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Abstract The maximum entropy (maxent) approach provides an attractive and
appealing method for obtaining a probability distribution in some limited infor-
mation environments. The maxent approach, however, is not easy to use for
practical application since analytic derivation of a maxent density is usually not
feasible. This paper proposes a method of estimating and simulating an maxent
density. It is a numerically tractable and stable method that is relatively simple
in real computation. The proposed method is capable of handling problems for
which existing methods are difficult to apply or are subject to occasional failure.
Monte Carlo results confirm that the proposed method can be well applied for
cases when existing methods are subject to occasional failure.
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1. INTRODUCTION

The maximum entropy (maxent) approach is a convenient and attractive
method for obtaining a probability distribution known only to satisfy certain mo-
ment conditions. A few numerical methods for estimating maxent densities are
proposed in the literature. However, in many cases of practical applications the
existing methods have difficulty in real computation and are subject to occasional
failure. In this paper we propose an alternative method of estimating and simu-
lating a maxent distribution given a set of moment conditions. Our approach is
based on a combined method of simulation and direct computation that does not
have computational difficulties involved in the existing methods.

The maxent approach has been used widely in the literature. In Bayesian
econometrics, Bayesian method of moments (Zellner, 1997, among others) and
Bayesian generalized method of moments (Kim, 2002) employed the maxent ap-
proach to get (non-likelihood based) posterior densities. In the finance literature,
there have been many applications of the maxent approach. Stutzer (1996) and
Buchen and Kelly (1996), for example, used the maxent approach to derive risk
neutral measures (or state price densities) of asset returns for derivative pricing.
Rockinger and Jondeau (2002) and Bera and Park (2004) extended ARCH type
models by applying maxent densities.

An important problem involved in a maxent density is that the analytic deriva-
tion of it is not feasible in many cases. Instead, some numerical methods based
on Newton-Raphson type algorithms are proposed in the literature for comput-
ing maxent densities (Zellner and Highfield, 1988, and Ormoneit and White,
1999). However, the existing numerical methods have difficulty for practical use
since they require non-trivial numerical integration and iterative nonlinear opti-
mization with computation of gradient values that is highly sensitive to starting
values. Wu (2003) tries to resolve this difficulty by proposing a new algorithm to
setting up appropriate starting values with sequential updating of moment con-
ditions. However, it also has difficulty when computing maxent densities from
extreme moment conditions. Also, Newton numerical optimization usually re-
quires computation of gradient values.

In this paper, we propose an alternative method of computing maxent densi-
ties. Our method does not involve numerical integration or computation of gra-
dient values. Our approach is developed based on the following theoretical facts:
(1) The maxent problem is a special case of the cross-entropy minimization; (2)
The constrained optimization in the maxent problem or in the cross-entropy min-
imization can be transformed to an unconstained optimization; (3) The solution
of the unconstrained optimization can be approximated with arbitrary precision



JAE-YOUNG KIM AND JOONHWAN LEE 263

by the solution of an empirical unconstrained optimization. The solution of the
empirical cross-entropy minimization with a uniform reference density is the
same as that of the empirical maxent problem.

Our numerical method proceeds as follows: (1) Draw a random sample from
a uniform reference density; (2) Evaluate the objective function in an (empirical)
unconstrained optimization for the drawn random sample; (3) Get the solution of
the empirical unconstrained optimization for the target maxent density. For this
purpose, we use a direct search algorithm, Nelder-Mead algorithm, that does
not involve computation of gradient values or numerical integration. This so-
lution of an empirical unconstrained optimization is an estimate of the maxent
density. Given an estimate of the maxent density we can numerically compute
such quantities of distribution characteristics as moments, quantiles and the un-
derlying probability measure. Monte Carlo experiments performed on several
examples show that our method works well in cases when the existing methods
do not work or are difficult to apply.

Discussion of the paper goes as follows. Section 2 studies some theoretical
background of our numerical method. In Section 3 we discuss our numerical
method for estimation and simulation of the maxent density. Section 4 evaluates
performance of our method by Monte Carlo simulation, and Section 5 concludes
the paper.

