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1. Introduction
The magnitude of the long-run variance (LRV), which is the spectral density function

near the origin draws a lot of attention in time series context. The power spectrum at the

zero frequency represents long term trends in the data. In the macroeconometrics context,

long-term forecasts or long-run responses to certain shocks are concentrated on the zero

frequency in terms of spectral representation of the underlying processes. Also, in the

regression context, it is well known that heteroskedasticity and autocorrelation consistent

(HAC) covariance matrix estimator is simply proportional to the spectral density estimator

near the origin. The HAC estimators are widely used to estimate long-run variances of the

data in contexts such as unit root testing, cointegration estimation and so on. In doing so,

it is often assumed that the spectrum near the origin is strictly positive. Then, associated

theories of the LRV estimator have been well developed in the literature (Hannan (1970),

Andrews (1991) and Newey and West (1994), to name a few). On the other hand, relevant

theories when the true spectrum is zero are seldom known.

In our work, we concentrate on a degenerate situation, where the power spectrum at

the zero frequency equals to zero. This typically arises from over-di¤erencing the data.

For instance, if the true process is trend stationary, but mistakenly …rst-di¤erenced, then

it generates nil spectrum near the origin. Similar arguments can be applied to both sta-

tionary and nonstationary processes, which are di¤erenced more than the true order of the

magnitude in the data. Simply put, over-di¤erencing excessively removes the long-run in-

formation in the data. If the true spectrum is zero, existing theories in the HAC context do

not work, particularly due to the degenerate asymptotic variance. The asymptotic variance

of the LRV estimator equals to zero with the well-known rate of T=M; where T is the sam-

ple size andM is the bandwidth. Thus, in order to derive a valid limiting distribution, it is

necessary to deal with higher-order expansions of the asymptotic variance of the estimator.

We …nd that the asymptotic variance converges to a non-degenerating quantity with the

rate as big as T £M3.

We speci…cally deal with degeneracy in linear processes. A weakly dependent linear

process can be e¤ectively decomposed into long term trend parts and short rum components

through Beveridge-Nelson techniques. We derive asymptotic normality of the estimator

based on long-term trends and discuss the relationships between the variances of HAC

estimator and of long term trends. Given the result, we propose a test statistic to testing
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trend stationarity. Under the null of trend stationarity, the spectrum near the origin for

the …rst-di¤erenced process becomes zero. On the other hand, under the alternative of

di¤erence stationarity, the spectrum becomes strictly positive at the zero frequency. It

is found from simulation studies that our test has power advantages over the KPSS test,

depending on the signal-to-ratio. Thus, the proposed test can serve as an useful complement

to the KPSS test.

2. Linear Process and Degenerate Spectral Density
We consider a scalar time series xt; t = 1; 2; ¢ ¢ ¢; T; which follows a linear process with

weakly dependent structures as studied in Phillips and Solo (1992),

xt ¡ ¹ = a(L)et;=
P1

k=0 aket¡k; (1)

where et is martingale di¤erence sequence (mds) with zero mean and, Ee4t = ¹4 <1; andP1
k=1 ka

2
k <1:

In order to obtain spectral representation for this linear process, we introduce the spec-

tral density function of a scalar series process xt;

f(¸) = (2¼)¡1
P1

j=¡1R(j)e¡i¸j; ¡ ¼ · ¸ · ¼; (2)

where R(j) = E(xt ¡ ¹)(xt¡jjj ¡ ¹); and ¹ = Ext:

The linear relationship speci…ed in (1) can lead to the following relationship in frequency

domain (Priestley (1981, p.669)),

f(¸) = jA(¸)j2fe(¸); ¡ ¼ · ¸ · ¼; (3)

where fe(¸) are the spectral density functions of et; and A(¸) is the Fourier transforms of

the one-sided in…nite sequence fakg1k=0; given as

A(¸) = (2¼)¡1=2
P1

k=0 ake
¡ik¸; (4)

with ak = 0 for k < 0; and jA(¸)j2 = A(¸)A¤(¸): The quantity in (4) is also called a

transfer function. Useful discussions are given in Priestley (1981, sec.9.2)).

We particularly interested in long-run information, which is re‡ected in the spectrum

at the zero frequency,

f(0) = jA(0)j2fe(0): (5)
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Then, we restrict our attention to the case when f(0) = 0. Since fe(0) > 0; degeneracy

arises from zero long-run impulse responses,

f(0) = 0 is equivalent to A(0) = 0: (6)

Under this degeneracy, we study the asymptotic behavior of the estimator of f(0):

Introduce a conventional kernel-based spectral density estimator at the zero frequency,

bf(0) = (2¼)¡1PT¡1
j=1¡T k(j=M)

bR(j); (7)

where

bR(j) = 1

T

PT
t=jjj+1(xt ¡ x)(xt¡jjj ¡ x);

where x = T¡1
PT

t=1 xt; k(x) is a kernel function and M is the bandwidth parameter.

