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1. INTRODUCTION

This paper considers discrete choice dynamic models of optimal stopping.
Optimal stopping models include job search (Wolpin, 1987), patent renewal
(Pakes 1986), and engine replacement (Rust, 1987). The semiparametric identi-
fication of the discrete choice dynamic model is considered in many studies such
as Heckman and Navarro (2007). In this paper I derive a multinomial logit form
for dynamic models of optimal stopping and suggest a two-step estimator. The
first stage estimates nonparametrically the choice probability of absorbing state
for the next period. The second stage is an implementation of multinomial logit
estimation.

The derivation of the multinomial logit form is influenced by the conditional
choice probability estimator (CCP) developed by Hotz and Miller (1993). They
show that there is a one-to-one mapping from the conditional choice probabilities
to the conditional valuation functions (or expected value function). Using this
mapping, the conditional valuation function can be expressed as the function of
choice probabilities and current utility functions. In this paper I show that this
representation can be simplified to a large extent in the case of optimal stopping
problem. The estimator in this paper does not need either a backward recursion
or the discretization of state space in the case of models with continuous state
variables.

Also, this paper suggests a modified Expectation-Maximization (EM) algo-
rithm to include individual permanent heterogeneity for discrete choice dynamic
models. Aguirregabiria and Mira (2007) suggested an algorithm to estimate fi-
nite mixture dynamic model of markets in infinite horizon dynamic games under
the assumption that there exist the steady state probability distributions of state
variables. Arcidiacono and Miller (2011) adapted the EM algorithm to CCP
estimation techniques for discrete and continuous choice dynamic models with
discrete state variables, where the unobserved heterogeneity can either evolves
over time or be permanent. The proposed estimator in this paper is relevant
whether the state variable is continuous or discrete.

2. DYNAMIC DISCRETE CHOICE MODEL

This section considers a finite-horizon and discrete-choice model without
unobserved heterogeneity. Time is discrete and it is indexed by t ∈ {1,2, ...,T}.
At every period an agent chooses an action j ∈ A = {1,2, ...,J}. Let dt j = 1
indicate the agent chooses action j in t and dt j = 0 represents the agent chooses
something else. Then dt = (dt1, ...,dt,J−1)

′ describes the agent’s action in period
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t.
Conditions at time t are summarized by a vector of state variables wt =

(xt ,εt)∈W ⊂ RM+1. The xt is a vector of state variable observable by the econo-
metrician. A vector of random preference shocks or private information in each
alternative j is denoted by εt = (εt1, ..,εtJ). These state variables, εt j, are as-
sumed to be distributed i.i.d. across time periods, agents, and actions with type
1 extreme value distribution. The states are assumed to follow a Markov process
with transition probability p(wt+1|wt ,dt). Under these assumptions, the transi-
tion probability can be written as p(wt+1|wt ,dt) = p(xt+1|xt ,dt)p(εt+1).

The agent’s objective is to maximize the expected value of a sum of period-
specific utilities. Let ũt j(·) denote the period-specific utility associated with
choice j in period t. I assume that the period-specific utility functions are ad-
ditively separable and linear in parameters:

ũt j(xt ,εt ,dt) = ut j(xt)+ εt j

= α j + xtθ j + εt j

where (α j,θ j) is a vector of parameters. For the identification purpose, I nor-
malize αJ = θJ = 0.

The agent sequentially chooses {dt}T
t=1 to maximize the expected discount

sum of payoffs

E

[
T

∑
s=t

J

∑
j=1

β
s−tds j [us j(xs)+ εs j] | wt

]

where β is the discount factor. The expectation is over the agent’s private shock
and actions in the current period as well as future values of the state variables,
actions, and private shocks.

