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1. INTRODUCTION

Duration data have been a popular research topic. For example, Van den
Berg and Ridder (1998) empirically examine unemployment and job duration in
the Netherlands using search theory, and Kennan (1985) examines contract strike
duration data in U.S. manufacturing industries.

Unobserved heterogeneity is unavoidable in most empirical duration data
analyse, which means handling it correctly is crucial to obtaining correct infer-
ences from the data. Van den Berg and Ridder (1998) specify a finite mixture
model for their data, and Kennan (1985) employs various tests to confirm the
absence of unobserved heterogeneity in his data.

Empirical duration data are often available in the form of grouped observa-
tions. Although data analyses are conducted assuming continuous observations,
available observations are measured in days, weeks, months, and so on. This
implies that analyzing grouped duration data using a continuous model can lead
to a misspecified model estimation, and that inferencing based on unobserved
heterogeneity can be misleading.

Therefore, the main goal of this study is to infer unobserved heterogeneity
for grouped duration data. We achieve this goal by testing a finite mixture hy-
pothesis of two conditional geometric distributions. According to search theory
(e.g., Van den Berg and Ridder, 1998), the equilibrium duration conditionally
follows an exponential distribution on other conditioning variables, unless un-
observed heterogeneity is involved. Furthermore, as we discuss below, grouping
exponential data yields geometrically distributed observations. Therefore, a fi-
nite mixture of two conditional geometric distributions can be a proper model
for grouped duration data in the presence of unobserved heterogeneity.

The approach of the current study extends the methodology in Cho and Han
(2009) by applying the method in Cho and White (2007). Cho and Han (2009)
provide a methodology for testing a mixture hypothesis of two unconditional
geometric distributions, applying the likelihood ratio (LR) test statistic. The
current work extends their approach by supposing a mixture of two conditional
geometric distributions and applying the same LR testing principle in Cho and
Han (2009). In this way, we extend the applicability of the geometric mixture
hypothesis.

Another goal of this study is to examine the interrelationship between the
null limit distributions of LR test statistics. Cho and White (2010) derive the null
limit distribution of the LR test statistic that tests the mixture hypothesis of two
exponential distributions. We achieve our second goal by examining how their
null limit distribution is associated with ours, which is obtained from the LR test
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statistic that tests the geometric mixture hypothesis. We suppose different data
sets with different grouping bin sizes and examine how the null limit distribution
of the LR test statistic responds as the size decreases. From this, we obtain a
regular interrelationship between the null limit distributions.

The remainder of the paper proceeds as follows. Section 2 provides the DGP
and model environments, as well as the null limit distribution of the LR test
statistic that tests the conditional geometric mixture hypothesis. In the same
section, we examine the association between the null limit distributions of the
LR test statistics used to test the geometric and exponential mixture hypotheses.
In Section 3, we conduct Monte Carlo experiments and examine the finite per-
formance of the LR test statistic. Section 4 provides concluding remarks. All
mathematical proofs are available in the Appendix.

2. MIXTURES OF CONDITIONAL GEOMETRIC DISTRIBUTIONS

2.1. MOTIVATION, DATA GENERATING PROCESS (DGP), AND MODEL

Economic theories on duration data are often associated with exponential
distributions. For example, using search theory, Van den Berg and Ridder (1998)
show that unemployment and job duration follow exponential distributions. More
specifically, if we let Dt be unemployment or job duration, the following proba-
bility density function (PDF) becomes the conditional distribution of Dt |Xt :

fo(d|x;β ∗,δ∗)≡ δ∗h(x;β ∗)exp{−δ∗h(x;β ∗)d}, (1)

according to search theory, where Xt is a k×1 vector of conditioning variables.
Nevertheless, if the duration data are contaminated by unobserved hetero-

geneity, the conditional exponential distribution yields a misspecified model,
which is a common problem in most empirical studies.

Therefore, models for unobserved heterogeneity are often specified as well,
often using mixture models. For example, Nickell (1979) and Van den Berg and
Ridder (1998) employ a finite mixture for unobserved heterogeneity, and Lan-
caster (1979) assumes a gamma distribution. Please refer to Lancaster (1992) for
other mixture assumptions related to unobserved heterogeneity. Finite mixture
models specify the distribution of Dt |Xt as

fa(d|x;β ,δ1,δ2)≡ π fo(d|x;β ,δ1)+(1−π) fo(d|x;β ,δ2), (2)

where (π,β ,δ ) ∈ [0,1]×B×∆, and B×∆ is a convex and compact set in R1+d

(d ∈N). Note that (1) is the DGP for Dt |Xt in the absence of unobserved hetero-
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geneity, whereas (2) is a mixture model for Dt |Xt that accommodates unobserved
heterogeneity.

Furthermore, most duration data used in empirical studies are grouped obser-
vations. For example, Kennan (1985) examines contract strike duration data in
U.S. manufacturing industries that are measured in days, and Van den Berg and
Ridder (1998) examine unemployment and job duration data in the Netherlands,
which are measured in months. Thus, estimating the parameters using (2) can
be misleading, even though model (2) is correctly specified for Dt |Xt (e.g., Ryu,
1995).

We capture this grouping feature by letting (Yt ,X′t)′ ∈ N×Rk be a set of
available observations, where Yt ≡ dDte and dxe := min{a ∈ N : a ≥ x}. Here,
model (2) is misspecified for Yt |Xt . Given that Yt ∈ N, we need to employ a
conditional probability mass function (PMF) rather than the conditional PDF.
Note that if an exponential random variable is grouped according to our plan,
it follows a geometric distribution. More specifically, if Dt |Xt is distributed ac-
cording to (1), the conditional cumulative distribution function (CDF) of Yt |Xt is
obtained as

F(y|x;β ∗,δ∗) = 1− exp{−δ∗h(x;β ∗)y},

so that the conditional PMF of Yt |Xt is obtained as

F(y|x;β ∗,δ∗)−F(y−1|β ∗,δ∗)
= [1− exp{−δ∗h(x;β ∗)}]× [exp{−δ∗h(x;β ∗)}]y−1. (3)

By this feature, a finite mixture model of two geometric distributions becomes a
proper model for Yt |Xt in the presence of unobserved heterogeneity:

Ma ≡ {ga( · | · ;π,β ,δ1,δ2) : (π,β ,δ1,δ2) ∈ [0,1]×B×∆×∆},

where for y∈N, ga(y|x;π,β ,δ1,δ2)≡ πgo(y|x;β ,δ1)+(1−π)go(y|x;β ,δ2) and

go(y|x;β ,δ )≡ [1− exp{−δh(x;β )}]× [exp{−δh(x;β )}]y−1.