Our main task is to derive the asymptotic distribution of the LRV estimator bf(0) out
of linear processes. Following Phillips and Solo (1992), we …rst write

xtxt¡j = a(L)eta(L)et¡j (8)

=
1P
k=0

akak¡je
2
t¡k +

1P
k=0

1P
r=j¡k; 6=0

akak+r¡jet¡ket¡k¡r

= Cj(L)e
2
t +

1P
r=¡1; 6=0

Cj¡r(L)etet¡r;

where Cj(L) =
P1

k=0 akak¡jL
k: Using the technique of Beveridge-Nelson decomposition,

we put

Cj(L) = Cj(1)¡ (1¡ L) eCj(L); (9)

where eCj(L) =P1
k=0

P1
s=k+1 asas+jL

k =
P1

k=0
eCjkLk: Then, we have

xtxt¡j = Cj(1)e
2
t +

1P
r=¡1;6=0

[Cj¡r(1)etet¡r] (10)

¡(1¡ L) eCj(L)e2t ¡ (1¡ L)
1P

r=¡1;6=0
[ eCj¡r(L)etet¡r]:

The …rst and second terms contribute the long-term trends, whereas the remaining

terms are related with short-run components. Denote the LRV estimator based on long-

term trends as bfL(0); and it can be written as

T 1=2 bfL(0) = T¡1=2
TP
t=1

(2¼)¡1
T¡1P
j=1¡T

k(j=M)

½ 1P
r=¡1

Cj¡r(1)[etet¡r ¡ Eetet¡r]

¾
: (11)
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Then, by Brown’s (1971) martingale limit theorem, we can obtain desired asymp-

totic normality. Below, we impose some technical conditions to derive the normality for

T 1=2 bfL(0):
Assumption 1: (a) k(x) : R! [¡1; 1] is symmetric and continuous at zero with k(0) = 1;
where R is the set of real numbers. The Fourier transform of k(x) is de…ned as

K(¸) = (2¼)¡1
R1
¡1 k(x)e¡i¸xdx;

for all ¸ 2 [¡¼; ¼]:
(b)

R ¼
¡¼ ¸

rK(¸)d¸ = 0; for r = 1; 2; ::q ¡ 1; and 6= 0; for r = q:

Assumption 1 is a regularity condition for kernel functions, which is quite standard in the

nonparametric literature. For more discussion, see Hannan (1971), Andrews (1991). The

function K(¸) is called spectral window generator, with the property that
R ¼
¡¼K(¸)d¸ =

1; which is equivalent to k(0) = 1: The moment condition on K(¢) can be equivalently

understood as derivative of its inverse Fourier transforms, k(¢) evaluated at zero, that

is to say, drk(x)=dxrjx=0 = 0 for r = 1; 2; ::q ¡ 1; and 6= 0; for r = q; where k(x) =R ¼
¡¼K(¸)e

ix¸d¸:

The smoothness of the kernel function is characterized by

kq = limx!0
1¡ k(x)

jxjq ; for q 2 [0;1): (12)

The positive value q needs not be an integer. Well-known quadratic kernels such as

Parzen and quadratic spectral kernel satisfy the above conditions with q = 2. In our

analysis, however, the value of q needs to be larger than 2, which is closely related with

higher-order Taylor expansions of the estimators. In particular, we consider the following

fourth-order kernel with q = 4;

K(¸) =
15

32¼
[7(

¸

¼
)4 ¡ 10(¸

¼
)2 + 3]; (13)

see Gasser et al (1985). The fourth order kernel generates
R ¼
¡¼ ¸

4K(¸)d¸ = ¡4:6385;
which equals to d4k(x)=dx4jx=0: Then, by Taylor expansions of k(x) around x = 0; where

k(0) = 1; drk(x)=dxrjx=0 = 0 for r = 1; 2; 3; we obtain the smoothness index for the kernel

in (6), k4 = (¡1=24) ¢ (¡4:6385) = 0:1932: This value appears in the asymptotic bias of the
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kernel-based spectral density estimator. We use the above kernel for our simulations. Other

higher-order kernels with q > 4 can be considered (e.g. Velasco and Robinson (2001)).

Next, we state some smoothness conditions for f(¸) and for A(¸) near the origin.

Assumption 2:
P1

j=¡1 jjR(j)jj <1; and
P1

j=¡1 jjjqR(j) <1;for q 2 [0;1):

The smoothness for f(¢) at the zero frequency is given by the q-th order generalized

spectral derivative,

f (q)(0) = (2¼)¡1
P1

j=¡1 jjj
qR(j); for q 2 [0;1); (14)

where q may not be integer-valued. The generalized spectral derivative f (q)(0) is not nec-

essarily equal to q-th derivative in the usual sense given by f(q)(0) = dqf(¸)=d¸qj¸=0: If q
is even-numbered, then

f (q)(0) = (¡1)q=2f(q)(0): (15)

For example, when q = 2; then f (2)(0) = ¡f(2)(0): If q = 4; then f (4)(0) = f(4)(0): The

larger values of q; the smoother the spectral density function near the origin. Thus, when

the true f(0) = 0; it is necessary to obtain higher-order expansions of the spectral density

estimator near zero, which leads to a large value of q:

Assumption 3: Given the transfer function, A(¸) = (2¼)¡1=2
P1

k=0 ake
¡ik¸; and B(¸) =

jA(¸)j2 = (2¼)¡1
P1

k=0

P1
r=0 akare

¡i(k¡r)¸; the q-th derivatives of B(¸) near the origin are

given as B(q)(0) = dqB(¸)=d¸qj¸=0 <1:

The smoothness condition on linear …lters is analogous to the smoothness on the spectral

density near the origin. Degeneracy entails higher order expansions for the spectral density

and for the transfer function near the origin. Thus, it is necessary to introduce spectral

derivatives given in Assumptions 2 and 3.

As a preliminary step, we study the mean squared properties of the LRV estimator when

f(0) = 0: The asymptotic variance is particularly essential in dealing with the degenerate

situation in our work.