2. THE MAX-ENT DENSITY

Let x be an independent random variable from a distribution P0 with a density
p0. We do not know the distribution P0 or its density p0 but only know that x
satisfies a set of moment conditions:

EP0 [c j(x)]≡
∫

c j(x)p0(x)dx = d j, j = 1, . . . ,m (1)

where c j is a continuous function on R; d j is a constant. Thus, c j and d j char-
acterize moment conditions for x. To save notation we use x both for a random
variable and its values. Having the moment conditions (1) with respect to p0 we
can apply the maxent method to get an approximate density for x.

A maxent density is obtained by maximizing Shannon’s entropy measure
subject to some moment conditions as in (1). That is, a maxent density p∗ is the
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solution of

max
p(x)

∫
−p(x) log p(x)dx subject to (2)∫

p(x)dx = 1,
∫

c j(x)p(x)dx = d j, j = 1, . . . ,m

where the condition
∫

p(x)dx = 1 is to ensure that p(x) is a probability density.
The above maxent problem is a special case of the cross-entropy minimization:

min
p(x)

∫
p(x) log

p(x)
q(x)

dx subject to (3)∫
p(x)dx = 1,

∫
c j(x)p(x)dx = d j, j = 1, . . . ,m

where q is a specific reference density.
The problem (3) can be transformed to an unconstrained optimization prob-

lem:

Proposition 1. Assume that
∫

exp{λ ′c(x)}q(x)dx exists for λ ∈Λ, an open sub-
set of Rm. The problem (3) is equivalent to the following

min
λ

∫
exp{

m

∑
j=1

λ j(c j(x)−d j)}q(x)dx (4)

and the solution of the problem is

p∗(x) =
1

µ∗
exp{λ ∗′c(x)}q(x) where µ

∗ =
∫

exp{λ ∗′c(x)}q(x)dx

where λ ∗ is the solution of (4).

Proof. We follow Golan, et. al. (1996) for the proof. Thus, the Lagrangian
function for the problem (3) is

L (p) =
∫

p(x) log
p(x)
q(x)

dx+(1+λ0)(1−
∫

p(x)dx)

+
m

∑
j=1

λ j(d j−
∫

c j(x)p(x)dx).

The Lagrangian function L (p) is minimized when its Frechet derivative equals
zero. The first order condition for the minimization problem is

DL =
∫
[1+ log

p(x)
q(x)

− (1+λ0)−
m

∑
j=1

λ jc j(x)]δ p(x)dx = 0.
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This leads to

log p(x) = logq(x)+λ0 +
m

∑
j=1

λ jc j(x).

Letting µ ≡ exp{−λ0} as defined above, we have

p(x) =
1
µ

exp{
m

∑
j=1

λ jc j(x)}q(x).

The objective function now can be written in unconstrained form∫
p(x) log

p(x)
q(x)

dx =− log µ +
m

∑
j=1

λ jd j.

Therefore, the problem is equivalent to minimizing
∫

exp{λ ′(c(x)− d)}q(x)dx
with respect to λ ’s. Note that the Hessian matrix of the object function is the
covariance matrix of moment conditions. That is,

∂ 2 ∫ exp{λ ′(c(x)−d)}q(x)dx
∂λi∂λ j

=
∫

ci(x)c j(x)q(x)dx.

Therefore, the objective function is convex and the solution is unique.

Now, we consider a sample analogue of the problem (3). Let X1,X2, . . . ,Xn

be a random sample drawn from the reference density q. Also, let qi = q(Xi) =
1
n .

Then, we can construct the cross-entropy minimization problem with respect to
the empirical measure for the random sample:

p∗n =argmin
p

n

∑
i=1

pi log
pi

1/n
s.t. (5)

n

∑
i=1

pi = 1,
n

∑
i=1

c j(Xi)pi = d j, j = 1, . . . ,m

where p = (p1, . . . , pn) is an n-vector of the choice variable in the above mini-
mization problem, and accordingly p∗n = (p∗1,n, . . . , p∗n,n). Notice that the above
problem is the same as the following sample version of the entropy maximiza-
tion:

p∗n =argmax
p
−

n

∑
i=1

pi log pi s.t.

n

∑
i=1

pi = 1,
n

∑
i=1

c j(Xi)pi = d j, j = 1, . . . ,m.
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We can transform the minimization problem (5) to an unconstrained problem
as in Propositon 1:

Proposition 2. The problem (5) is equivalent to the following

min
λ

n

∑
i=1

exp{
m

∑
j=1

λ j(c j(Xi)−d j)}
1
n

(6)

and the solution of the problem is as follows

p̂∗i,n =
1

µ̂∗n
exp{λ̂ ∗n ′c(Xi)}

1
n

where µ̂
∗
n =

n

∑
i=1

exp{λ̂ ∗n ′c(Xi)}
1
n

(7)

where λ̂ ∗n
′ is the solution of (6).