The main goal of this study is to test the mixture hypothesis of conditional
geometric distributions. Then, we associate this result with that of conditional
exponential distributions obtained in the absence of data grouping.

Before proceeding, several remarks are provided on our approach and its as-
sociation with the literature. First, Cho and White (2007, 2010) and Cho and
Han (2009) examine the null limit distribution of the likelihood ratio (LR) test
statistic used to test the mixture hypothesis of regular conditional distributions.
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In particular, Cho and White (2010) examine a mixture hypothesis of conditional
exponential/Weibull distributions, whereas Cho and Han (2009) examine a mix-
ture of unconditional geometric distributions. They both derive the null limit
distributions of the LR test statistics under their specific environments. The cur-
rent study links their independent studies by supposing a mixture model of con-
ditional geometric distributions, which have a regular interrelationship between
their null limit distributions. Second, we reparameterize the original model Ma

for analytical convenience. Cho and White (2010) point out that if Ma is repa-
rameterized as

M ′
a ≡ {ga( · | · ;π,β ,α1δ∗,α2δ∗) : (π,β ,α1,α2) ∈ [0,1]×B×A×A},

deriving the null limit distribution of the LR test statistic becomes more straight-
forward, where A is such that ∆ = {αδ∗ : α ∈ A}. By the invariance principle,
the same LR test statistic is obtained from both M ′

a and Ma. We follow their
convention and discuss their usage without loss of generality whenever it is con-
venient for our analysis.

2.2. LIKELIHOOD RATIO TEST FOR UNOBSERVED HETEROGENEITY

Following Cho and White (2007, 2010) and Cho and Han (2009), the goal of
this study is achieved by estimating the parameters of interest. The absence of
unobserved heterogeneity is also presented using the same parameters. Specif-
ically, if we let (π∗,β ∗,δ1∗,δ2∗) be the parameter describing the DGP of Yt |Xt ,
we have that ga( · | · ;π∗,β ∗,δ1∗, ·) = go( · | · ;β ∗,δ∗), provided that π∗ = 1 and
δ1∗ = δ∗. Thus, the conditional geometric PMF becomes the DGP of Yt |Xt .
Here, δ2∗ is irrelevant to the DGP, that is, δ2∗ is not identified. Analogously, if
δ1∗ = δ2∗ = δ∗, ga( · | · ; · ,β ∗,δ1∗,δ2∗) = go( · | · ;β ∗,δ∗), so that π∗ is not identi-
fied. Finally, if π∗ = 0 and δ2∗ = δ∗, ga( · | · ; · ,β ∗,δ1∗,δ2∗) = go( · | · ;β ∗,δ∗) and
δ1∗ is not identified. This case is parallel to that in which π∗ = 1 and δ1∗ = δ∗.
On the other hand, if π∗ ∈ (0,1) and δ1∗ 6= δ2∗, the mixture model must be ap-
propriate for the distribution of Yt |Xt . Therefore, the following is stated as our
proper set of null and alternative hypotheses:

H0 : π∗ = 1 and δ1∗ = δ∗; δ1∗ = δ2∗ = δ∗; π∗ = 0 and δ2∗ = δ∗, versus

H1 : π∗ ∈ (0,1) and δ1∗ 6= δ2∗.

The current study tests H0 versus H1 using the following LR test statistic:

LRn(A)≡ 2

{
n

∑
t=1

lnga(Yt |Xt ; π̂n, β̂ n, δ̂1n, δ̂2n)−
n

∑
t=1

lngo(Yt |Xt ; β̂ on, δ̂on)

}
,
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where n is the sample size, and (β̂ on, δ̂on) and (π̂n, β̂ n, δ̂1n, δ̂2n) are the maximum-
likelihood estimators (MLEs) obtained under the null and alternative model as-
sumptions, respectively. Here, the LR test statistic is indexed by the parameter
space A for α , which is part of M ′

a. As discussed below, the null limit distribu-
tion of the LR test statistic is influenced by the parameter space A. We accom-
modate this feature by letting the LR test statistics be indexed by the parameter
space A.

Here, we examine the LR test statistic because other test statistics are difficult
to apply in this context. Note that Davies’s (1977, 1987) identification problem
is present in multiple ways under H0. That is, if π∗ = 1 (resp. π∗ = 0), δ2∗ (resp.
δ1∗) is not identified, which yields Davies’s (1977, 1987) identification problem.
Furthermore, if δ1∗ = δ2∗, π∗ is not identified, implying Davies’s (1977, 1987)
identification problem in a different manner. This trifold identification problem
makes it difficult to apply Wald’s (1943) testing principle, although applying the
LR testing principle is straightforward. Thus, we examine the LR test statistic in
this study.

Multifold identification problems are often observed in the literature. For
example, Cho and Ishida (2012), Baek, Cho, and Phillips (2015), and Cho and
Phillips (2018) test polynomial model hypotheses using power transformations,
and multifold identification problems arise under their null hypotheses. As an-
other example, Cho and White (2011a, 2011b), Cho, Ishida, and White (2011,
2014), and White and Cho (2011) test correct model assumptions using artificial
neural network models, and they too observe multifold identification problems
under their correct model assumptions. The aforementioned studies handle mul-
tifold identification problems by applying the LR testing principle when testing
their hypotheses. The current study extends the existing literature by applying
the LR testing principle to testing the mixture hypothesis.