Proposition 1: (Lee (2008)) Suppose Assumptions 1-2 hold, and M = C £ T®; where

0 < ® < min[q=4; 1]; for q ¸ 2 and 0 < C <1: Then, under f(0) = 0;
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(a) limN!1(T £M3)£ V ar( bf(0)) = V ´ ¼f 2(2)(0)
R ¼
¡¼ u

4K2(u)du:

(b) If M q=T ! 0; then limT!1M qE bf(0) = ¡(2¼)¡1kqP1
j=¡1 jjjqR(j):

The part (a) comes from Lee (2008). The convergence rate of the asymptotic variance

provides di¤erent results from the case of f(0) > 0: When f(0) > 0; conventional HAC

estimator converges at the rate of T=M; where T is the sample size andM is the bandwidth.

On the other hand, the rate of convergence of the variance of bf under the null of f(0) = 0

becomes much faster, at the rate of T ¢M3: Faster rate of convergence intuitively makes

sense when the true spectrum is zero. This result is due to higher order expansions of

the spectrum at the zero frequency, whereas such expansions are not considered when

f(0) > 0 in the context of traditional spectral density estimations. Velasco and Robinson

(2002) proves useful Edgeworth expansions of the HAC estimator, and though they assume

f(0) > 0; provide the result that V ar( bf(0)) = O(M1¡r £T¡1); for r = 0; 1; 2; ::: It is noted

that conventional HAC estimators correspond to r = 0; but our results comes from the

case of r = 4; to obtain valid convergences under the zero spectrum. The proof of part (a)

is given in Lee (2008), whereas the part (b) is not new, following from Hannan (1970), for

instance.

Note that for Proposition 1, we assume that xt is a stationary Gaussian process.

Gaussian assumptions facilitate derivation of asymptotic variance of spectral density es-

timators since fourth-order cumulants are simply removed. Without Gaussianity, however,

one needs to estimate general dependence of fourth order cumulants, causing a great deal

of di¢culty (Velasco and Robinson (2001)).

3. Main Results

We present the asymptotic normality of the LRV estimator.

Theorem 1: Suppose Assumptions 1-3 hold, andM = C£T®; and 1=(2q¡3) < ® < 1=4;

and 0 < C <1: If f(0) = 0; then

ZT =
p
T £M3 bf(0)! N(0; V );

where

V = ¼¾4B2
(2)(0)

R ¼
¡¼ u

4K2(u)du = ¼f 2(2)(0)
R ¼
¡¼ u

4K2(u)du:
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The above asymptotic results, which are our main results, show new convergence rate

and the asymptotic form of the variance for the LRV estimator. Under non-degeneracy, it

can be inferred that

¾2[jA(¸)j2] = f(¸); (16)

where jA(¸)j2 = A(¸)A¤(¸): The zero spectrum f(0) = 0 corresponds to A(0) = 0: Such

degeneracy becomes intuitively quite clear. Since the quantity A(0) can be regarded as

long-run impulse response functions, zero long-run variance implied by f(0) = 0 is indeed

associated with zero long-run impulse responses under linear models.

Under degeneracy, the non-zero second spectral derivative f2(0) determines the variance.

Further, we can infer the associated quantity from linear processes. Let B(¸) = jA(¸)j2;
and we have

¾4B2
(2)(0) = f2(2)(0): (17)

where B(2)(0) is the second derivative of the squared transfer function B(¸) at zero. The

above relationship is based on the fact that the asymptotic variance V from linear processes

should be equal to that from HAC estimator. The proof is given in the Appendix.

Besides, technical conditions on the bandwidth are derived through establishing as-

ymptotic normality. In light of the Proposition 1, the bias terms asymptotically vanish if

(T £M3)1=2M¡q ! 0; as N !1: While the condition on ® e¤ectively restricts the growth

rate of the bandwidth. For example, if q = 4; then 1=5 < ® < 1=4; and if q = 6; then

1=9 < ® < 1=5: We note that the q needs be larger than that required in Proposition 1,

which implies that stronger condition on smoothness should be necessary to construct the

asymptotic normality.

Also, the asymptotic variance V involves unknown quantity, which can be estimated bybf(2) = ¼¡1
Ps

j=¡s j
2 bR(j); where s is the lag truncation. Alternatively, kernel weights can be

employed in practice. Then, we can use bV = ¼ bf 2(2)(0) R ¼¡¼ u4K2(u)du: For the fourth-order

kernel, the value of
R ¼
¡¼ u

4K2(u)du = 0:6582:

Given the result of Theorem 1, we obtain a t-type test statistic. Under the null of

degeneracy,

ST = bV ¡1=2pT £M3 bf(0)! N(0; 1): (18)
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Our test is applied to testing for trend stationarity. Under the null of trend stationarity,

the spectrum near the origin for the …rst-di¤erenced process becomes zero. On the other

hand, under the alternative of di¤erence stationarity, the spectrum becomes strictly positive

at the zero frequency. In this regard, we can discuss the consistency of the test statistic.

In particular, we compare powers of ST and of tests by Kwiatkowski, D., Phillips, P.C.B.,

Schmidt, P., Shin, Y.(1992; KPSS hereafter) under …xed alternatives, f(0) > 0: We note

that the KPSS test requires upper-bounded bandwidth to obtain consistency under …xed

alternatives. The test diverges at the rates of O(T 2=3) for Bartlett kernel, and O(T 4=5)

for QS kernel under iid innovations. On the other hand, our test diverges the rate of

O((T 1=2M3=2)): Thus, it is seen that the ST diverges faster than Bartlett kernel-based

KPSS test if ® > 1=9; and QS kernel-based KPSS if ® > 1=5: Such power advantages can

be seen in simulation studies in the next section. Also, as a reference, Lee (2008) considers

local power analysis, while local powers of the KPSS test are studies in Kurozumi (2002).

