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tions under which without social norms, there exists a unique equilibrium regard-
ing the cooperation level, but with social norms, there can be multiple equilibria.
Second, we provide the comparative statics analysis such that for a statics frame-
work, the local stability of an interior equilibrium works as a sufficient condition
under which the cooperation level increases as the degree of social norms in-
creases; and for a dynamic framework, the cooperation level always increases
with social norms.
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1. INTRODUCTION

Understanding social norms is important in economics because they may
have direct relationships with various economic activities (see Elster (1989) pp.
100–101 for a list of economy-related social norms). Lindbeck, Nyberg and
Weibull (1999) is one of the influential papers that adopt social norms in a model
formally, and the paper shows that under a social norm, e.g., social stigma, a so-
ciety can have multiple equilibria regarding unemployment rates.1

In particular, they find that there are two types of equilibria: a “good” equilib-
rium and a “bad” equilibrium. In the former, anticipating that others will choose
to work, and that the social stigma associated with not working will thus be high,
more workers will find it optimal to work, whereas in the latter, anticipating that
others will choose not to work, and that the social stigma will thus be low, more
workers will find it optimal to depend on unemployment benefits.

In this paper, we extend their framework to a stag hunt game with incomplete
information and provide the characterization of equilibria regarding the “coop-
eration level” of a community, the fraction of hunters who choose to hunt a stag,
and the comparative statics on the changes in the cooperation level with respect
to the changes in the degree of social norms. If a hunter chooses to hunt a hare
instead of a stag, for instance, he or she may experience disutility from social
stigma associated with the behavior in the village.

We first establish conditions under which without social norms, there exists a
unique equilibrium regarding the cooperation level, whereas with social norms,
there can be multiple equilibria as in Lindbeck, Nyberg and Weibull (1999): one
equilibrium in which more hunters choose to hunt a stag and the other in which
fewer hunters choose to hunt a stag. For the first result, we find that it is necessary
to have hunter types whose dominant strategy is to choose either a stag or a hare,
and sufficient to assume a strictly decreasing net benefit function of a “threshold
hunter type” with a strongly convex form of social norms.

The second main contribution of this paper is to introduce the comparative
statics analysis, which has not been discussed thoroughly in the literature.2 It is
commonly accepted that the greater the degree of social norms, the higher the
cooperation level, and indeed, this is probably the reason that a community “in-

1“Individuals may, however, also experience disutility from accepting the transfer due to em-
barrassment or social stigma associated with living on public transfers rather than on one’s own
work. Such embarrassment is likely to be weaker, the greater the number of individuals in society
who live on the transfer” (p.7, Lindbeck, Nyberg and Weibull (1999)).

2The comparative statics hold without assuming the conditions related to either uniqueness or
multiplicity.
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tends” to implement social norms. However, this paper shows that social norms
may not enhance the cooperation level. Hence, it is important to examine con-
ditions under which a society can have a higher level of cooperation or a lower
level. First, for a static analysis, we establish that the local stability of an interior
equilibrium works as a sufficient condition under which the cooperation level
increases as the degree of social norms increases.3 In addition, if an equilibrium
is locally unstable, then the cooperation level can strictly decrease with the de-
gree of social norms. We also present the comparative statics from a dynamic
framework in which it is shown that as the degree of social norms increases, the
cooperation level always increases.

We define social norms as an equilibrium phenomenon as in Basu and Weibull
(2004), who show, using a coordination game, that a norm is not innate in hu-
man nature but is an outcome of an equilibrium. The theory of repeated games
also explains how social norms in a “large” population are born, evolve and may
die. Kandori (1992) provides a model in which a cooperative equilibrium can
be sustained as an equilibrium either with a behavioral rule on people without
information processing or with a system transmitting information in a society.
Ghosh and Ray (1996) suggests a model without information flows and proves
that a cooperation level in a community can be explained in terms of people fol-
lowing a certain set of rules with regard to how to develop their relationship with
others. Both papers suppose either an information processing system or a pattern
of behavior to show a cooperative action, which is defined as a social norm. In
this paper, a cooperative equilibrium arises from the amount of negative payoff
that a hunter receives as a result of social norms, such as social stigma, when the
hunter chooses to hunt a hare, instead of a stag.