2.2.1 Asymptotic Null Distribution

Cho and White (2007) examine the LR test statistic in a general context and
apply the methodology in Andrews (1999, 2001) to show that the LR test statistic
weakly converges to a function of a Gaussian process under H0. Their result also
holds for our problem. The following theorem reveals the null limit distribution
of the LR test statistic.

Theorem 1. Given Assumptions 1 to 4 in the Appendix, if infA > 1/2,

LRn(A)⇒L R(A)≡ sup
α∈A

(max[0,G (α)])2 (4)
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under H0, where G (·) is a Gaussian process such that for each α and α ′ ∈ A,

E[G (α)G (α ′)] =
ρ(α,α ′)√

ρ(α,α)
√

ρ(α ′,α ′)
, (5)

where ρ(α,α ′)≡ A(α,α ′)−B(α)′C−1B(α ′);

A(α,α ′)≡ E
[
[Qt(α)−Qt(1)][Qt(α

′)−Qt(1)]
[1−Qt(1)][Qt(1)−Qt(α)Qt(α ′)]

]
;

B(α)≡ E
[[

[Qt(α)−Qt(1)]
[Qt(1)−1][Qt(α)−1]

][
δ∗h(Xt ;β ∗)

δ∗∇β h(Xt ;β ∗)

]]
;

C≡ E

[
Qt(1)δ 2

∗
[Qt(1)−1]2

[
h(Xt ;β ∗)

2 h(Xt ;β ∗)∇
′
β

h(Xt ;β ∗)

h(Xt ;β ∗)∇β h(Xt ;β ∗) ∇β h(Xt ;β ∗)∇
′
β

h(Xt ;β ∗)

]]
;

and Qt(α)≡ exp[αδ∗h(Xt ;β ∗)]. �

A number of remarks are warranted. First, the null limit distribution of the
LR test statistic depends on the parameter space A. Given that the functional of
the Gaussian process G (·) is maximized over A, if we use a different parameter
space for A, a different null limit distribution is obtained.

Second, it is more convenient to use M ′
a than Ma to obtain the null limit

distribution. Here, the result in Theorem 1 is derived from the Gaussian process
G (·) defined on A, which is associated with M ′

a. That is why we reparameterize
Ma as M ′

a.
Third, the covariance structure in (5) generalizes the result in Cho and Han

(2009). If we let h(Xt ;β ∗)≡ 1 so that for each α and α ′, we can denote Qt(α),
Qt(α

′), and Qt(1) as 1− p, 1− p′, and 1− p∗ respectively, it follows that

ρ(α,α ′) =
(p− p∗)2(p′− p∗)2

pp′(1− p∗)p∗[(1− p∗)− (1− p)(1− p′)]
.

Note that this covariance structure is identical to that of Cho and Han (2009, p.
51), treating their theorem 1 as a special case of Theorem 1 here.

Fourth, Theorem 1 is consistent with other results in the literature. Table 1
summarizes the relevant literature on testing mixture hypotheses under different
DGP and model conditions. The studies in Table 1 also provide methodologies
that consistently yield the asymptotic critical values of their test statistics. When
characterizing the null limit distributions of their test statistics, these studies all
exploit Gaussian processes, as Theorem 1 does.
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Authors Mixtures
Chernoff and Lander (1995) Unconditional binomial distributions
Chen and Chen (2001) Unconditional normal and Poisson distributions
Liu, Pasarica and Shao (2003) Unconditional gamma distributions
Cho and White (2007) Conditional Normal distributions
Cho and Han (2009) Unconditional geometric distributions
Cho and White (2010) Conditional Exponential and Weibull distreibutions

Table 1: LITERATURE FOR TESTING THE MIXTURE HYPOTHESIS. This table pro-
vides the literature providing the null limit distribution of statistics testing the mixture hypothesis.

Fifth, the null limit distribution of the LR test statistic is not distribution-free.
Note that the covariance structure of G (·) is affected by the distribution of Xt : for
different distributions of Xt , different functional forms are obtained for ρ(·, ·). In
addition, the distribution of Xt is often unknown. In this case, the closed form of
ρ(·, ·) is difficult to obtain. Furthermore, the functional form of ρ(·, ·) depends
on h(Xt ;β ). Different specifications for h(Xt ;β ) lead to various functional forms
for ρ(·, ·), and thus, to different asymptotic critical values. This aspect implies
that the asymptotically conservative critical values advocated by Davies (1977)
and Piterbarg (1996) are difficult to apply here, because their critical values are
derived using the functional form of ρ(·, ·).

Sixth, the mixture hypothesis in our context needs to be tested nonparamet-
rically. The weighted bootstrap method of Hansen (1996) is useful for this pur-
pose. Cho, Cheong, and White (2011) implement the weighted bootstrap method
for the LR test statistic described in Cho and White (2010). The procedure of
the weighted bootstrap method is described here for the current study to be self-
contained:

(1) For each grid point of α ∈A, compute Ŝnt(α)≡{D̂nt(α)}− 1
2 Ŵnt(α), where

D̂nt(α)≡n−1
n

∑
t=1

[1− R̂nt(α)]2

−n−1
n

∑
t=1

[1− R̂nt(α)]Û′nt

[
n

∑
t=1

ÛntÛ
′
nt

]−1 n

∑
t=1

Ûnt [1− R̂nt(α)],

Ŵnt(α)≡ [1− R̂nt(α)]− Û′nt

[
n

∑
t=1

ÛntÛ
′
nt

]−1[ n

∑
t=1

Ûnt [1− R̂nt(α)]

]
,

R̂nt(α)≡ go(Yt |Xt ; β̂ on,αδ̂on)/go(Yt |Xt ; β̂ on, δ̂on),
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and Ûnt ≡ ∇(β ,δ ) ln[go(Yt |Xt ; β̂ on, δ̂on)].