4. Simulation Studies

In this section, we investigate …nite sample performance of the test statistic ST ; in

comparison with the KPSS test. The simulation results of size and size-adjusted powers of

the tests are reported in Table 1 through Table 4.

The data generating process that we consider is given as

yt = ®+ ¯t+ zt + ut; zt = zt¡1 + vt; (19)

where ut = ½ut¡1+ et; et and vt are i.i.d. normal (0,1). We set ® = 0; and ¯ = 0:3 without

loss of generality. The autoregressive coe¢cient ½ takes values of 0, 0.2, 0.5 and 0.8. The

innovations (et; vt)0 are allowed to be contemporaneously correlated by setting Eetvt = 0:3:

Two sample sizes of T = 200; and 500 are included, and 10,000 iterations are performed.

For the ST test, the fourth-order kernel-based spectral density estimator is used. The

bandwidths for bf(0) takes the form,M = C ¢N®; where we let ® equal to 0:22 and constant

C range from 1 to 3. Since no optimal choice for C is available in our case of degeneracy,

we can employ sieve bootstrap method developed by Park (2006), which is particularly

appealing when underlying process ut is weakly dependent. Steps to obtain bootstrap

critical values are as follows. First, given the null of ¾v = 0; we regress yt on the intercept

and linear trend to obtain residuals fbutgTt=1: Second, we …t the model, but = b½but¡1+b"t; and
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get the bootstrapped series f"¤tg from demeaned residuals fb"t¡T¡1
PT

t=1b"tgTt=1: Third, we
generate bootstrapped fu¤tgTt=1 from u¤t = b½u¤t¡1+"¤t ; then we …nally obtain bootstrap sample
y¤t = ®+ ¯t+ u¤t : As seen in the simulations below, this method works reasonably well. It

is also useful since size performances become less sensitive to the choice of the bandwidths

than the case of using asymptotic critical values. See Park (2006) for theoretical results

for the sieve bootstrap method. We note that bandwidth selections in case of degeneracy

would be an open question.

Besides, it is crucial to choose the lag selection s to estimate the f(2)(0) and f4(0):We use

a following simple procedure to select s; which performs reasonably well. Notice that the

…rst di¤erenced process follows MA(1), xt = ¯+ut¡ut¡1: Denote the theoretical correlation
of xt as cor(j) = R(j)=R(0): For example, when ut is iid, then cor(1) = ¡0:5; and cor(j) = 0
for j > 1:On the other hand, if ut is dependent, then cor(j) becomes nonzero for some j > 1.

When ut follows AR(1) process, ut = ½ut¡1+et; then cor(1) = ¡(1+2½+½2)=(2+2½+2½2);
cor(2) = ½=(2 + 2½+ 2½2); and cor(j) = 0 for j > 2; where the sum,

P2
j=1 cor(j) = ¡0:5:

Then, we select the lag selection s = es such thatPes
j=1 ccor(j) reaches to ¡0:5; where ccor(j)

is a sample correlation. It is then expected that the integer-valued es is small if the data

behaves closely to i.i.d., and becomes larger when the dependence becomes stronger. Our

selection rule is given as s = min(es;M); which does not a¤ect the asymptotic results. Other
methods can be explored in alternative ways. Note that conventional lag selection rules in

the HAC context assuming positive spectrum near origin (e.g., Andrews (1991) and Newey

and West (1994)) work poorly in our experiment.

As the KPSS tests involve HAC estimators, we use Bartlett and QS kernel-based es-

timators. In order to choose the bandwidth which makes the test consistent under the

alternatives, we follow the procedures in Kurozumi (2002), which modi…es Andrews’ para-

metric plug-in methods. For example, the bandwidth is chosen as

M¤ = min[1:1447(
4ba2N

(1 + ba)2(1¡ ba)2 )1=3; 1:1447( 4b2jN

(1 + bj)2(1¡ bj)2
)1=3]; (20)

for Bartlett kernel, and

M¤ = min[1:3221(
4ba2N
(1¡ ba)4 )1=5; 1:3221( 4b2jN

(1¡ bj)4
)1=5]; (21)

for QS kernel, where ba is autoregressive coe¢cient estimate in AR(1) approximating model
(See Andrews(1991)), and bj is a pre-speci…ed constant. Such upper bound bj makes the

10

LEE, J. (2010) / JETEM 21(1) 1-22



KPSS test consistent (e.g., Choi and Ahn (1999)). We include three cases of bj = 0.7, 0.8,

and 0.9, for j = 1; 2; 3. As we will see below, di¤erent values of upper bounds critically

a¤ect the power performance of the KPSS test.

Table 1 and Table 2 present size performances of tests. The size of ST is presented with

a selective range of bandwidth, i.e., we only include constants C = 1; 2 and 3: Then, we can

see how the size varies with this range of di¤erent bandwidths. Results are summarized

as follows. First, when T = 200; our test equipped with sieve bootstrap method show

reasonable size performance. As expected, results are insensitive to di¤erent values of

bandwidth. Though not reported here, when we use asymptotic critical values, size of

ST sensitively depends on the choice of the bandwidths as well as lag selections. Thus,

bootstrap method is appealing under dependence as in our experiment. Second, when T

= 500, sizes become more distorted than the case of T = 200 in some cases. For instance,

when ½ = 0:2; ST underrejects a little for C = 2 and 3, whereas when ½ = 0:8; ST rather

overrejects for all values of C. Except for these cases, ST show reasonable sizes in general.

The size of KPSS is pretty reasonable and become more distorted as dependence measure

½ increases. Further, larger values of upper bound tend to lead to better sizes. The power,

however, can be negatively a¤ected by large values of pre-set bound bj for the KPSS test,

as seen below. As KPSS test is not combined with any bootstrap method, we note that it

is not fair to directly compare the size performance of the two tests. One can expect size

improvements through bootstrapping KPSS tests, but it is not our main interests here. We

instead concentrate on the power comparison between these two tests.

