty

In this section, we consider the aggregate certainty case. Note that for each agent

i ∈ N and each full insurance bundle zi ∈ BFI, if there is a prior π ∈ Πi such that

π · zi ≥ π · ωi, then zi is individually rational for all MEU preferences associated with

Πi and vice versa.7 Thus, we call such a bundle always rationalizable. For each i ∈ N

and each ωi ∈ Rl
+, let Bi

arFI (ωi) ≡ {zi ∈ BFI : for some π ∈ Πi, π · zi ≥ π · ωi} be the

set of always rationalizable full insurance bundles of agent i with endowment ωi. Let

AarFI (ω) ≡ {z ∈ Z : for all i ∈ N, zi ∈ Bi
arFI (ωi)} be the set of always rationalizable

full insurance allocations under endowments profile ω. If ω has aggregate certainty and

there is a common prior (i.e., Π∗ ̸= ∅), then AarFI(ω) ̸= ∅. This is because by aggregate

certainty, any full insurance allocation where each agent i ∈ N receives the expected

income under a common prior π ∈ Π∗ for sure is feasible.

A rule φ : E → Z is a selection from always rationalizable full insurance allocations

6We use H for “half space”, UC for “upper contour set”, SUC for “strict upper contour set”, and
LC for “lower contour set”.

7Since π·zi ≥ π·ωi for some π ∈ Πi and ui (·) is strictly increasing and concave, ui(π·zi) ≥ ui(π·ωi) ≥∑
s∈S πsui (ωis) ≥ minπ′∈Πi

∑
s∈S π′

sui (ωis). Because zi is a symmetric bundle, then for each π′ ∈ Πi,∑
s∈S π′

sui (zis) = ui(π′ · zi). Therefore, minπ′∈Πi

∑
s∈S π′

sui (zis) ≥ minπ′∈Πi

∑
s∈S π′

sui (ωis).
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if for each (R,ω) ∈ E , φ (R, ω) ∈ AarFI (ω) . It is own preference invariant if for each

i ∈ N , each (R, ω) ∈ E , and each R′
i ∈ Ri, φi ((R

′
i, R−i) , ω) = φi (R,ω) .

The following simple characterization of efficiency is useful.

Lemma 1. Under aggregate certainty, an allocation is efficient if and only if it is a full

insurance allocation.

Proof. Assume aggregate certainty. Let R ∈ ×i∈NRi. For each i ∈ N, let ui : R+ → R

be an index function of Ri. Since each common prior π ∈ Π∗ supports R at any full

insurance allocation. then full insurance allocations are efficient. Suppose that z ∈ Z

is not a full insurance allocation. Let i ∈ N be such that zi /∈ BFI. Then by the full di-

mensionality of Π∗, there is π̄ ∈ Π∗ such that
∑

s∈S π̄sui(zis) > minπ∈Πi

∑
s∈S πsui(zis)

(see Footnote 3). Let µ̄i ≡ π̄ · zi. Then by concavity of ui, ui(µ̄i) ≥
∑

s∈S π̄sui(zis)

and so (µ̄i, · · · , µ̄i) Pi zi. For each j ̸= i, let µ̄j ≡ π̄ · zj. Then by concavity of uj,

uj(µ̄j) ≥
∑

s∈S π̄suj(zjs). Since π̄ ∈ Πj,
∑

s∈S π̄suj(zjs) ≥ minπ∈Π

∑
s∈S πsuj(zjs).

Hence
(
µ̄j, · · · , µ̄j

)
Rj zj. Let z̄ be the allocation where each agent j ∈ N receives

full insurance bundle (µ̄j, . . . , µ̄j). By aggregate certainty, z̄ is feasible. Therefore, z is

not efficient, contradicting the initial assumption.

Under “strict concavity” and “differentiability” assumptions on utility indices, the

same characterization of efficient allocation follows from the main result by Billot et

al. (1998) (Theorem 1). When preferences are represented by concave, yet non-strictly

concave utility indices, without any restriction on the common prior set, there might

be some efficient non-full insurance allocations. Thus, the full dimensionality of the

common prior set is crucial in Lemma 1.