(2) Generate Z j
t ∼ IID N(0,1), for t = 1,2, . . . ,n, and j = 1,2, . . . ,J, and com-

pute the empirical distribution of

L R j
n(A)≡ sup

α∈A

(
max

[
0,

1√
n

n

∑
t=1

Ŝnt(α)Z j
t

])2

by iterating J times.

(3) The empirical p-value is computed as p̂J
n ≡ 1

J ∑
J
j=1 I[LRn(A)< L R j

n(A)].

According to Hansen (1996), p̂J
n asymptotically follows a uniform distribution

on [0,1] under H0. Otherwise, it should converge to zero in probability. Thus, if
p̂J

n is less than the level of significance, we reject the null hypothesis.

2.2.2 Asymptotic Power of the LR Test Statistic

The LR test statistic has asymptotic power when the mixture model is cor-
rectly specified.

Theorem 2. Given Assumptions 1 to 4 and H1, if Ma is correctly specified and
infA > 1/2, then for any sequence {cn} such that cn = o(n), P[LRn(A)≥ cn]→ 1
as n→ ∞. �

Although Theorem 2 holds straightforwardly by the Kullback–Leibler informa-
tion criterion (KLIC), we prove it in the Appendix.

Despite its consistency, a careful interpretation of Theorem 2 is needed.
First, if Ma is misspecified, the consistency of Theorem 2 may not hold. Cho
and White (2008) examine a general theory of testing the mixture hypothesis of
misspecified models and provide regularity conditions under which the LR test
statistic has a nondegeneracy property and asymptotic power under H0 and H1,
respectively. Theorem 2 is valid only when Ma is correctly specified. Second,
the LR test statistic may appear to have unobserved heterogeneity, even under
H0, because h(·;β ) is misspecified. Note that h(·;β ) contributes to E[Yt |Xt ].
Therefore, we recommend testing for the correct conditional mean specification
first to avoid this consistent type-I error, before applying the LR test statistic.
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2.3. ASYMPTOTIC BEHAVIOR OF THE LR TEST STATISTIC LOCAL TO
THE EXPONENTIAL DISTRIBUTION

There is a regular interrelationship between the null limit distribution in The-
orem 1 and that of the LR test statistic used to test for the conditional exponential
mixture hypothesis given in Cho and White (2010, theorem 1). In Section 2.1,
we showed that geometrically distributed observations are generated by group-
ing exponentially distributed observations by supposing a unitary bin size. In this
subsection, we suppose a different bin size and derive the null limit distribution
of the LR test statistic. Thus, we examine the null limit distribution when the
grouping bin size is extremely small. In this case, the null limit distribution of
the LR test statistic can be thought of as an approximation of the LR test statistic
used to test the conditional exponential mixture hypothesis.

This aspect implies that if the grouping bin size is sufficiently small, the
asymptotic critical values in Cho and White (2010) can be used for our inference
purpose without implementing the weighted bootstrap method. Note that Cho
and White (2010) show that the null limit distribution of their LR test statistic is
asymptotically distribution-free, providing a straightforward simulation method
that delivers the asymptotic critical values. Thus, applying their asymptotic crit-
ical values can be efficient for our inferencing purpose.

Here, we consider different bin sizes. For the same Dt given in (1), if we
suppose that the grouping bin size is given as ∆ > 0, then

F(d|x;β ∗,δ∗)−F(d−∆|β ∗,δ∗)
= [1− exp{−δ∗∆h(x;β ∗)}]× [exp{−δ∗h(x;β ∗)}]d−∆. (6)

If we further let ∆≡ 1/ω , (6) is converted into the following geometric random
variable:

F [k/ω|x;β ∗,δ∗]−F [(k−1)/ω|β ∗,δ∗]
= [1− exp{−δ∗h(x;β ∗)/ω}]× [exp{−δ∗h(x;β ∗)/ω}]k−1,

where k = 1,2, . . . Note that this is the conditional PMF of Y ω
t ≡ dDt ×ωe on

Xt : for y = 1,2, . . ., the conditional PMF of Y ω
t is

gω
o (y|x;β ∗,δ∗)≡ [1− exp{−δ

ω
∗ h(x;β ∗)}]× [exp{−δ

ω
∗ h(x;β ∗)}]y−1,

where δ ω
∗ ≡ δ∗/ω . The only difference between this and the conditional distri-

bution in (3) is the adjustment of the location parameter δ∗ to accommodate the
influence of ω . If ω = 1, the same conditional PMF is obtained from (6), and
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the LR test statistic LRn(A) in Section 2.2 is a special case of the following LR
test statistic:

LRω
n (A)≡ 2

{
n

∑
t=1

lngω
a (Y

ω
t |Xt ; π̂n, β̂ n, δ̂

ω
1n, δ̂

ω
2n)−

n

∑
t=1

lngω
o (Y

ω
t |Xt ; β̂ on, δ̂

ω
on)

}
,

where for y∈N, ga(y|x;π,β ,δ ω
1 ,δ ω

2 )≡ πgω
o (y|x;β ,δ ω

1 )+(1−π)gω
o (y|x;β ,δ ω

2 ),
and (π̂n, β̂ n, δ̂

ω
1n, δ̂

ω
2n) and (β̂ on, δ̂

ω
on) are the MLEs obtained by maximizing the

alternative likelihood function ∑
n
t=1 lngω

a ( Y ω
t |Xt ; ·) and the null likelihood func-

tion ∑
n
t=1 lngω

o (Y
ω

t |Xt ; ·), respectively. Note that LRn(A) is obtained from LRω
n (A)

by letting ω be unity.
We contain the null limit distribution of LRω

n (A) in the following theorem.