We provide a stag hunt game without social norms in Section 2, a stag hunt
game with social norms in Section 3, comparative statics in Section 4, and, fi-
nally, an illustrative example in Section 5.

2. MODEL

Consider a variant of a stag hunt game with incomplete information. Every
two hunters in a village are randomly matched and go on a hunt. They must
cooperate in order to hunt a stag, and each hunter’s payoff from capturing a stag
is B. However, each can hunt a hare by himself or herself, and hunter i’s payoff

3See Definition 1 for a formal definition of the local stability.
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from a hare is Ci. The game for every two hunters is represented as below:

Stag Hare
Stag B,B 0,C j

Hare Ci,0 Ci,C j

(1)

We assume that the payoff from choosing to hunt a hare Ci is only known to
each hunter i, and the other hunters know that Ci is independently and identically
drawn from a differentiable distribution function F with its density F ′ ≡ f > 0
where its support is given as

[
C,C

]
, satisfying C > C, B > C and C > 0. The

conditions, C >C, B >C and C > 0, ensure that there exists an interval [C1,C2]
with C1 <C2 such that for each Ci ∈ [C1,C2], B >Ci > 0. As in a stag hunt game
with complete information, the best response of a hunter with Ci ∈ [C1,C2] is to
choose Stag if the hunter expects his opponent to choose Stag, and to choose
Hare if the hunter expects his opponent to choose Hare. However, we also allow
hunters to have types whose dominant strategy is to choose either Stag or Hare.4

Since each hunter has two actions with a strictly monotonic Ci in the payoff
matrix, in equilibrium, hunter i’s strategy hi : [C,C]→ {Stag, Hare} must be a
cut-off strategy with a threshold type ki such that

hi (Ci) =

{
Stag if Ci < ki,
Hare if Ci > ki.

Hunter i with type Ci greater than a threshold ki chooses a hare, and hunter i
with type Ci smaller than a threshold ki ∈ [C,C] chooses a stag. Then, hunter i’s
expected payoff from choosing a stag is given as F (k j)B, where k j is a threshold
for hunter j’s strategy, and the expected payoff from choosing a hare is Ci. A
Bayesian-Nash equilibrium is defined as (k∗1,k

∗
2) ∈ [C,C]2 such that for each i ∈

{1,2},
F(k∗j)B≤ k∗i if k∗i =C,
F(k∗j)B = k∗i if k∗i ∈ (C,C),
F(k∗j)B≥ k∗i if k∗i =C.

(2)

We first show that an equilibrium must be symmetric with k∗i = k∗j = k∗.

4It is not exceptional that one can find this kind of variant of a well-known game by introduc-
ing incomplete information such that some types always choose a certain designated action. For
examples, see the classical paper by Kreps, Milgrom, Roberts and Wilson (1982) in which “An
alternative way to model this is to assume that ROW has available all the strategies above, but that
with probability δ , ROW’s payoffs are not as above but rather make playing Tit-for-Tat strongly
dominant” (p. 247).
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Lemma 1. An equilibrium must be symmetric such that k∗i = k∗j = k∗.

Proof. Suppose k∗j 6= k∗i ∈ [C,C]. WLOG, let k∗j > k∗i . From (2),

F (k∗i )B≥ k∗j ( = if k∗j <C), and F(k∗j)B≤ k∗i ( = if k∗i >C).

Then, F (k∗i )B > F(k∗j)B and F (k∗i ) > F(k∗j), which implies k∗i > k∗j , a contra-
diction.

Then, given a threshold type k, F (k)B is each hunter’s incentive to choose a
stag, and F (k)B− k is the threshold hunter type’s net benefit to choose a coop-
erative action. We assume a class of supports for the CDF [C,C] that is sufficient
for an interior equilibrium to exist.