Let d0
s = (d0

s1, ...,d
0
s,J−1)

′ denote the agent’s optimal choice in period s. De-
fine the conditional valuation function associated with choosing j as:

vt j(xt) = E

[
T

∑
s=t+1

J

∑
j=1

β
s−td0

s j [us j(xs)+ εs j] |xt ,dt j = 1

]
(1)

This implies that the value function in period t can be written as:

Vt(xt ,εt) = max
j∈A

[ut j(xt)+ εt j + vt j(xt)]
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3. PROBLEMS OF OPTIMAL STOPPING

3.1. DERIVATION OF CONDITIONAL CHOICE PROBABILITY

Consider an optimal stopping problem in which the state J is an absorbing
state. This means dtJ = 1 implies dsJ = 1 for all periods s ∈ {t +1, ...,T}. Under
the assumption on the distribution of ε ′s, the choice probability that the agent
chooses action j is1:

pt j(xt) = Pr

(
k = argmax

j∈A
[ut j + εt j + vt j]

)

=
exp [ut j + vt j− vtJ]

1+∑
J−1
k=1 exp [utk + vtk− vtJ]

(2)

where ut j ≡ ut j(xt) and vt j ≡ vt j(xt) are used for notational simplicity. Similarly,
I adopt pt j ≡ pt j(xt). From (2), we have:

ln pt j− ln ptk = ut j + vt j−utk− vtk (3)

for any k.
A key step is to derive the conditional valuation function of choosing j as

a function of choice probabilities and utility functions. Since the state J is an
absorbing state, the conditional valuation function of choosing J at t is:

vtJ(xt) = E

[
T

∑
s=t+1

β
s−t [usJ + εsJ]

]

=
β −β T−t

1−β
γ

where E [ε] = γ and γ is the Euler’s constant (γ ≈ 0.57722).
The next step is to find an expression of the conditional valuation function

associated with choosing j. The conditional valuation function (1) can be express

1Like static discrete choice modes, the choice probability in the dynamic discrete choice mod-
els depends only on the difference in value funcion, not its absolute level. This paper uses the
aborbing state J as an alternative for other actions, because the conditional valuation function of
choosing J has a simple anlytical form in the optimal stopping problem, as shown in this paper.
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as:

vt j = E
[

max
k∈A

ut+1,k(xt+1)+ εt+1,k + vt+1,k(xt+1)|xt ,dt j = 1
]

=
J

∑
k=1

pt+1,k(xt+1)× (4)

×E [ut+1,k(xt+1)+ εt+1,k + vt+1,k(xt+1)|xt+1,xt ,dt j = 1]

Note that the expectation of the first line is over ε ′s and xt+1, while the expecta-
tion of the second line is over only xt+1. This expression is already useful since
there is no max operator. Under the assumed distribution for ε ′s, the conditional
expectation of εt+1, j takes the form:

E [εt+1,k|dt+1, j = 1]

= E [εt+1,k|k = argmax {ut+1,k + εt+1,k + vt+1,k}]

= γ +E

[
ln

(
J

∑
m=1

exp [ut+1,m + vt+1,m]

)
− (ut+1,k + vt+1,k)

]

= γ +E

[
ln

(
J

∑
m=1

pt+1,m

pt+1,k
exp(ut+1,k + vt+1,k)

)
− (ut+1,k + vt+1,k)

]
= γ−E [ln pt+1,k] (5)

for k = 1, ...,J. Substituting (5) into (4) yields:

vt j(xt) = γ +
J

∑
k=1

pt+1,kE [− ln pt+1,k +ut+1,k + vt+1,k]

Equation (3) implies

ln pt+1,k− ln pt+1,J = ut+1,k + vt+1,k− vt+1,J

Using this, above equation can be written as:

vt j(xt) = γ +
J

∑
k=1

pt+1,kE [− ln pt+1,J + vt+1,J|xt ,dt j = 1]

= γ−E [ln pt+1,J|xt ,dt j = 1]+E [vt+1,J|xt ,dt j = 1] (6)

because ∑
J
k=1 pt+1,k = 1. Since J is an absorbing state, the expectation of vt+1,J
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can be expressed as:

E [vt+1,J|xt ,dt j = 1] = E

[
T

∑
s=t+2

β
s−t [usJ + εs j]

]

=
β 2−β T−t

1−β
γ

Substituting this into (6), we finally have:

vt j(xt) = γ +
β 2−β T−t

1−β
γ−E [ln pt+1,J|xt ,dt j = 1]

Therefore, the conditional valuation function can be expressed as a function of
choice probability of choosing absorbing state for the next period (pt+1,J) only.