Theorem 3. Given Assumptions 1 to 4 in the Appendix, if infA > 1/2, for each
ω ,

LRω
n (A)⇒L Rω(A)≡ sup

α∈A
(max[0,Gω(α)])2 (7)

under H0, where Gω(·) is a Gaussian process such that for each α and α ′ ∈ A,

E[Gω(α)Gω(α
′)] =

ρω(α,α ′)√
ρω(α,α)

√
ρω(α ′,α ′)

,

where ρω(α,α ′)≡ Aω(α,α ′)−Bω(α)′C−1
ω Bω(α

′);

Aω(α,α ′)≡ E
[
[Qt(α/ω)−Qt(1/ω)][Qt(α

′/ω)−Qt(1/ω)]

[Qt(1/ω)−1][Qt(α/ω)Qt(α ′/ω)−Qt(1/ω)]

]
;

Bω(α)≡ E
[

δ ω
∗ [Qt(α/ω)−Qt(1/ω)]

[Qt(1/ω)−1][Qt(α/ω)−1]

[
h(Xt ;β ∗)

∇β h(Xt ;β ∗)

]]
; and

we let Cω be defined as

E

[
(δ ω
∗ )

2Qt(1/ω)

[Qt(1/ω)−1]2

[
h(Xt ;β ∗)

2 h(Xt ;β ∗)∇
′
β

h(Xt ;β ∗)

h(Xt ;β ∗)∇β h(Xt ;β ∗) ∇β h(Xt ;β ∗)∇
′
β

h(Xt ;β ∗)

]]
.

Note that the covariance structure ρω(α,α ′) is identical to ρ(ω,ω ′) in Theorem
1 if ω is equal to one. Because Theorem 2 treats a more general case than
Theorem 1, Theorem 2 is proved in the Appendix, and we omit proving Theorem
1.

The goal of this section is achieved by letting the grouping bin size ∆ tend to
zero (or ω→∞). In the following theorem, we provide the null limit distribution
of the LR test statistic obtained by letting ω → ∞.
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Theorem 4. Given Assumptions 1 to 4 in the Appendix, if infA > 1/2 and there
is no conditioning variable Xt , then

lim
ω→∞

L Rω(A)⇒L R∞(A)≡ sup
α∈A

(max[0,G∞(α)])2 (8)

under H0, where G∞(·) is a standard Gaussian process such that for each α and
α ′ ∈ A,

E[G∞(α)G∞(α
′)] =

(2α−1)1/2(2α ′−1)1/2

α +α ′−1
.

Theorem 4 yields a regular relationship between the null limit distributions
of the LR test statistics used to test the geometric and exponential mixture hy-
potheses. The covariance structure E[G∞(α)G∞(α

′)] is identical to that obtained
by Cho and White (2010, theorem 1(i)) as the null limit distribution of the LR
test statistic used to test the exponential mixture hypothesis. Therefore, if the
grouping bin size ∆ is sufficiently small, the null limit distribution given by Cho
and White (2010) can approximate that of the LR test statistic used to test the
geometric mixture hypothesis.

The reasoning behind Theorem 4 is straightforward. As ω approaches infin-
ity, the probability mass generated by grouping continuous data decreases, such
that the CDF of Y ω

t approaches that of the exponential random variable. As a
result, the asymptotic critical value of the LR test statistic used to test the geo-
metric mixture hypothesis approaches that of the LR test statistic used to test the
exponential mixture hypothesis.

Theorem 4 is comparable to the quasi-maximum likelihood (QML) estima-
tion of grouped exponential random variables. Ryu (1995) analyzes the QML es-
timator obtained by maximizing the quasi-likelihood function of an exponential
distribution and grouped exponential random observations. The QML estimator
is not consistent for the parameters in the DGP, although the bias is asymptoti-
cally negligible if the size of bin ∆ is sufficiently small. This result agrees with
that in Theorem 4.

Nevertheless, a regular interrelationship between the null limit distributions
of the LR test statistics is not established when the conditioning variable Xt ex-
ists. By estimating the unknown parameter β ∗ in h(Xt ;β ∗), it introduces an
estimation error that modifies the asymptotic covariance structure of the Gaus-
sian process G∞(·). Specifically, when the regularity conditions hold such that
we can apply Lebesgue’s dominated convergence theorem, it follows that

lim
ω→∞

ρω(α,α ′) =
(α−1)(α ′−1)

α +α ′−1
− (α−1)(α ′−1)

αα ′
B′∞C−1

∞ B∞,
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where

B∞ ≡ E
[

1
∇β lnh(Xt ;β ∗)

]
and

C∞ ≡ E

[
1 ∇′

β
lnh(Xt ;β ∗)

∇β lnh(Xt ;β ∗) ∇β lnh(Xt ;β ∗)∇
′
β

lnh(Xt ;β ∗)

]
.

Note that this limit covariance structure leads to a different correlation structure
that of Cho and White (2010, theorem 1(ii)), who derive the same null limit dis-
tribution for the LR test statistic, irrespective of the existence of the conditioning
variable Xt . This implies that their null limit distribution cannot be obtained by
lim∞ L Rω(A).

3. MONTE CARLO EXPERIMENTS

3.1. TESTING USING THE WEIGHTED BOOTSTRAP METHOD

In this section, we conduct Monte Carlo experiments to examine the level
and power properties of the LR test statistic.

For our experiments, we consider the following DGP and model conditions.
First, for the level property, we specifically consider the following DGPs:

• DGP I: Yt ∼ IID G[1− exp{−1
2}];

• DGP II: Yt |Xt ∼ IID G[1− exp{−1+ exp[−exp(Xt)]}],

where Xt ∼ IID N(0,1), and G(p∗) denotes the geometric distribution with pa-
rameter p∗, such that if Yt ∼G(p∗) then P(Yt = 0) = p∗.