Proof. The proof is virtually the same as that of Proposition 1.

Let P̂∗n be the probability measure corresponding to the solution p∗n:

P̂∗n (t) =
n

∑
i=1

p̂∗i,n1(t≥Xi)(t). (8)

Also, let P∗ be the probability measure corresponding to the solution of (3) or
(4), p∗:

P∗(t) =
∫ t

−∞

p∗(x)dx =
∫ t

−∞

1
µ∗

exp{λ ∗′c(x)}dx. (9)

We can show that the empirical probability measure P∗n (t) converges to P∗(t).
To do it we first show that the Lagrange multiplier λ is consistently estimated by
the empirical cross-entropy minimization (5):

Theorem 3. Let λ ∗ and λ̂ ∗n , respectively, be the solutions of the problems (4)
and (6). Then, we have

λ̂
∗
n

p−→ λ
∗.

Proof. Let ρ(x,λ ) ≡ exp{λ ′(c(x)− d)}. The object functions of (4) and (6),
respectively, are rewritten as in the following:

EQ[ρ(x,λ )] =
∫

ρ(x,λ )q(x)dx =
∫

exp{λ ′(c(x)−d)}q(x)dx

ρ̄n(λ ) =
1
n

n

∑
i=1

ρ(Xi,λ ) =
n

∑
i=1

exp{λ ′(c(Xi)−d)}1
n
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where Q is the probability measure corresponding to the density q, Q(t)=
∫ t
−∞

q(x)dx
for each t ∈R. Note that the function ρ(·) is continuous since c(·) is continuous.
Then, by a weak law of large numbers we have

ρ̄n(λ )
p−→ EQ[ρ(x,λ )].

Similar to the proof of Proposition 1, we can show that ρ̄n(λ ) is a convex
function. Then the convexity lemma (See Pollard (1991) or Andersen and Gill
(1982)) implies that for each compact subset K of Rm,

sup
λ∈K
|ρ̄n(λ )−EQ[ρ(x,λ )]| −→ 0.

Then, by a standard arguement used to prove consistency of a minimum contrast
estimator (for example, in Van der Vaart (1998)) we get the result.

Now, we can estabilish the uniform convergence of P̂∗n (t) to P∗(t).

Theorem 4. Let P̂∗n (t) and P∗(t) be as defined in (8) and (9). Then, it is true that

lim
n→∞

Q
(

sup
t∈R
|P̂∗n (t)−P∗(t)|> ε

)
= 0 (10)

where Q is the probability measure for the reference density q.

Proof. For µ̂∗n = 1
n ∑exp{λ̂ ∗n ′c(Xi)}, we have

|µ̂∗n −µ
∗| =

∣∣∣∣(1
n ∑exp{λ̂ ∗n ′c(Xi)}−

1
n ∑exp{λ ∗′c(Xi)}

)
+

(
1
n ∑exp{λ ∗′c(Xi)}−

∫
exp{λ ∗′c(x)}q(x)dx

)∣∣∣∣
≤

∣∣∣∣1n ∑exp{λ̂ ∗n ′c(Xi)}−
1
n ∑exp{λ ∗′c(Xi)}

∣∣∣∣
+

∣∣∣∣1n ∑exp{λ ∗′c(Xi)}−
∫

exp{λ ∗′c(x)}q(x)dx
∣∣∣∣

p−→ 0

where the convergence in the last step is due to Theorem 3, a weak law of large
numbers and the continuous mapping theorem. Now, write P̂∗n (t) as

P̂∗n (t)

(
=

n

∑
i=1

p̂∗i,n1(t≥Xi)(t)

)
=

1
n

n

∑
i=1

1
µ̂∗n

exp{λ̂ ∗n ′c(Xi)}1(t≥Xi)(t).
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Then, by the Slutsky lemma and a weak law of large numbers, we have

P̂∗n (t)−→P∗(t) ∀t ∈ R

in Q-probability. Now, since both P∗n (t) and P∗(t) are increasing and bounded,
the uniform convergence is established by the same arguement for the Glivenko-
Cantelli lemma.