Assumption 1. The CDF F has a support [C,C] that satisfies

[F (C)B−C][F
(
C
)

B−C] =−C[B−C]< 0.

There can be two cases: (i) 0 <C <C < B so that for each hunter, the payoff
from a stag is greater than the payoff from a hare while the payoff from a hare is
greater than 0, and (ii) C < 0< B<C so that the lowest type’s payoff from a hare
is so low that it is negative, and the highest type’s payoff is so high that it is even
greater than the payoff from a stag. Since F (k)B− k is continuous on [C,C] and
[F (C)B−C][F

(
C
)

B−C] < 0, there exists an interior equilibrium k∗ ∈ (C,C)
satisfying F (k∗)B = k∗.

Note that if 0 <C <C < B, there exist boundary equilibria with k∗ =C and
k∗ =C. For k =C, F(C)B−C =−C < 0, and for k =C, F(C)B−C = B−C > 0,
which satisfies the boundary equilibrium conditions in (2). It follows that if 0 <
C < C < B, there exist at least three equilibria, k∗ = C, k∗ = C and an interior
equilibrium, which in turn implies that C < 0 < B <C is a “necessary condition”
for uniqueness. Furthermore, Proposition 1 provides a sufficient condition under
which there exists a unique equilibrium, and it is an interior k∗ ∈

(
C,C

)
.

Proposition 1. If F (k)B− k is a strictly decreasing function of k on [C,C], then
there exists a unique equilibrium k∗ ∈

(
C,C

)
, and the probability of hunting a

stag is F (k∗).

Proof. It is clear that a strictly monotone F (k)B− k yields a unique interior
threshold k∗ ∈

(
C,C

)
. Furthermore, since F (k)B− k is strictly decreasing and

F (k∗)B−k∗ = 0, for C < k∗, we have F(C)B−C > 0, and for C > k∗, F(C)B−
C < 0, which violates the boundary equilibrium conditions in (2).
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For the comparative statics in Section 4, we classify social norm equilibria
into different groups by introducing a simple dynamic process, similar to the
Cournot adjustment process. Denote by λ the fraction of hunters in the pop-
ulation who choose to hunt a stag, and in this dynamic process, each hunter’s
expectation about the fraction at period t, λt , is given as the previous period’s
fraction. Hence,

λt = F (kt−1) for t = 0,1,2, ..., (3)

which implies
kt = λtB = F (kt−1)B for t = 0,1,2, .... (4)

The definition of local stability in this context is introduced.

Definition 1. An equilibrium threshold k∗ ∈ (C,C) is locally stable if there exists
an open interval (a,b) such that k∗ ∈ (a,b), and for each k0 ∈ (a,b) with k0 6= k∗,
kt converges to k∗ as t→ ∞.

We establish the condition for an equilibrium threshold k∗ to be locally stable
in the following proposition.

Proposition 2. An equilibrium threshold k∗ ∈ (C,C) is locally stable if and only
if there exists an open interval (a,b) such that k∗ ∈ (a,b) and for each k0 ∈
(a,k∗), F(k0)B− k0 > 0 and for each k0 ∈ (k∗,b), F(k0)B− k0 < 0.

Proof. Part 1. Suppose that there exists an open interval (a,b) such that k∗ ∈
(a,b) and for each k0 ∈ (a,k∗), F(k0)B−k0 > 0 and for each k0 ∈ (k∗,b), F(k0)B−
k0 < 0. It follows from (4) and f > 0 that if kt > kt−1 (kt < kt−1) for all t =
0,1,2, ...,

kt+1− kt = F (kt)B− kt = F (kt)B−F (kt−1)B

= [F (kt)−F (kt−1)]B > 0 ( < 0).