Second, for these DGPs, we estimate the following models, respectively:

•Model I: πG[1− exp{−α1δ∗}]+ (1−π)G[1− exp{−α2δ∗}];
•Model II:

πG[1− exp{−α1δ∗[1− exp(−exp(βXt))]}]
+ (1−π)G[1− exp{−α2δ∗[1− exp(−exp(βXt))]}],

where we consider two different parameter spaces for α1 ≡ δ1/δ∗ and α2 ≡
δ2/δ∗, namely, A1≡ [3/4,5/4] and A2≡ [3/4,6/4]. We conduct the experiments
by estimating Models I and II using the observations generated by DGPs I and II,
respectively. We implement the weighted bootstrap method described in Section
2.2.1 to examine the performance of the LR test statistic.
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DGP: Yt ∼ IID G[1− exp{− 1
2}]

Model 0 versus Model I
Statistics Levels \ n 500 1,000 2,000 5,000 10,000 20,000

1% 0.30 0.50 0.65 1.00 0.90 0.95
LRn(A1) 5% 2.05 3.20 3.45 3.80 3.95 4.05

10% 6.55 7.00 7.75 8.25 8.50 9.15
1% 0.80 0.90 0.80 0.90 1.10 0.75

LRn(A2) 5% 3.05 3.85 4.60 4.30 4.80 4.40
10% 7.35 7.65 8.65 8.45 8.95 8.50
1% 0.25 0.65 0.60 1.10 0.90 1.05

LR?
n(A1) 5% 2.15 3.10 4.05 4.35 4.40 4.65

10% 6.30 7.20 8.30 8.55 9.25 9.95
1% 0.70 0.75 0.80 0.60 1.25 0.90

LR?
n(A2) 5% 2.75 3.25 4.25 4.05 4.65 4.10

10% 5.90 6.55 8.10 8.05 8.55 8.40
DGP: Yt |Xt ∼ IID G[1− exp{−1+ exp[−exp(Xt)]}]

Model 0′ versus Model II
Statistics Levels \ n 500 1,000 2,000 5,000 10,000 20,000

1% 0.20 0.30 1.10 1.05 1.00 1.10
LRn(A1) 5% 2.80 4.45 5.50 5.55 5.10 5.45

10% 8.20 9.35 11.95 11.40 9.85 11.45
1% 0.70 0.85 1.15 0.85 1.30 1.70

LRn(A2) 5% 4.30 4.15 5.10 6.25 6.70 6.70
10% 8.75 8.95 10.40 12.40 12.75 12.95

Table 2: LEVELS OF THE LR TEST STATISTICS (NUMBER OF EXPERIMENT
REPETITIONS: 2,000). This table shows the finite sample properties of the LR test statistics
under the DGP/model assumptions and in the absence of unobserved heterogeneity. Note that the
empirical rejection rates are more or less similar to the nominal significance levels. Model 0 indi-
cates G[1− exp{−δ1}], Model I indicates πG[1− exp{−δ1}]+ (1−π)G[1− exp{−δ2}], Model
0′ indicates G[1− exp{1− exp[−δ1 exp(βXt)]}], and Model II indicates πG[1− exp{−δ1(1−
exp[−exp(βXt)])}]+ (1−π)G[1− exp{−δ2(1− exp[−exp(βXt)])}]. Furthermore, we let Xt ∼
IID N(0,1), A1 ≡ [3/4,5/4] and A2 ≡ [3/4,6/4]. LRn(A) and LR?

n(A) denotes the LR test statistics
evaluated by the weighted bootstrap and the methodologyly in Cho and Han (2009), respectively.

Remarks are warranted in implementing this experiment. First, the values of
δ∗ are 0.5 and 1.0 for Model I and II, respectively. However, they are unknown,
α1 and α2 are not obtained directly. Instead, we estimate δ∗ using the null model,
denoting it as δ̂on and letting α1 and α2 be δ1/δ̂on and δ2/δ̂on, respectively. For
a finite sample size, A1 and A2 are not estimated precisely by this estimate, but
the uncertainty conveyed by this estimate disappears as the sample size n tends
to infinity.
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Second, because DGP I and Model I do not contain conditioning variables,
we can also test the mixture hypothesis using the methodology of Cho and Han
(2009). We compare the performance of the LR test statistic using the weighted
bootstrap method with that of their methodology. Theorem 2 of Cho and Han
(2009) shows that the asymptotic distribution of the LR test statistic can be ob-
tained consistently by simulating

L̂ Rm(A)≡ sup
α∈A

max[0, Ĝm(α)]2

many times, where

Ĝm(α)≡
{
(1− p̂on)− [1− p̂on(α)]2

(1− p̂on)

}1/2 m

∑
k=0

{
[1− p̂on(α)]√

1− p̂on

}k

Zk,

p̂on ≡ 1− exp{−δ̂on}, p̂on(α) ≡ 1− exp{−αδ̂on}, and Zk ∼ IID N(0,1). For
our comparison, we let m be 50 and denote the LR test statistic evaluated by
L̂ R50(A) as LR?

n(A).
Table 2 reports the finite sample level properties of the LR test statistic. We

summarize these properties as follows.

(1) As the sample size n increases, the empirical levels approach the nominal
levels (1%, 5%, and 10%). This feature is observed when applying both
the weighted bootstrap method and the asymptotic critical values of Cho
and Han (2009), implying that they are both asymptotically valid testing
procedures under the null hypothesis.

(2) The empirical rejection rates obtained from the weighted bootstrap method
are similar to those obtained from the asymptotic critical values of Cho
and Han (2009). This feature implies that applying the weighted boot-
strap method may be more appealing because it is applicable even when
conditioning variables exist in the model.

(3) If the parameter space A is small, there is a tendency for the LR test statis-
tic to yield more precise nominal levels. That is, the empirical rejection
rate from A1 is closer to the nominal level than that from A2. Therefore,
choosing a smaller parameter space can reduce finite sample level distor-
tions.