Using the above results, the conditional choice probability (2) becomes:

p j(xt) =
exp(δ j + xtθ j−E [ln pt+1,J|xt ,dt j = 1])

1+∑
J−1
k=1 exp(δk + xtθ j−E [ln pt+1,J|xt ,dt j = 1])

(7)

where δ j = α j +(1−β )γ. Note that a static logit model does not have the ex-
pectation term E [ln pt+1,J|xt ,dt j = 1] .

3.2. IDENTIFICATION AND ESTIMATION

The equation (7) shows that the constant term in utility function α j and the
discount factor β can not be separately identified. This is a concrete example of
the nonidentification of discrete choice dynamic models addressed in Rust (1994,
Lemma 3.2, p3127) and Magnac and Thesmar (2002, Proposition 2, p.806).

Estimation procedure is as follows. The first stage estimates the expectation
of choice probability of absorbing state for the next period, E [ln pt+1,J|xt ,dt j = 1] ,
nonparametrically. Plugging the first stage estimates into (7), the second stage
estimates parameters by maximizing likelihood function, which is a simple im-
plementation of multinomial logit estimation. One can recover α j by α̂ j =

δ̂ j +βγ− γ given the values of β , γ ' 0.57722, and the estimates δ̂ j.
The two-step estimator of this paper is a semiparametric estimator consid-

ered by Newey (1994). He shows that, under appropriate regularity conditions,
the second stage asymptotic variance will be independent of the particular choice
of nonparametric method used to estimate the first stage. Nevertheless, asymp-
totic variance of the estimator in this paper is much more complicated than that
of a semiparametric estimator since one has to consider three corrections: (1) es-
timation error in the preliminary estimate of transition probability p(st+1|st ,dt),
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(2) estimation error in the first stage nonparametric estimate of pt+1,J given
xt ,dt j = 1, and (3) error in the numerical expectation of E [ln pt+1,J|xt ,dt j = 1] .

In practice it is simple to use a numerical method suggested by Rust (1994,
p3109). Denote φ̂1, φ̂2 = (α,θ) be the consistent estimates from preliminary
stage for the transition probabilities and the second stage respectively. Then, the
numerical method is to use φ̂1, φ̂2 as starting values for obtaining a numerical in-
formation matrix. The covariance matrix is formed by inverting the information
matrix. Alternatively, it will typically be easier to use the bootstrap to estimate
standard errors.

3.3. MONTE CARLO EVIDENCE OF THE ESTIMATOR

I apply the estimation approach to an example of models of optimal stop-
ping problem. For Monte Carlo experiments, I set J = 2, T = 4 and ut1 =
−1.5+0.5xt . lnxt is assumed to evolves according to an AR(1) process; lnxt =
0.95lnxt−1 +ηt where ηt ∼ N(0,0.22). Data with 5000 observations are gener-
ated using the method described in Rust (1987). I adopt the logit series estimator
for the first step estimation and Gauss-Hermite method for the calculation of the
expectation. The results after 100 simulations show that the mean of the esti-
mates are (−1.5163,0.4960) with the standard errors of (0.070,0.019).

4. ALLOWING FOR UNOBSERVED INDIVIDUAL
HETEROGENEITY

For the illustration of our algorithm, I consider a version of a dynamic labor
supply model of older males. The model is a finite horizon model where individ-
uals start at age t = 1 and end their lives at time T. A state variable is the wage
income xt , which is assumed to be continuous. At date t, individuals choose
an action among two alternatives: working ( j = 1) and not working ( j = 2).
I assume that j = 2 (not working) is the absorbing state. Therefore the model
considered here is a discrete choice model with a continuous state variable. Let
dt j = 1 if alternative j is chosen at age t and zero otherwise. The state variable
evolves according to

xt = dt1ρxt−1 +dt2ρxt−1 +ηt

where ηt ∼ N(0,σ2) is a shock. A discrete probability distribution of individual
heterogeneity is assumed to has G points of support θ1, ...,θG and corresponding
masses, π1, ...,πG. The mixing proportion,πg, denotes the probability that an
individual belongs to a type g.
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In the model considered here, the per-period utility functions are, for g= 1,2:

u1(xt ,dt ;θg) = αg +δxt if dt1 = 1

where αg is a type-specific constant term and δ is a type-common coefficient,
and θg = (α1,α2,δ ). For the identification purpose, the utility function for j = 2
is set to be zero, that is u2(xt ,dt ;θg) = 0, as in the static discrete choice model.
The agent sequentially chooses {dt}T

t=1 to maximize the objective function:

E

[
T

∑
s=t

2

∑
j=1

β
s−tds j [u j(xs,ds;θg)+ εs j] | wt

]

where β is the discount factor. The private shocks, εt j, are distributed i.i.d. across
time periods, agents, and actions with type 1 extreme value distribution. For
the estimation purpose, I will treat the discount factor β as known. The set of
parameters to be estimated is θg along with mixing proportion π1.

Let d0
s = (d0

s1, ...,d
0
s,J−1)

′ denote the agent’s optimal choice in period s. De-
fine the conditional valuation function associated with choosing j as:

v j(xt ;θg) = E

[
T

∑
s=t+1

2

∑
j=1

β
s−td0

s j [u j(xs;θg)+ εs j] |xt ,dt j = 1

]

Under the assumption on the distribution of ε ′s, from (7), the choice probability
that the agent chooses action j = 1 becomes:

p1(xt ;θg) =
exp(φg +δxt −E [ln p2(xt+1;θg)|xt ,dt1 = 1])

1+ exp(φg +δxt −E [ln p2(xt+1;θg)|xt ,dt1 = 1])

where φg =αg+(1−β )γ. We could estimate (φg, δ ) in the second step using
the nonparametric estimates of p2(xt+1;θg) for each type of the first step. One
can recover αg by α̂g = φ̂g+βγ−γ given the values of β , γ, and the estimates φ̂g.
However it is not obvious how to estimate the choice probability for each type,
because p2(xt+1;θg) are different across unobserved types and not observable.

4.1. ESTIMATION OF FINITE MIXTURE

Consider the panel data {xnt ,dnt} on observed states and decisions of a col-
lection of agents, t = 1, ...,T and n = 1, ...,N. The log-likelihood function is:

L(dn,xn;π,θ) = log
N

∏
n=1

T

∏
t=1

G

∑
g=1

πg f (dnt |xnt ;θg)
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where dn = (d′n1, ...,d
′
nT )
′,xn = (x′n1, ...,x

′
nT )
′,π = (π1, ...,πG)

′, θ = (θ ′1, ...,θ
′
G)
′,

and f (dnt |xnt ;θg) = p j(xnt ;θg)
dt j . The maximum likelihood (ML) estimate of the

finite mixtures cannot be found analytically.
Estimating the mixtures is an incomplete data problem where the type labels

of each observation are missing and the EM algorithm can be adopted. Here, the
missing part is a label zn, associated to each observation (xn,dn), indicates the
component of that observation. Each label is a binary vector zn = [zn1, ...,znG]

′

such that
zng = 1 and znl = 0 for l 6= g

indicates that (xn,dn) is generated by component g. If the missing data z =
{z1, ...,zN} was observed, we could write the complete log-likelihood function:

Lc(zng,dn,xn;π,θ) =
N

∑
n=1

T

∑
t=1

G

∑
g=1

zng log [πg fg(dnt |xnt ;θg)]

The ML estimates are, for g = 1, ...,G:

π̂g =
1
N

N

∑
n=1

zng (8)

θ̂g = argmax
N

∑
n=1

T

∑
t=1

zng log fg(dnt |xnt ;θg) (9)

The EM algorithm proceeds by applying two steps. The E-Step computes
the conditional expectation of Lc given current m-step parameter estimates ; π̂(m)

and θ̂ (m),

Q(π,θ |; π̂
(m), θ̂ (m)) ≡ E

[
Lc(d,x,z;π,θ)|d,x; π̂

(m), θ̂ (m)
]

= Lc

(
d,x;π,θ ,E

[
z|x; π̂

(m), θ̂ (m)
])

because Lc is linear in the zng’s. In other words, the E-step reduces to the compu-
tation of the expected value of the missing data, which is then plugged into the
complete log-likelihood function. Since the zng’s are binary,

E
[
zng|d,x;π

(m),θ (m)
]
=

π̂
(m)
g ∑

T
t=1 f (dnt |xnt ; θ̂

(m)
g )

∑
K
r=1 π̂

(m)
r ∑

T
t=1 f (dnt |xnt ; θ̂

(m)
r )
≡ τg(xn,dn; θ̂

(m))

(10)
which is the posterior probability that (dn,xn) was generated by type g. The M-
step solves equations (8) and (9) with τg(xn,dn; θ̂ (m)) replacing zng.