3. A NEW METHOD FOR ESTIMATING MAXENT DENSITIES

This section discusses a new method for computing and simulating a maxent
density based on the theoretical results of the previous section. Several authors
studied computation methods for the maxtent density such as Zellner and High-
field (1988), Ormoneit and White (1999) and Wu (2003). The existing methods,
however, have difficulty for practical use in two aspects. First, they involve
numerical integration that is complex in many cases of actual computation. Sec-
ond, these methods employ the standard Newton-Rhapson algorithm which uses
explicit gradient values. Usually, however, in most of the search region the Ja-
cobian matrix is near-singular, which leads to frequent failure of the algorithm
unless the starting value is set close to the solution (Ormoneit and White (1999)).

The method we propose in this paper is based on Monte-Carlo draws to es-
timate the maxent density. We consider the discrete minimization of (5) with
the reference density q being the density of a uniform distribution. Denote by
qM(x) the uniform density over an interval [−M,M]⊂ R for some M ∈ R. That
is, qM(x) = 1

2M 1[−M,M](x). Let λ̂ ∗n,M be the solution of (6) where Xi, i = 1, . . . ,n
are drawn from qM.

Our method proceeds as follows. We first draw random numbers {Xi}n
i=1

from qM. Then, we get the solution λ̂ ∗n,M in (6) and resulting solutions p̂∗n,M and
P̂∗n,M from λ̂ ∗n,M:

λ̂
∗
n,M = argmin

λ

n

∑
i=1

exp{
m

∑
j=1

λ j(c j(Xi)−d j)}
1
n
,

p̂∗i,n,M =
1

µ̂∗n,M
exp{λ̂ ∗n,M ′c(Xi)}

1
n
,

P̂∗n,M(t) =
n

∑
i=1

p̂∗i,n,M1(t≥Xi)(t).

where µ̂∗n,M = ∑
n
i=1 exp{λ̂ ∗n,M ′c(Xi)}1

n . These solutions are obtained by a numer-
ical method known as the Nelder-Mead simplex search algorithm. See explana-
tions after Proposition 5 below.
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The solution λ̂ ∗n,M is a good approximate to its target value, and so is p̂∗i,n,M:

Proposition 5. The maxent density p∗ can be approximated with an arbitrary
precision by p̂∗n,M with M sufficiently large.

Proof. Let λ ∗M be the solution of

min
λ

∫
exp{

m

∑
j=1

λ j(c j(x)−d j)}qM(x)dx,

where qM(x) = 1
2M 1[−M,M](x). By the monotone convergence theorem and The-

orem 3 λ ∗M converges to the maxent solution λ ∗ as M→ ∞. Also, by Theorem
3,

λ̂
∗
n,M

p−→ λ
∗
M.

Therefore, as n→ ∞ and M→ ∞, λ̂n,M
p→ λ ∗. The conclusion follows from the

continuous mapping theorem.

In practice, one confronts the problem of how to choose M. The choice of M
depends on the distribution of x. For example, suppose that c j(x)= x j for j = 1,2
and d1 = 0. Then, with a known value of d2, we get the standard deviation of x,
σx = d1/2

2 . We can choose M large enough, say M = 4σx, to cover almost 100%
(probability 0.9999) of the support of x.

We employ the Nelder-Mead algorithm (Lagarias et al., 1997) for numerical
solution of our problem. The Nelder-Mead algorithm is a direct search algorithm
which does not involve computation of gradient values. The algorithm first sets a
simplex of n+1 vertices for an n-dimensional problem around the initial values.
Then the algorithm transforms the simplex along the surface by reflection, ex-
pansion, contraction or shrinkage for each iteration step. Only several additional
function evaluations are needed for each iteration step, so that the computational
load is relatively small. The algorithm continues until the diameter of the sim-
plex becomes smaller than specified threshold. For the detailed explanation of
the algorithm, see Lagarias et al. (1997).

Other numerical methods such as Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm may be used. It is an approximate Newton’s method which usually use
the first and second derivatives of the objective function, requiring continuous
differentiability. BFGS, however, is known to have good performance even for
non-smooth optimizations.