Third, we consider the following DGPs for the power properties of the LR
test statistic:
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• DGP III: Yt ∼ IID 1
2G[1− exp{−0.3}]+ 1

2G[1− exp{−0.7}];

• DGP IV: Yt |Xt ∼ IID G[1− exp{1− exp[−exp(Xt)]}];

• DGP V: Yt |(Xt ,Zt)∼ IID G[1− exp{−exp(Zt +Xt)}]; and

DGP: Yt ∼ IID 1
2G[1− exp{−0.3}]+ 1

2G[1− exp{−0.7}]
Model 0 versus Model I

Statistics \ n 50 100 200 500 1,000 2,000
LRn(A1) 0.55 3.75 18.40 73.20 98.80 100.0
LRn(A2) 3.25 10.35 29.30 79.80 98.75 100.0
LR?

n(A1) 0.45 4.00 19.55 77.45 98.90 100.0
LR?

n(A2) 2.65 9.25 27.50 80.25 98.75 100.0
DGP: Yt |Xt ∼ IID G[1− exp{1− exp[−exp(Xt)]}]

Model 0 versus Model I
Statistics \ n 50 100 200 500 1,000 2,000

LRn(A1) 12.10 48.15 90.55 100.0 100.0 100.0
LRn(A2) 21.40 63.40 93.40 100.0 100.0 100.0
LR?

n(A1) 12.00 48.50 91.70 100.0 100.0 100.0
LR?

n(A2) 19.05 63.10 93.80 100.0 100.0 100.0
DGP: Yt |(Xt ,Zt)∼ IID G[1− exp{−exp(Zt +Xt)}]

Model 0′ versus Model II
Statistics \ n 50 100 200 500 1,000 2,000

LRn(A1) 6.00 22.05 56.40 92.65 99.90 100.0
LRn(A2) 11.90 35.85 69.05 97.40 99.95 100.0

DGP: Yt |Xt ∼ IID 1
2G[1− exp{−exp(− 2

7 +Xt)}]+ 1
2G[1− exp{−exp( 5

7 +Xt)}]
Model 0′ versus Model II

Statistics \ n 50 100 200 500 1,000 2,000
LRn(A1) 0.15 1.55 8.30 32.70 58.75 84.90
LRn(A2) 1.95 6.10 16.70 36.90 63.50 87.40

Table 3: LEVELS OF THE LR TEST STATISTICS (NUMBER OF EXPERIMENT
REPETITIONS: 2,000; LEVEL OF SIGNIFICANCE: 5%). This table shows the finite
sample properties of the LR test statistics under the DGP/model assumptions and in the presence of
unobserved heterogeneity. Note that the empirical rejection rates converge to 100% as the sample
size increases. Model 0 indicates G[1− exp{−δ1}], Model I indicates πG[1− exp{−δ1}]+ (1−
π)G[1− exp{−δ2}], Model 0′ indicates G[1− exp{1− exp[−δ1 exp(βXt)]}], and Model II indi-
cates πG[1−exp{−δ1(1−exp[−exp(βXt)])}]+(1−π)G[1−exp{−δ2(1−exp[−exp(βXt)])}].
Furthermore, we let (Xt ,Zt)

′ ∼ IID N(0,I2), A1 ≡ [3/4,5/4] and A2 ≡ [3/4,6/4]. LRn(A) and
LR?

n(A) denotes the LR test statistics evaluated by the weighted bootstrap and the methodology in
Cho and Han (2009), respectively.
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• DGP VI:

Yt |Xt ∼ IID
1
2
G
[

1− exp
{
−exp

(
−2

7
+Xt

)}]
+

1
2
G
[

1− exp
{
−exp

(
5
7
+Xt

)}]
,

where (Xt ,Zt)
′ ∼ IID N(0,I2). DGPs III and IV are estimated using Model I.

We examine these DGPs to compare the performance of the LR test statistic
evaluated by the weighted bootstrap method and the asymptotic critical values
of Cho and Han (2009). We estimate Model II using the observations generated
from DGPs V and VI. As noted above, we cannot obtain the asymptotic critical
values for this model because the marginal distribution of Xt is assumed to be
unknown. Here, Model I and Model II are misspecified for DGP IV and DGPs
V and VI, respectively.

We report the finite sample properties of the LR test statistic in Table 3.
These properties are summarized as follows:

(1) The unobserved heterogeneity is consistently detected by the LR test statis-
tic. As the sample size n increases, the empirical rejection rates approach
unity for every case under consideration.

(2) For DGPs III and IV, the LR test statistics using the weighted bootstrap
method have similar power patterns to the LR test statistic evaluated by
the asymptotic critical values of Cho an Han (2009).

(3) Even when the distributional assumption of unobserved heterogeneity is
incorrect, it is consistently detected by the LR test statistic. However, this
does not necessarily imply that the LR test statistic is able to detect any dis-
tributional misspecification. As mentioned above, Cho and White (2008)
consider a set of conditions under which the LR test statistic is able to
detect unobserved heterogeneity consistently. Unless their conditions are
met, the LR test may not be consistent for the unobserved heterogeneity.

3.2. TESTING USING THE APPROXIMATED CRITICAL VALUES

In this section, we conduct a Monte Carlo simulation to examine how the
empirical distribution of the LR test statistic is affected by letting the grouping
bin size ∆ converge to zero. According to Theorem 4, if ω → ∞, the empirical
null limit distribution of the LR test statistic approaches that of the LR statistic
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Model 0∗ versus Model I∗

Parameter Space Levels \ ω 0.10 0.50 2.00 10.00
1% 0.35 0.40 0.85 0.55

A1 ≡ [3/4,5/4] 5% 1.85 3.15 3.65 3.50
10% 5.00 7.60 7.15 8.05
1% 0.35 0.80 0.90 0.55

A2 ≡ [3/4,6/4] 5% 2.70 3.80 4.30 3.80
10% 5.90 6.90 7.55 8.05

Table 4: LEVELS OF THE LR TEST STATISTICS (Number of Experiment Rep-
etitions: 2,000; Number of Observations: 20,000). This tables shows the empirical
rejection rates of the LR test statistic when it is evaluated by the null limit distribution in Cho and
White (2010). Note that the nominal levels of significance (1%, 5%, and 10%) get close to the
empirical rejection rates, as the grouping bin size (∆≡ 1/ω) reduces to zero. Model 0∗ indicates
G[1−exp{−δ/ω}], and Model I∗ indicates πG[1−exp{−δ1/ω}]+(1−π)G[1−exp{−δ2/ω}].

used to test the exponential mixture hypothesis. We verify this property by means
of a simulation.