Next, we investigate the size-adjusted powers for the tests. We only report powers

under i.i.d. errors and under ½ = 0:5 in Table 3 and 4, respectively. For the powers, we

gradually change the signal to noise ratio ¸ = ¾2v=¾
2
u from 0.1 up to 100. In table 3, the

upper panel includes powers when T = 200; and the lower panel when T = 500: First, ST
clearly dominates KPSS for values of ¸ ¸ 0:5: As ¸ grows, ST monotonically reaches to

unit power regardless of the choice of bandwidths. Changes in powers of ST due to di¤erent

values of bandwidths becomes negligible when ¸ ¸ 1. Second, for very small departures

out of the null, say, ¸ = 0:1 or 0:2; KPSS are more powerful in some cases than ST , but

their powers abruptly retreat and maintain to a certain level, which is strictly lower than

unity as ¸ continues to increase. The power of KPSS also crucial depends on pre-set values

of the upper bounds. It is clearly pronounced that larger the values of the bound b; lower
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the powers. These unfavorable features of power properties of the KPSS arise mainly from

pre-set upper bounds in the bandwidths (See Kurozumi (2002)). Third, as the sample size

increases to T = 500; powers of the tests qualitatively remain unchanged. Our test quickly

climbs up to unity as long as ¸ ¸ 0:5; where it dominates KPSS regardless of the bandwidth
choice.

The Table 4 reports powers of the tests when the errors follow AR(1) with ½ = 0:5:

Dependence certainly lowers powers of both ST and KPSS. Other than that, powers of ST
and KPSS show qualitatively same patterns as those in Table 3. We can still obtain power

advantages of ST over the KPSS test. Our test have lower powers for very small ¸ than

KPSS, but rapidly dominate the KPSS tests as ¸ continues to grow. In sum, our proposed

test can be a useful complement to KPSS test or its variation.

5. Conclusion

We provide the asymptotic results for the long-run variance estimator when true power

spectrum equals to zero, where conventional results of HAC estimation can not be applied.

Formally, we investigate degeneracy issue in linear processes. While long-run variance or

long-term trend is associated with the spectrum power evaluated at the zero frequency in

spectral analysis, our analysis is based on higher-order expansions of the long-run variance.

Asymptotic mean squared errors and normality based on long-term trends is explicitly

derived. It provides convergence rates of long-run variance estimator, which are clearly

di¤erent from those in HAC estimators. Further, we propose a t-test for degeneracy, which

converges to standard normal distribution under the null hypothesis of degeneracy near the

origin. Evidence is found that the tests deliver better power performances than prevailing

KPSS test statistic. In particular, when the signal-to-noise ratio is very small, KPSS is

more powerful, whereas when the ratio grows, the proposed test dominates the KPSS.

Thus, our test can serve as a complement to the KPSS test. Further research direction

may include degeneracy issues in multivariate cases and in panel regression models.
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Appendix: Proofs
Proof of Theorem 1: We derive the asymptotic normality of the LRV estimator from

linear process fxtgTt=1: For linear processes, we employ useful results in Phillips and Solo

(1992, eq.(28); PS hereafter). Put

xtxt¡j = a(L)eta(L)et¡j (A1)

=
1P
k=0

akak¡je
2
t¡k +

1P
k=0

1P
r=j¡k; 6=0

akak+r¡jet¡ket¡k¡r

= Cj(L)e
2
t +

1P
r=¡1; 6=0

Cj¡r(L)etet¡r;

where Cj(L) =
P1

k=0 akak¡jL
k:

Using the technique of Beveridge-Nelson decomposition,

Cj(L) = Cj(1)¡ (1¡ L) eCj(L); (A2)

where eCj(L) =P1
k=0

P1
s=k+1 asas+jL

k =
P1

k=0
eCjkLk: Then,

xtxt¡j = Cj(1)e
2
t +

1P
r=¡1;6=0

[Cj¡r(1)etet¡r]

¡(1¡ L) eCj(L)e2t ¡ (1¡ L)
1P

r=¡1;6=0
[ eCj¡r(L)etet¡r]:

Put bf(0) = (2¼T )¡1PT
t=1 x

2
t + (¼T )

¡1PT¡1
j=1 k(j=M)

PT
t=1+j xtxt¡j ; then

T 1=2 bf(0) (A3)

= (2¼)¡1T¡1=2
TP
t=1

x2t + ¼¡1T¡1=2
T¡1P
j=1

k(j=M)
TP
t=1

xtxt¡j

= A1T +A2T ;

where xj = 0 for j · 0:
We then decompose A1T and A2T to extract the martingale sequences, as in PS. Let

ej = 0; for j · 0; then

A1T = (2¼)
¡1T¡1=2

TP
t=1

x2t = U1T ¡D1T ¡D2T ; (A4)
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where

U1T = (2¼)¡1T¡1=2
TP
t=1

"
C0(1)e

2
t +

1P
r=¡1; 6=0

C¡r(1)etet¡r)

#
D1T = (2¼)¡1T¡1=2 eC0(L)e2T
D2T = (2¼)¡1T¡1=2

1P
r=¡1;6=0

[ eC¡r(L)]eT eT¡r;
where the expressions for D1T and D2T arise when summed over t from 1 to T: Also for

A2T ;