Case 1. For each k0 ∈ (a,k∗), F(k0)B− k0 > 0, so k1 > k0. Hence, kt+1 > kt

for all t = 0,1,2, ..., and limt→∞ kt = k∗.
Case 2. For each k0 ∈ (k∗,b), F(k0)B− k0 < 0, so k1 < k0. Hence, kt+1 < kt

for all t = 0,1,2, ..., and limt→∞ kt = k∗.
Part 2. Now, suppose that an equilibrium threshold k∗ ∈ (C,C) is locally

stable, and WLOG, for each a < k∗, there exists ka ∈ (a,k∗) such that F(ka)B−
ka ≤ 0. Since k∗ ∈ (C,C) is locally stable, for some k0 < k∗, kt converges to k∗

as t→ ∞. We can show a contradiction for each case below.
Case 1. For k0, F(k0)B− k0 = 0. Then, kt converges to k0 as t→ ∞ .



312 A STAG HUNT GAME WITH SOCIAL NORMS

Case 2. For k0, F(k0)B− k0 > 0. Then, by the intermediate value theorem,
there exists k′ ∈ (k0,ka] such that F(k′)B− k′ = 0. Using the same argument as
above, kt converges to k′ as t→ ∞ .

Case 3. For k0, F(k0)B− k0 < 0. Using the same argument as above, kt con-
verges to k′′ < k0 as t→ ∞ if it converges.

If f (k∗)B< 1, the threshold type’s net benefit function F (k)B−k is a strictly
decreasing function of k at k∗, which implies the condition in Proposition 2.
However, the reverse relationship may not be true. Suppose that F (k)B− k is
given as −k3. Then, k∗ = 0 and k∗ is locally stable given Proposition 2, but

d(−k3)

dk

∣∣∣∣
k=k∗

= 0. (5)

A simple sufficient condition for the local stability can be derived in Remark 1.

Remark 1. If f (k∗)B < 1, there exists an open interval (a,b) such that k∗ ∈
(a,b) and for each k0 ∈ (a,k∗), F(k0)B− k0 > 0 and for each k0 ∈ (k∗,b),
F(k0)B− k0 < 0.

Proof. Note that f (k∗)B < 1 can be rewritten as d[F(k∗)B− k∗]/dk < 0, and
F(k∗)B− k∗ = 0.

In the following section, we introduce social norms and examine how the
community can have multiple equilibria.

3. STAG HUNT WITH SOCIAL NORMS

Let a differentiable function s : [0,1]×R+ → R+ be the amount of nega-
tive payoff that a hunter receives from social norms when hunting a hare with
s(λ ,α), where α measures the degree of social norms. We assume that s is a
strictly increasing function of λ for α > 0, and a strictly increasing function of
α for λ > 0 such that for each λ , as α increases, the degree of social norms
increases, in other words, s(λ ,α ′) > s(λ ,α) for all α ′ > α . If α = 0, there is
no negative payoff from social norms, that is, s(λ ,α) = 0 for all λ . Denote by
sλ (λ ,α) the partial derivative with respect to λ and sα (λ ,α) the partial deriva-
tive with respect to α .

The stag hunt game with the social norms is given as:

Stag Hare
Stag B,B 0,C2− s(λ ,α)

Hare C1− s(λ ,α),0 C1− s(λ ,α),C2− s(λ ,α)
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As in the case without social norms, hunter i’s expected payoff from choosing to
hunt a stag is F (k)B, but here, the expected payoff from choosing a hare with
the social norms is Ci− s(λ ,α).

A social norm equilibrium requires two conditions; each group has a Bayesian-
Nash equilibrium, and each hunter’s belief about λ must be correct in an equi-
librium (rational expectations) such that λ = F (k∗) where k∗ is an equilibrium
threshold. Then, a symmetric equilibrium is defined as k∗ ∈ [C,C] such that

F(k∗)B+ s(F (k∗) ,α)≤ k∗ if k∗ =C,
F(k∗)B+ s(F (k∗) ,α) = k∗ if k∗ ∈ (C,C),
F(k∗)B+ s(F (k∗) ,α)≥ k∗ if k∗ =C.