Now we are ready to characterize efficient, individually rational, and strategy-proof

rules.

Theorem 2. Under aggregate certainty, a rule is efficient, individually rational, and

strategy-proof if and only if it is an own preference invariant selections from always

rationalizable full insurance allocations.
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Proof. Suppose aggregate certainty. By Lemma 1, every selection from AarFI (·) is effi-

cient. As we showed above, for each ω ∈ W , all allocations in AarFI (ω) are individually

rational for all R ∈ ×i∈NRi. If a selection from AarFI (·) is own preference invariant in

addition, then it is strategy-proof.

In order to prove the converse, let φ satisfy the three axioms. Let (R,ω) ∈ D and

z ≡ φ (R, ω) . Since φ is efficient, then by Lemma 1, z is a full insurance allocation.

Suppose by contradiction z /∈ AarFI (ω) . Then there exists i ∈ N such that for all π ∈ Πi,

π · zi < π · ωi. Let uneut
i : R+ → R be a linear index function and Rneut

i be the MEU

preference represented by uneut
i . Then ωi P neut

i zi. By Lemma 1, φi ((R
neut
i , R−i) , ω) is

also a full insurance allocation. Thus by strategy-proofness, φi ((R
neut
i , R−i) , ω) = zi,

contradicting individual rationality. Therefore, φ is a selection from AarFI (ω). Own

preference invariance is a direct consequence of Lemma 1 and strategy-proofness.

Remark 3. When aggregate certainty holds, all Walrasian equilibrium allocations are

full insurance allocations. Therefore, any own preference invariant selection from the

Walrasian correspondence is efficient, individually rational, and strategy-proof. When

there is no agent whose endowment is a full insurance bundle, every own preference

invariant selection from the Walrasian correspondence is a fixed price selection. More-

over, such selections are constant functions. When there is an agent with a full in-

surance endowment, we can define other non-fixed price selections from the Walrasian

correspondence (we skip the definition of such selections; it is similar to the follow-

ing non-Walrasian rule). There are also other non-constant and non-Walrasian rules

that are efficient, individually rational, and strategy-proof. We give an example of such

rules following the same construction as in Satterthwaite and Sonnenschein (1981)

and Zhou (1991). Let φ be a rule defined as follows. For simplicity, suppose N ≡

{1, 2, 3} and S ≡ {1, 2}. Let ω ∈ W . Let π̄ ∈ Π∗ and z̄3 ∈ H (π̄, ω3) ∩ BFI. Let

A1,2 (ω) ≡ {(z1, z2) : (z1, z2, z̄3) ∈ Z, z1 ∈ B1
arFI (ω1), and z2 ∈ B2

arFI (ω2)}. If we let

z̄1 ∈ H (π̄, ω1) ∩ BFI and z̄2 ∈ H (π̄, ω2) ∩ BFI, then (z̄1, z̄2, z̄3) ∈ Z. Since π̄ ∈ Π∗,

(z̄1, z̄2) ∈ A1,2 (ω) . Therefore, A1,2 (ω) ̸= ∅. Now partition agent 3’s preferences into
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two types, type a and type b, that is, partition R3 into two nonempty subsets Ra
3 and

Rb
3. For all R ∈ ×i∈NRi, let φ3 (R) ≡ z̄3 and let

φ1 (R,ω) ≡

 Max{z1 : (z1, z2) ∈ A1,2 (ω) , for some z2}, if R3 ∈ Ra
3;

Min{z1 : (z1, z2) ∈ A1,2 (ω) , for some z2}, if R3 ∈ Rb
3.

Since agent 3’s bundle is fixed and what agents 1 and 2 receive are determined by

agent 3’s preference, then φ is own preference invariant and is an example of rules

characterized in Theorem 2. Clearly, φ is neither constant nor a selection from the

Walrasian correspondence.