A2T = ¼¡1
T¡1P
j=1

k(j=M)T¡1=2
TP
t=1

xtxt¡j = U2T ¡D3T ¡D4T ; (A5)

where

U2T = ¼¡1
T¡1P
j=1

k(j=M)T¡1=2
TP
t=1

"
Cj(1)e

2
t +

1P
r=¡1; 6=0

Cj¡r(1)etet¡r

#
;

D3T = ¼¡1
T¡1P
j=1

k(j=M)T¡1=2 eCj(L)e2T ;
D4T = ¼¡1

T¡1P
j=1

k(j=M)T¡1=2
1P

r=¡1; 6=0
eCj¡r(L)eT eT¡r:

It can be easily shown that DjN !p 0; for j = 1; 2; 3; 4: Note that D1T = D3T for j = 0;

and

E[ eCj(L)e2T ]2 = E[
1P
k=0

eCjkLke2T ]2
=

1P
k=0

1P
k0=0

eCjk eCjk0E(e2T¡ke2T¡k0)
=

1P
k=0

eC2jk¹4 + 1P
k=0

1P
k0=0; 6=k

eCjk eCjk0¾2;
where eCjk = P1

s=k+1 asbs+j ; ¹4 = Ee4t and ¾2 = Ee2t : By lemma 3.6 in PS and Cauchy-

Schwarz inequality, E[ eCj(L)e2T ]2 = O(1): It follows that

E(D2
3T ) = ¼¡2T¡1

T¡1P
j=1

T¡1P
j0=1

k(j=M)k(j0=M)E[ eCj(L)e2T ]2 = O(M=T ); (A6)

where M¡1PT¡1
j=1

PT¡1
j0=1 k(j=M)k(j

0=M) = O(1): Similarly, D2T = D4T for j = 0; and by

similar reasonings in lemma 5.9 in PS to have ED2
4T = O(M=T ): It follows that E(D2

jT ) =

o(1); for j = 1; 2; 3; 4; given that M=T ! 0:
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Now consider demeaned process, U1T + U2T ¡EU1T ¡ EU2T : Write

[U1T + U2T ¡ EU1T ¡EU2T ] = T¡1=2
TP
t=1

vt; (A7)

where

vt = (2¼)
¡1

T¡1P
j=1¡T

k(j=M)

½ 1P
r=¡1

Cj¡r(1)[etet¡r ¡Eetet¡r]

¾
:

Note that vt is a martingale di¤erence sequence with

¸ = T¡1
TP
t=1

Ev2t ! ­; (A8)

Thus, we can employ Brown’s (1971) martingale limit theorem to obtain

T¡1=2
TP
t=1

vt !d N(0;­): (A9)

The Lindberg conditions are (a) ¸¡1T¡1
PT

t=1E[v
2
t 1(v

2
t > ²T¸)] ! 0; for all ² > 0; and

(b) ¸¡1T¡1
PT

t=1E[v
2
t jFt¡1] !p 1: The condition (a) comes from dominated convergence

theorem (equation (50) in PS), and the condition (b) is obvious since EfE[v2t jFt¡1]g =
Ev2t = ­ (See Theorem 3.8 in PS).

Given the martingale di¤erence sequence vt; we obtain

Ev2t (A10)

= (2¼)¡2
T¡1P
j=1¡T

k(j=M)
T¡1P

j0=1¡T
k(j0=M)

1P
r=¡1

1P
s=¡1

Cj¡r(1)Cj0¡s £

E[etet¡r ¡Eetet¡r]£ [etet¡s ¡ Eetet¡s]

= (2¼)¡2¾4
T¡1P
j=1¡T

T¡1P
j0=1¡T

k(j=M)k(j0=M)
1P
r=0

[Cj¡r(1)Cj0¡r + Cj+rCj0+r]

= »1 + »2;

where the second line follows from the property of fetg sequence and from the fact that

E[etet¡r ¡Eetet¡r]
2 = 2¾4 if r = 0; and = ¾4 if r 6= 0 under Gaussian assumption.

Given Cj(1) =
P1

k=0 akak¡j ; and the Fourier transforms of fakg is given by

A(¸) = (2¼)¡1=2
1P
k=0

ake
¡ik¸; ¡¼ · ¸ · ¼; (A11)
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where ak = 0 for k < 0: Then, we can make use of the following relations,

1P
r=¡1

Cj¡r(1) =
1P

r=¡1

1P
k=0

akak¡j+r (A12)

= 2¼

·
(2¼)¡1=2

1P
k=0

ak

¸ ·
(2¼)¡1=2

1P
r=¡1

ak¡j+re
¡i(k¡j+r)¸

¸
ei(k¡j+r)¸

= 2¼ei(r¡j)¸jA(¸)j2;

where jA(¸)j2 = A(¸)A¤(¸): Then, rearrange the terms in (A10) to obtain

»1 (A13)

=
¾4

(2¼)2

T¡1P
j=1¡T

k(j=M)
1P
r=0

Cj¡r(1)

"R ¼
¡¼MK(M¸)

T¡1P
j0=1¡T

eij
0¸

1P
k=0

akak¡(j0¡r)d¸

#

=
¾4

(2¼)2

T¡1P
j=1¡T

k(j=M)
1P
r=0

Cj¡r(1)
h
2¼
R ¼
¡¼MK(M¸)jA(¸)j2eir¸d¸

i
=

¾4

(2¼)2
2¼
R ¼
¡¼MK(M¸)jA(¸)j2

T¡1P
j=1¡T

k(j=M)
1P
r=0

1P
k=0

akak¡j+re
ir¸d¸

=
¾4

(2¼)2
(2¼)3

R ¼
¡¼MK(M¸)jA(¸)j2

"
(2¼)¡1

T¡1P
j=1¡T

k(j=M)eij¸

#
£·

(2¼)¡1=2
1P
k=0

ake
¡ik¸

¸ ·
(2¼)¡1=2

1P
r=0

ak¡j+re
i(k¡j+r)¸

¸
d¸

= 2¼¾4
R ¼
¡¼ B(¸)

2M2K2(M¸)d¸;

where real-valued B(¸) = jA(¸)j2: We similarly obtain the identical expression for »2:

Below, we obtain the expression for the variance of the HAC estimator, which is written

as

V ar[ bf(0)] = (2¼)¡2 T¡1P
j=1¡T

T¡1P
j0=1¡T

k(j=M)k(j0=M)Cov[ bR(j); bR(j0); (A14)

where Cov[ bR(j); bR(j0) denotes the covariance between bR(j) and bR(j0): See Hannan (1970,

p.313), Priestley (1981, p.326).