(6)

We show in the following Proposition that even if F (k)B− k is strictly de-
creasing as in Proposition 1, a strictly convex function s(λ ,α) with respect to
λ can result in multiple equilibria. With multiple equilibria, two hunters in one
group may have expectations about the equilibrium strategy that are different
from those of the two hunters in the other group. Hence, we assume that mem-
bers in each group have “common beliefs” about k.5

Proposition 3. If F (k)B− k is a strictly decreasing function of k on [C,C] and
s(λ ,α) is a strictly convex function of λ satisfying conditions limλ→0 sλ (λ ,α)=
0 and limλ→1 sλ (λ ,α)=+∞, then for C sufficiently close to 0, there are multiple
equilibria.

Proof. Since F (k)B− k is strictly decreasing and F (k∗)B− k∗ = 0, for C < k∗,
we have

F(C)B−C = F(C)B+ s(F (C) ,α)−C > 0. (7)

Since F (k)B− k is strictly decreasing and limλ→C sλ (λ ,α) = 0, we have

d [F(k)B+ s(F (k) ,α)− k]
dk

∣∣∣∣
k=C

< 0,

which implies that there exists a (small) interval containing C such that F(k)B+
s(F (k) ,α)− k is a strictly decreasing function of k on the interval. Now, if C is
sufficiently close to 0, there exists k′ >C such that

F(k′)B+ s(F
(
k′
)
,α)− k′ < 0. (8)

5In Proposition 3, limλ→C sλ (λ ,α) = 0 and lim
λ→C sλ (λ ,α) =+∞ can be called “reversed”

Inada conditions.
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From (7) and (8), there exists an equilibrium threshold k∗1 ∈ (C,k′). On the other
hand, lim

λ→C sλ (λ ,α) = +∞ entails that for k′′ sufficiently close to C,

F(k′′)B+ s(F
(
k′′
)
,α)− k′′ > 0. (9)

Hence, it follows from (8) and (9) that there exists an equilibrium threshold k∗2 ∈
(k′,k′′).

The local stability in this section is the one with social norms, but its defini-
tion is easily derived from the local stability without social norms in Definition
1 and Proposition 2, by replacing F(k0)B− k0 with F(k0)B+ s(F (k0) ,α)− k0.

Remark 2. An equilibrium threshold k∗ ∈ (C,C) is locally stable if and only if
there exists an open interval (a,b) such that k∗ ∈ (a,b) and for each k0 ∈ (a,k∗),
F(k0)B+s(F (k0) ,α)−k0 > 0 and for each k0 ∈ (k∗,b), F(k0)B+s(F (k0) ,α)−
k0 < 0.

The sufficient condition in Remark 1 can be extended to the one with social
norms as below:

f (k∗)B+ sλ (F (k∗) ,α)< 1. (10)

The following Corollary shows that given a milder condition than Proposition
3, there exists a locally stable equilibrium. The example in Section 5 illustrates
multiple equilibria with a stable equilibrium k∗1 and an unstable equilibrium k∗2.

Corollary 1. If F (k)B− k is a strictly decreasing function of k on [C,C] and
limλ→0 sλ (λ ,α) = 0, then for C sufficiently close to 0, there exists a locally
stable equilibrium.

Proof. Since F(k)B+s(F (k) ,α)−k is a strictly decreasing function of k at k∗1 ∈
(C,k′) from the proof of Proposition 3, it satisfies the local stability condition.

In addition, if F(k)B+s(F (k) ,α)−k is a strictly decreasing function of k on
[C,C], then we can show that there exists a unique stable equilibrium k∗ ∈

(
C,C

)
,

and the probability of hunting a stag is F (k∗), similar to the uniqueness result in
Proposition 1.6

6A strictly monotone F(k)B+ s(F (k) ,α)− k yields a unique threshold k∗ ∈
(
C,C

)
. Further-

more, since F(k)B+ s(F (k) ,α)−k is strictly decreasing and F(k∗)B+ s(F (k∗) ,α)−k∗ = 0, for
C < k∗, we have F(C)B+ s(F (C) ,α)−C > 0, and for C > k∗, F(C)B+ s(F

(
C
)
,α)−C < 0,

which violates the boundary equilibrium conditions in (6).
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4. COMPARATIVE STATICS

We study comparative statics with respect to changes in social norms by
examining how each equilibrium threshold point changes as the degree of social
norm α changes. Choose an interior equilibrium threshold k∗ ∈ (C,C), which
exists if α is sufficiently close to 0 as in Section 2 with assumption 1, and denote
by k (α) an equilibrium threshold point given α .