3.2. Aggregate Uncertainty

In this section, we consider the aggregate uncertainty case. Unlike the previous sec-

tion, we focus on a simple case with only two states and two agents and establish two

contrasting results. When the two agents have identical sets of priors and all their

priors have non-zero probability of the state with the greater aggregate endowment,

only dictatorial rules are efficient and strategy-proof (Theorem 2). However, when a

prior has zero probability of the state with the greater aggregate endowment, the result

is completely different: any efficient and strategy-proof rule is a fixed price selection

from the Walrasian correspondence after a reallocation of endowments (Theorem 4).

We first study the case in which both agents have the same set of priors Π and all

their priors have non-zero probability of the state with the greater aggregate endow-

ment. In this case, we obtain the following result:

Theorem 4. Assume |N | = 2 and |S| = 2. Assume that aggregate uncertainty holds

and that the two agents have the same set of priors and all their priors have non-zero

probability of the state with the greater aggregate endowment. Then a rule is efficient

and strategy-proof if and only if it is dictatorial.

Proof. Without loss of generality suppose Ω1 > Ω2. Let Π be the common set of priors

of the two agents. Let C∗ ≡ {x ∈ R2
+ : x1 ≥ x2 and Ω1 − x1 ≥ Ω2 − x2}. Let
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π1 ≡ arg min{π1 : π ∈ Π} and π2 ≡ arg min{π2 : π ∈ Π}. At each allocation in C∗,

because both agents receive more at state 1 than at state 2, they apply the same prior

π2 in Π for the evaluation of z. Thus their preferences on C∗ coincide with the expected

utility preferences associated with π2. We prove below that the Pareto set is always

included in C∗. Once this is proven, we can apply Theorem 3 in Ju (2005, p.231) to

draw the desired conclusion.

Let (R, ω) ∈ E and z be an allocation such that z1 ≡ (x1, x2) /∈ C0. Then ei-

ther x1 < x2 or Ω1 − x1 < Ω2 − x2. Consider the former case (we skip the same

argument for the latter case). Then minπ∈Π

∑
s∈S πsu1 (z1s) =

∑
s∈S π1

su1 (z1s) and

minπ∈Π

∑
s∈S πsu2 (z2s) =

∑
s∈S π2

su2 (z2s). Let z̄ be such that z̄1 ≡ (π2 · x, π2 · x)

and z̄2 ≡ (Ω1 − π2 · x, Ω2 − π2 · x). Then by definition of π2, π2 · x > π1 · x and

so
∑

s∈S π1
su1 (z̄1s) > ui(π

1 · x) ≥
∑

s∈S π1
su1 (z1s), which means z̄1 P1 z1. Note that

z̄2 = λz2 + (1 − λ) (π2 · z2, π
2 · z2) for some λ ∈ (0, 1). Thus by concavity of u2 (·), z̄2

R2 z2. Therefore, z is not efficient.

Let Cp ≡ {x ∈ R2
+ : x1 = x2 or x2 = Ω2} and Cy ≡ {x ∈ R2

+ : Ω1 − x1 = Ω2 − x2

or x2 = 0}. When one and only one of the two agents has the prior under which the

probability of the state with the greater aggregate endowment equals zero, there can be

only one type of Pareto set. For example, suppose Ω1 > Ω2 and agent 1 has the prior

with the zero probability of state 1. Then agent 1 cares only about the consumption at

state 2 over the set of bundles with the greater consumption at state 1 than at state 2.

Therefore, when all priors of agent 2 have strictly positive probability of state 1, it is

not efficient to make agent 1 to consume more at state 1 than at state 2. Thus the

Pareto set is always equal to Cp. Therefore, in this case, any constant selection from

Cp is efficient and strategy-proof.

A redistribution scheme ρ : W → W is a function mapping each individual endow-

ments profile into another, possibly the same, profile. The Walrasian correspondence

under redistribution scheme ρ associates with each economy (R, ω) ∈ E the set of all

Walrasian allocations in (R, ρ (ω)).
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Theorem 5. Assume |N | = 2 and |S| = 2. Assume that aggregate uncertainty holds

and that a prior of an agent has zero probability of the state with the greater aggre-

gate endowment. Then a rule is efficient and strategy-proof if and only if there is a

redistribution scheme ρ : W → W such that the rule is a fixed price selection from the

Walrasian correspondence under the redistribution scheme ρ.