It can be decomposed as

T ¤ V ar[ bf(0)] = (V1T + V2T )(1 + o(1)) (A15)
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where

V1T =
1

(2¼)2T

T¡1P
j=1¡T

T¡1P
j0=1¡T

k(j=M)k(j0=M)
T¡1P
h=1¡T

R(h)R(h+ j0 ¡ j);

V2T =
1

(2¼)2T

T¡1P
j=1¡T

T¡1P
j0=1¡T

k(j=M)k(j0=M)
T¡1P
h=1¡T

R(h+ j0)R(h¡ j):

It follows that

V1T + V2T = 2¼
R ¼
¡¼ f

2(¸)M2K2(M¸)d¸+ o(1): (A16)

The asymptotic variances in (A13) and (A16) should be equal, that is to say,

­ = 4¼¾4
R ¼
¡¼B

2(¸)M2K2(M¸)d¸ = 4¼
R ¼
¡¼ f

2(¸)M2K2(M¸)d¸: (A17)

Now, we proceed the arguments to the case of degeneracy near origin, f(0) = 0: Through

Taylor expansions for the variance in the right-hand side in (A17),

4¼
R ¼
¡¼ f

2(¸)M2K2(M¸)d¸ (A18)

= 4¼M
R ¼
¡¼ f

2(u=M)K2(u)du

= 4¼M
n
f 2(0)

R ¼
¡¼K

2(u)du+ 2f(0)f(1)(0)
R ¼
¡¼(u=M)K

2(u)du+

[f(1)(0)
2 + f(0)f(2)(0)]

R ¼
¡¼(u=M)

2K2(u)du+

1

6
[6f(1)(0)f(2)(0) + 2f(0)f(3)(0)]

R ¼
¡¼(u=M)

3K2(u)du+

1

24
[6f 2(2)(0) + 8f(1)(0)f(3)(0) + 2f(0)f(4)(0)]

R ¼
¡¼(u=M)

4K2(u)du

¾
+O(M¡5)

= ¼M¡3f 2(2)(0)
R ¼
¡¼ u

4K2(u)du+O(M¡5);

where f(j)(0) is j ¡ th spectral derivative at zero frequency.

Then, we have

(T £M3)£ V ar[ bf(0)] = ¼f 2(2)(0)
R ¼
¡¼ u

4K2(u)du+ o(1) (A19)

= V + o(1);

where V is as in Theorem 1. Thus, we obtain

¾4B2
(2)(0) = f2(2)(0); or ¾

2jB(2)(0)j = jf(2)(0)j: (A20)

This completes the proof of Theorem 1.
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Table 1. Rejection Rates in Percentages of the Test Statistics under the Null:

Sample Size T = 200 and AR(1) Model for errors

½ = 0 (iid) 0:2 0:5 0:8

10% 5% 10% 5% 10% 5% 10% 5%

ST C

1 10.33 4.63 9.59 5.19 12.18 7.65 12.81 7.74

2 11.28 4.30 10.39 4.90 10.50 5.08 12.18 6.90

3 10.59 3.53 9.31 4.25 11.92 5.49 14.39 9.03

KBT (b1) 10.19 4.93 14.24 7.09 16.06 8.39 24.29 13.05

KQS(b1) 10.07 4.94 12.55 6.28 13.24 6.78 18.13 8.97

KBT (b2) 10.19 4.93 14.24 7.09 16.06 8.39 20.68 9.99

KQS(b2) 10.07 4.94 12.55 6.28 13.24 6.78 14.78 6.33

KBT (b3) 10.19 4.93 14.24 7.09 16.06 8.39 20.12 9.55

KQS(b3) 10.07 4.94 12.55 6.28 13.24 6.78 14.52 5.96

(1) DGP: yt = ¯0 + ¯1t + zt + ut; and zt = zt¡1 + vt; where vt is i.i.d. normal(0; ¾2v);

ut = ½ut¡1+ et; and et is i.i.d. Normal(0,1). The innovations are correlated as Eetvt = 0:3:

We set ¯0 = 0; ¯1 = 0:3: The value ¾
2
v = 0 for the size.

(2) ST : Spectrum-based test with the fourth-order kernel-based spectral density es-

timator. The bandwidths M = C ¢ T®; with ® = 0:22 and C takes values from 1 to 3.

Bootstrapped critical values are used through sieve methods by Park (2006).