Based on the above, I propose the following algorithm:
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1. The current estimates are π̂
(m)
g , θ̂

(m)
g , and nonparametric estimates p̂(m)(xt+1)

for each type g.

2. Use these estimates to obtain conditional valuation function v j(xt ;θ
(m)
g ).

Calculate also τg(xn,dn; θ̂
(m)
g ) by (10).

3. Estimate (π̂
(m+1)
g , θ̂

(m+1)
g ) by

θ̂
(m+1)
g = argmax

θ∈Θ

N

∑
n=1

T

∑
t=1

τg(xn,dn; θ̂
(m)
g ) log fg(dn|xn;θ) (11)

π̂
(m+1)
g =

1
N

N

∑
n=1

τg(xn,dn; θ̂
(m)
g )

4. For each observation n, estimate the component label vector zn by

ẑ(m+1)
ng = 1 if g = argmax

h
τh(xn,dn; θ̂

(m)
h )

= 0 otherwise

That is, update the allocation rule by the empirical Bayes modal predictor.

5. Use the sample (xn,dn,zn) to estimate the choice probability p̂(m+1)
j (xt+1)

for each type nonparametrically and go to step 2 and iterate the procedure
until some criterion is met.

In the Step 4, we assign each observation to the type of the mixture to which
it has the highest posterior probability of belonging. Given the estimate of the
type label vector (ẑ), the choice probabilities ( p̂(m+1)

j (xt+1)) for each type can
be estimated by nonparametric smoothing methods using kernel, sieve, or para-
metric smoothing methods such as linear probability method. Therefore, the
proposed updating steps 4 and 5 work directly even when the state variable is
continuous.

The algorithms proposed in this paper and by Arcidiacono and Miller (2011)
are different in the updating rule. Arcidiacono and Miller suggest a way to update
p̂(m+1)

j (xt+1) using the weighted empirical likelihood:

p̂(m+1)
j (xnt = x; θ̂

(m+1)
g ) =

∑
N
n=1 dn jtτg(xn,dn; θ̂

(m+1)
g )I (xnt = x)

∑
N
n=1 τg(xn,dn; θ̂

(m+1)
g )I (xnt = x)
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This updating method is applied on a discrete point x of xnt , and hence point-
wise. So one has to use another approximation methods such as interpolation or
extrapolation in the case of continuous state variable model. On the contrary, the
proposed updating step 4 is relevant even when the state variable is continuous.
The Arcidiacono and Miller’s algorithm can accommodate very flexible forms of
unobserved heterogeneities, whereas the suggested algorithm in this paper can
allow for only a small number of time-constant unobserved types.

In this paper I do not examine a consistent estimate of standard errors of the
suggested estimator. In practice one can use a numerical method suggested by
Rust (1994, p3109), mentioned in Section 3.2, or use the bootstrap to estimate
standard errors.

4.2. MONTE CARLO EVIDENCE OF THE ESTIMATOR

For the Monte Carlo experiment, I set (α1,α2,δ1,π1)= (−1.5,−0.5,0.5,0.6).
I also set (β ,ρ,σ) = (0.95,0.95,0.2). Using this parameterized model, data
with 2000 observations were generated. I adopt the logit series estimator for
this first step estimation and Gauss-Hermite method for the calculation of the
expectation. The results from 100 simulations are shown in column (1) of Ta-
ble 1. The estimators are close to unbiased. Around 30 iterations are needed
for the algorithm converges. In the second experiment (Experiment 2), I set
ρ = 0.90 and the remaining parameters same as the first experiment. In the third
experiment (Experiment 3), I set (α1,α2,δ1,π1) = (−1.0,−0.5,0.7,0.55) and
(β ,ρ,σ) = (0.95,0.95,0.2). The results from the both experiments are shown in
column (2) and (3) respectively. The experimental results show that the estima-
tors are close to unbiased.
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