Proof. Without loss of generality suppose Ω1 > Ω2. Suppose that (0, 1) ∈ Π1 or (0, 1) ∈

Π2.

Case 1: Either (0, 1) ∈ Π1 or (0, 1) ∈ Π2 and not both.

Suppose (0, 1) ∈ Π1 (the same argument for the other case). Then every MEU

preference of agent 1 coincides with the risk neutral EU preference associated with the

prior (0, 1) , below the full insurance path. Since (0, 1) /∈ Π2, for all π ∈ Π2, π1 > 0.

Therefore for all R ∈ ×i∈NRi, P1 (R) = Cp.

We next show that given ω ∈ W , φ (·, ω) is a constant selection from Cp. Let

R,R′ ∈ ×i∈NRi, z ≡ φ (R, ω) , and z′ ≡ φ (R′, ω) . By efficiency, z, z′ ∈ Cp. Also by effi-

ciency, φ1 ((R′
1, R2) , ω) ∈ Cp. If φ1 ((R′

1, R2) , ω) ̸= z1, then either φ1 ((R′
1, R2) , ω) > z1

or φ1 ((R′
1, R2) , ω) < z1. In either case, φ violates strategy-proofness. Therefore,

φ1 ((R′
1, R2) , ω) = z1 and so φ ((R′

1, R2) , ω) = z. Similarly we show that φ ((R′
1, R2) , ω) =

z′. Therefore z = z′.

For each ω ∈ W , let ρ (ω) ≡ φ(R, ω) for some R ∈ ×i∈NRi. Then ρ is well-

defined because φ (·, ω) is constant. And φ is a fixed price selection from the Walrasian

correspondence under the redistribution scheme ρ. �

Case 2: Both (0, 1) ∈ Π1 and (0, 1) ∈ Π2.

Then for all R ∈ ×i∈NRi, P1 (R) = C∗ and both R1 and R2 coincides with the risk

neutral EU preference associated with the prior (0, 1) . Thus, in this case, each agent

cares only about the amount of money at state 2.

Let ω ∈ W . We show below that φ (·, ω) is a selection from C∗ such that φ chooses

a constant amount of money at state 2 for each agent, that is, for all R, R′ ∈ ×i∈NRi

and all i = 1, 2, φi2 (R, ω) = φi2 (R′, ω) .

71

Journal of Economic Theory and Econometrics



Let R, R′ ∈ ×i∈NRi, z ≡ φ (R, ω) , and z′ ≡ φ (R′, ω) . By efficiency, z, z′ ∈

C0. Also by efficiency, φ1 ((R′
1, R2) , ω) ∈ C0. If φ12 ((R′

1, R2) , ω) ̸= z12, then either

φ12 ((R′
1, R2) , ω) > z12 or φ12 ((R′

1, R2) , ω) < z12. In either case, since agent 1 does

not care about the amount of money at state 1, then φ violates strategy-proofness.

Therefore, φ12 ((R′
1, R2) , ω) = z12 and so (φi2 ((R′

1, R2) , ω))i=1,2 = (zi2)i=1,2 . Similarly

we show that (φi2 ((R′
1, R2) , ω))i=1,2 = (z′i2)i=1,2 . Therefore (zi2)i=1,2 = (z′i2)i=1,2 .

Now defining ρ (·) as in Case 1, we conclude that φ is the fixed price selection,

associated with the price given by the common prior (0, 1) , from the Walrasian corre-

spondence under ρ. �

Adding individual rationality, we establish the following result:

Corollary 6. Under the same assumption as in Theorem 5, a rule is efficient, indi-

vidually rational, and strategy-proof if and only if it is a fixed price selection from the

Walrasian correspondence.

Note that Theorems 4 and 5 do not cover all possible cases. For example, two agents

may have different sets of multiple priors and all their priors have non-zero probability

of the state with the greater aggregate endowment. In addition, the two results are

applicable only for the state space with two elements. Investigation of these remaining

cases is left for future research.
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