(3) KBT (bj); KQS(bj) : KPSS tests with HAC estimators using Bartlett kernel and QS

kernel, where the upper bounds for the bandwidth are given as b1 = 0.7, b2 = 0:8 and b3 =

0.9, (See Kurozumi (2002), Andrews(1991)).
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Table 2. Rejection Rates in Percentages of the Test Statistics under the Null:

Sample Size T = 500 and AR(1) Model for errors

½ = 0 (iid) 0:2 0:5 0:8

10% 5% 10% 5% 10% 5% 10% 5%

ST C

1 16.82 10.64 10.40 6.20 18.49 11.20 24.93 14.44

2 12.85 6.72 5.97 3.12 10.36 5.07 16.15 8.06

3 10.64 5.92 6.47 2.27 8.67 3.80 21.21 14.12

KBT (b1) 10.49 5.70 13.37 7.30 14.86 7.84 20.19 11.43

KQS(b1) 10.48 5.73 12.31 6.70 12.71 6.67 17.03 9.07

KBT (b2) 10.49 5.70 13.37 7.30 14.86 7.84 17.55 8.65

KQS(b2) 10.48 5.73 12.31 6.70 12.71 6.67 13.82 6.53

KBT (b3) 10.49 5.70 13.37 7.30 14.86 7.84 17.17 8.49

KQS(b3) 10.48 5.73 12.31 6.70 12.71 6.67 13.58 6.43

(1) See the explanatory notes in Table 1.
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Table 3. Size-adjusted Powers in Percentages of the Test Statistics under the Alternatives

At the 5% Level: Sample Size T = 200 and 500 under i.i.d. Normal Errors

T = 200 : ¸ = 0.1 0.2 0.5 1 2 5 10 100

ST (M = CT 0:22)

C 1 53.73 78.78 95.77 99.26 99.88 99.99 100 100

2 74.20 82.75 89.10 94.45 97.35 98.55 98.82 99.08

3 76.50 78.00 69.08 73.77 81.17 86.06 87.50 88.84

KPSS KBT (b1) 87.99 80.83 73.90 73.07 73.07 73.26 73.28 73.32

KQS(b1) 86.13 76.04 66.08 65.21 65.43 65.62 65.66 65.56

KBT (b2) 87.91 78.68 62.89 58.62 57.88 57.80 57.86 57.88

KQS(b2) 85.83 71.98 50.62 45.59 45.07 44.88 44.84 44.71

KBT (b3) 87.91 78.05 55.17 42.52 37.49 35.72 35.37 35.15

KQS(b3) 85.80 70.62 37.03 20.68 14.87 12.88 12.59 12.58

T = 500

ST (M = CT 0:22)

C 1 86.08 95.60 99.87 99.99 100 100 100 100

2 95.70 94.89 98.27 99.68 99.91 99.95 99.96 99.97

3 96.65 84.84 89.32 95.37 97.69 98.62 98.91 99.06

KPSS KBT (b1) 93.15 90.00 89.62 89.68 89.66 89.68 89.70 89.65

KQS(b1) 93.94 90.08 89.51 89.56 89.56 89.56 89.53 89.58

KBT (b2) 92.26 84.72 81.30 81.29 81.30 81.33 81.39 81.39

KQS(b2) 92.78 83.34 78.72 78.59 78.60 78.70 78.74 78.74

KBT (b3) 92.06 80.29 63.96 60.53 60.26 60.31 60.30 60.28

KQS(b3) 92.31 75.98 53.74 50.01 49.59 49.56 49.59 49.58

(1) Empirical critical values for each test statistic are obtained from simulations in Table

1 and 2.

(2) The value ¸ = ¾2v=¾
2
u > 0 for the powers.

(3) See the explanatory notes in Table 1.
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Table 4. Size-adjusted Powers in Percentages of the Test Statistics under the Alternatives

At the 5% level: Sample Size T = 200 and 500 under AR(1) errors with ½ = 0:5

T = 200 : ¸ = 0.1 0.2 0.5 1 2 5 10 100

ST (M = CT 0:22)

C = 1 11.66 19.11 38.82 60.15 77.94 89.41 92.98 96.45

2 36.59 58.64 82.77 92.05 96.00 97.83 98.44 98.76

3 41.67 57.46 76.75 85.71 90.32 92.58 93.45 94.53

KPSS KBT (b1) 55.66 58.96 61.45 62.47 63.04 63.29 63.50 63.52

KQS(b1) 52.68 54.84 57.46 58.45 58.85 59.17 59.28 59.24

KBT (b2) 48.75 45.61 44.74 45.14 45.51 45.68 45.74 45.59

KQS(b2) 43.84 38.92 37.52 37.79 37.97 38.16 38.26 38.30

KBT (b3) 46.58 36.13 24.71 21.28 20.14 19.83 19.71 19.69

KQS(b3) 39.17 22.35 7.92 4.23 3.26 3.01 2.96 2.96

T = 500

ST (M = CT 0:22)

C 1 24.95 49.23 86.10 97.27 99.54 99.96 99.99 99.99

2 71.76 91.50 99.08 99.84 99.94 99.98 99.98 99.99

3 76.90 89.50 97.59 99.02 99.57 99.72 99.78 99.84

KPSS KBT (b1) 84.71 85.82 86.32 86.67 86.85 86.96 86.99 87.06

KQS(b1) 85.80 86.72 87.46 87.70 87.92 88.09 88.10 88.16

KBT (b2) 76.26 76.15 76.74 76.97 77.12 77.10 77.05 77.05

KQS(b2) 75.70 75.26 75.84 76.08 76.13 76.17 76.18 76.15

KBT (b3) 66.62 56.11 52.67 52.65 52.77 52.96 53.00 53.05

KQS(b3) 62.77 49.55 45.34 45.10 45.12 45.14 45.15 45.16

(1) Empirical critical values for each test statistic are obtained from simulations in Table

1 and 2.

(2) DGP: The value ¸ = ¾2v=¾
2
u; where ¾

2
u = 1=(1¡ ½2):

(3) See the explanatory notes in Table 3.
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