The first main result in this section shows that if k (α) is a locally stable point
with social norms, then as the degree of social norms increases from α to α ′, an
equilibrium threshold point increases from k (α) to k (α ′). Note that the result is
given for any two points α ′,α such that α ′ is sufficiently close to α so that we
can apply a milder local stability condition in Remark 2, not with the sufficient
condition in (10). Moreover, the following results hold without assuming the
previous conditions related to either uniqueness or multiplicity.

Proposition 4. If k (α)∈ (C,C) is a locally stable point, then for any pair α ′>α

such that α ′ is sufficiently close to α , k (α ′)> k (α).

Proof. Since k (α) ∈ (C,C) is locally stable with social norms, there exists an
open interval (a,b) such that for each k0 ∈ (k,b), F(k0)B+s(F (k0) ,α)−k0 < 0.
For α ′ > α , we have

F(k (α))B+ s(F (k (α)) ,α ′)> k (α) .

If α ′ is sufficiently close to α , there exists k0 ∈ (k (α) ,b) such that

F(k0)B+ s(F (k0) ,α
′)< k0.

Hence, the intermediate value theorem entails that there exists k (α ′)∈ (k (α) ,k0)
such that

F(k
(
α
′))B+ s(F

(
k
(
α
′)) ,α ′) = k

(
α
′) .

Hence, k (α ′)> k (α) for α ′ > α such that α ′ is sufficiently close to α .

We strengthen the above result by imposing the stronger condition, the suf-
ficiency, in (10). Without this, if the function is given as −k3 like the counter
example in (5), the implicit function theorem cannot be applied. Hence, although
we use the same notation k (α) for both Propositions 4 and 5, with a slight abuse
of the notation, the former is for any given two points, whereas the latter is for
an interval around α , where the implicit function theorem is applied.
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Proposition 5. If k (α) ∈ (C,C) is a locally stable point satisfying (10), then
there exists a neighborhood of α such that an equilibrium threshold k∗ is a
strictly increasing function of α in the neighborhood of α .

Proof. Suppose that k (α) ∈ (C,C) is a locally stable point satisfying

f (k (α))B+ sλ (F (k (α)) ,α)< 1, (11)

which is sufficient for an equilibrium to be locally stable with social norms.
Then, the implicit function theorem entails that there exists a neighborhood of α

such that k∗ is a function of α , and

k′ (α) =− sα(F (k (α)) ,α)

f (k (α))B+ sλ (F (k (α)) ,α)−1
> 0. (12)

In sum, in a static analysis, the local stability of an equilibrium point is suffi-
cient for more hunters to be cooperative with greater social norms. On the other
hand, if the condition is not satisfied, social norms can yield a worse outcome for
a society such that fewer hunters become cooperative with greater social norms.

Corollary 2. If k (α) is a locally unstable point satisfying

f (k (α))B+ sλ (F (k (α)) ,α)> 1, (13)

then there exists a neighborhood of α such that an equilibrium threshold k∗ is a
strictly decreasing function of α in the neighborhood of α .

Proof. The implicit function theorem entails that

k′ (α) =− sα(F (k (α)) ,α)

f (k (α))B+ sλ (F (k (α)) ,α)−1
< 0.

Finally, we examine the dynamic implications of social norms by using the
dynamic process in (4) as the degree of social norms increases from α to α ′, i.e.,
for any pair α ′ > α . In contrast to the result from the static analysis in Propo-
sition 4, dynamically, it is always the case that more hunters will be cooperative
with greater social norms.