With a large number n of random draws (500,000 or more), the estimation of
λ is accurate to at least 4 decimal places in our simulation study (Section 4). Our
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method is relatively simple and stable so that there is less concern of failure than
existing methods. Monte Carlo experiments in Section 4 show that the proposed
method works well in cases with large numbers of moment conditions as well as
with moments whose values are close to bounds (extreme values).

With the computed discrete probabilities p̂∗i,n,M for Xi for i = 1, . . . ,n, we can
draw random numbers from the estimated maxent density by weighted resam-
pling on the original uniform draws:

Algorithm 1. We can draw a random number from the estimated maxent density
by the following algorithm.

1. Draw u∼U(0,1).

2. Let X (1), . . . ,X (n) be the order statistic of the random sample.

3. Let

k = inf
1≤k̃≤n

{k̃|
k̃

∑
i=1

p̂∗i,n,M ≥ u, k̃ ∈ N}.

3. Let Y = X (k).

Then Y A∼ P̂∗n,M(t).

4. MONTE CARLO EXPERIMENTS

In this section, we examine performance of the numerical method studied
in the previous section. First, we examine performance of our method for the
examples considered in Ormoneit and White(1999) and Wu(2003). Similar to
them, the moment conditions1 imposed are

EX = 0 EX2 = 1

EX3 ≡ µ3 ∈ [0,3] EX4 ≡ µ4 ∈ [(EX3)3 +1.1,10].

Ormoneit and White (1999) reported that their algorithm failed for some ranges
of (µ3,µ4). For example, Ormoneit and White (1999) reported that their algo-
rithm failed when µ3 = 0 and µ4 > 3. Also, they encountered numerical er-
ror when µ4 > 10. Figures 1-2 show the estimated results of our method for
λi, i = 1,2,3,4, for various values of (µ3,µ4). The results resemble those in

1For the covariance matrix to be positive definite the restriction of µ2
3 + 1 < µ4 must hold

(Ormoneit and White, 1999).
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Ormoneit and White (1999) and Wu (2003) in the range of (µ3,µ4) where the
algorithms in these existing papers work. Figure 3 shows some examples of es-
timated maxent densities for some extreme moment conditions that cause failure
of the algorithm proposed by Ormoneit and White (1999). Our method does not
have such difficulty involved in the existing algorithms and successfully obtains
solutions in the cases of extreme moment conditions, such as µ3 = 5,µ4 = 26.1
or µ3 = 0,µ4 = 12. The plotted densities are obtained by the weighted kernel
smoothing where the weights are given as pi’s.

p̂(x) =
n

∑
i=1

pi
1
h

K(
x−Xi

h
)

We also perform Monte Carlo simulation in the case when a large number
of moment conditions are available. We impose ten moment conditions which
are close to but different from those of the standard normal distribution. Figure
4 shows various maxent densities with ten moment conditions imposed, com-
paring them with the standard normal density. M1 has moments such that each
(2k)th moment for k = 2, . . . ,5 is larger than that of the standard normal dis-
tribution, while M2 has each (2k)th moment smaller than that of the standard
normal.2 We also have an estimate of the maxent density for the daily return of
KOSPI200 with ten (standardized) empirical moments. The standardized mo-
ments of KOSPI 200 daily returns are estimated as µ3 =−0.34, µ4 = 6.17, µ5 =
−14.42, µ6 = 139.47, µ7 =−733.67, µ8 = 5763.1, µ9 =−37815, µ10 = 279256
for data in the period of 2005.1.3-2008.4.30.

5. CONCLUSION

We propose a new method of estimating and simulating a maximum entropy
distribution given a set of moment conditions. Our approach is based on a com-
bined method of simulation and direct computation while existing methods are
based on first-order approximation and numerical integration which are very sen-
sitive to initial values or are subject to occasional failure. Monte Carlo experi-
ments show that the proposed method works well in the cases where the existing
methods either does not work or is difficult to apply.

2The (2k)thth moment of standard normal distribution is (2k)!
2kk!
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Figure 1: λ̂1 (top) and λ̂2 (bottom) for given µ3 and µ4, (n = 10,000, M = 8)
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Figure 2: λ̂3 (top) and λ̂4 (bottom) for given µ3 and µ4, (n = 10,000, M = 8)
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Figure 3: Estimated Maxent Density with Extreme Moment Conditions (n =
30000, M = 8)
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Figure 4: Various Maxent Densities with Ten Moment Conditions (n =
30000, M = 8)