Proposition 6. If k (α)∈ (C,C) is an equilibrium point, then for any pair α ′>α ,
the adjustment process dynamically converges to k (α ′)> k (α).



SEUNG HAN YOO 317

Proof. Given t = 0, k0(α
′) = k(α). For α ′ > α , we have

F(k0(α
′))B+ s(F(k0(α

′)),α ′)> k0(α
′),

so k1(α
′)> k0(α

′). By (3), if kt(α
′)> kt−1(α

′) for all t = 0,1,2, . . .,

kt+1(α
′)− kt(α

′)

= F(kt(α
′))B+ s(F(kt(α

′)),α ′)− kt(α
′)

= F(kt(α
′))B+ s(F(kt(α

′)),α ′)− [F(kt−1(α
′))B+ s(F(kt−1(α

′)),α ′)]

= [F(kt(α
′))−F(kt−1(α

′))]B+[s(F(kt(α
′)),α ′)− s(F(kt−1(α

′)),α ′)]> 0,

where the strict inequality follows from f > 0, and sλ > 0. Hence, kt+1(α
′) >

kt(α
′) for all t = 0,1,2, .... If there exists k(α ′) ≤ C such that F(k(α ′))B +

s(F(k(α ′)),α ′) = k(α ′), then limt→∞ kt(α
′) = k(α ′)> k(α). If there is no such

k(α ′)≤C, then k(α ′) =C, since it satisfies the third condition in (6), and
limt→∞ kt(α

′) =C.

5. AN EXAMPLE

We provide an example in this section. Let Ci be drawn from a uniform dis-
tribution U [C,C]. Then, F (k)B− k is given as:

F (k)B− k =
(

k−C
C−C

)
B− k =

(
B−C+C

C−C

)
k− BC

C−C
.

Hence, given a uniform distribution, the condition C < 0 < B < C is sufficient
for F (k)B− k to be a strictly decreasing function, which satisfies the condition
in Proposition 1. Now, assume that s(λ ,α) = αλ 2 for social norms, and one
can check that limλ→0 s(λ ,α) = 0 and as λ → 1, s(λ ,α) becomes sufficiently
large if α is chosen appropriately, and these are milder conditions than those in
Proposition 3. It follows that in equilibrium,

F(k)B+ s(F (k) ,α)− k =
(

k−C
C−C

)
B+α

(
k−C
C−C

)2

− k = 0. (14)

A calculation yields the following two equilibrium thresholds:

k∗1 =
(
C−C

)−(B−C+C)−
√
(B−C+C)2 +4αC

2α

+C,

k∗2 =
(
C−C

)−(B−C+C)+
√
(B−C+C)2 +4αC

2α

+C.
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To have a more concrete idea, let C =−1, B = 1 and C = 4. Then,

k∗1 = 5
[

2−
√

4−α

α

]
−1; k∗2 = 5

[
2+
√

4−α

α

]
−1. (15)

For α = 3, we have k∗1 = 2
3 and k∗2 = 4. It can be shown that k∗1 is a strictly in-

creasing function of α , and k∗2 is a strictly decreasing function of α , provided that
there exist both equilibrium points from the quadratic equation in (14), which are
related to the local stability condition in Proposition 5 and the non-stability con-
dition in Corollary 2, respectively. To check the local stability using (11) and
(13), we derive f (k∗)B+ sλ (F (k∗) ,α) such that

f (k∗)B+ sλ (F (k∗) ,α) =
B

C−C
+2α

(k−C)

(C−C)2
.

Let C =−1, B = 1, C = 4 and α = 3. Hence,

B
C−C

+2α
(k−C)

(C−C)2
=

1
5
+

6(k+1)
25

.

For α = 3, we have k∗1 =
2
3 and k∗2 = 4, and one can check

1
5
+

6(k+1)
25

=
3
5
< 1 for k∗1 =

2
3

;

1
5
+

6(k+1)
25

=
7
5
> 1 for k∗1 = 4.

Hence, k∗1 is a stable point, whereas k∗2 is an unstable point.
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