We proceed with our experiments in the following order. First, we consider
the following eight DGPs: for ω = 0.1, 0.2, 5.0, and 10.0,

• DGP I∗: Y ω
t ∼ IID G[1− exp{−1/(2ω)}].

Second, for each ω , we compute the LR test statistic using the observations
generated by DGP I∗ and Models 0∗ and I∗, where

•Model 0∗: G[1− exp(−δ/ω)];
•Model I∗: πG[1− exp(−δ1/ω)]+(1−π)G[1− exp(−δ2/ω)].

For each ω , the total number of observations is 20,000. We also consider two
parameter spaces for α1 and α2: A1 and A2. Therefore, we calculate eight (2
parameter spaces × 4 ω’s) LR test statistics for each experiment.

Third, we obtain the null limit distribution of the LR test statistic that tests the
exponential mixture hypothesis in the study of Cho and White (2010, theorem
2(i)). Following their methodology, we generate the null limit distribution.

Finally, we compare the empirical distributions of the our LR test statistics
with the null limit distribution of Cho and White (2010, theorem 2(i)).

The results of the experiments are shown in Table 4 and Figure 1. Table 4
reports the empirical rejection rates evaluated using the null limit distributions of
Cho and White (2010, theorem 2(i)). Figure 1 shows their null limit distributions,
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LRn(A1)

LRn(A2)

Figure 1: EMPIRICAL AND ASYMPTOTIC NULL LIMIT DISTRIBUTIONS OF
THE LR TEST STATISTICS (NUMBER OF EXPERIMENT REPETITIONS: 2,000;
NUMBER OF OBSERVATIONS: 20,000). The figures show the empirical distributions
of the LR test statistics and the null limit distributions in Cho and White (2010). Note that the
empirical null distributions of the LR test statistics approache the null limit distributions, as the
grouping bin size (∆≡ 1/ω) reduces to zero. DGP: Y ω

t ∼ IID G[1−exp{−1/(2ω)}], and the LR
test statistic tests Model 0∗ versus Model I∗. Here, A1 ≡ [3/4, 5/4] and A2 ≡ [3/4, 6/4].

along with the empirical distributions of the LR test statistics. The results are
summarized as follows:
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(1) As ω increases, the empirical distributions of the LR test statistics are
well approximated by the null limit distribution. For each ω = 0.5, 2.0,
and 10.0, the overall empirical distributional shapes are close to that of the
null limit distribution. However, if ω = 0.1, the empirical distribution of
the LR test statistic is quite different from that of the null limit distribution.
This implies that for a moderately large ω , the null limit distribution can
be usefully exploited to test the geometric mixture hypothesis.

(2) If the associated parameter space A is small, the null limit distribution
better approximates the empirical distributions of the LR test statistics.
Note that the empirical distribution of the LR test statistic combined with
A1 is better approximated by the null limit distribution than that combined
with A2. This indicates that the intended approximation is more useful if
the LR test statistic is combined with a smaller parameter space of A.

4. CONCLUSION

This study examines the mixture hypothesis of conditional geometric distri-
butions using a likelihood ratio (LR) test statistic that extends that used for an
unconditional geometric distribution by Cho and Han (2009). We derive the null
limit distribution of the LR test statistic and examine its power performance. In
addition, we examine the interrelationship between the LR test statistics used
to test the geometric and exponential mixture hypotheses. We also examine the
performance of the LR test statistics under various circumstances and confirm
the main claims of the study using Monte Carlo simulations.

APPENDIX 1: ASSUMPTIONS

Here, we apply the regularity conditions in Cho and White (2010) to our data
context and provide regularities for the claims in the text.

Assumption 1. (i) {(Y ω
t ,X′t)′} is a strictly stationary geometric β -mixing pro-

cess defined on (Ω,F ,P) with β -mixing coefficients βτ ≤ cρτ , for some c > 0
and ρ ∈ [0,1), where Y ω

t is N-valued, Xt is Rk−valued, k ∈ N, and Xt does not
contain a constant term;

(ii) For t = 1,2, . . ., conditional on Xt , Y ω
t has the following mass: for some

(π∗,β ∗,δ
ω
1∗,δ

ω
2∗) ∈ Rd×R+×R+ (d ∈ N),

mω(y|Xt ;π∗,β ∗,δ
ω
1∗,δ

ω
2∗)≡ π∗gω

o (y|Xt ;β ∗,δ
ω
1∗)+(1−π∗)gω

o (y|Xt ;β ∗,δ
ω
2∗),
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where gω
o (y|Xt ;β ∗,δ

ω
∗ )≡ [1−exp{−δ ω

∗ h(Xt ;β ∗)}]× [exp{−δ ω
∗ h(Xt ;β ∗)}]y−1;

and for each β ∈ B⊂ Rd , h( · ;β ) : Rk→ R+ is a Borel measurable function;
(iii) mω( · |Xt ;π∗,β ∗,δ

ω
1∗,δ

ω
2∗) = p( · |Xt ,Y ω

t−1,Xt−2,Y ω
t−2, · · ·) almost surely,

where p( · |Xt ,Y ω
t−1, Xt−2,Y ω

t−2, · · ·) is the conditional probability mass function
of Y ω

t given Xt , Y ω
t−1, Xt−2, Y ω

t−2, . . .. �

Assumption 2. (i) h(Xt ; ·) is four-times continuously differentiable almost surely;
(ii) (π∗,β ∗,δ

ω
1∗,δ

ω
2∗)∈ [0,1]×B×D×D, and B×D×D is a convex compact

subset of Rd×R+×R+. �

For each α and α ′ in A, we let

Aω(α,α ′)≡

 E[Mω
t (α)Mω

t (α ′)]−1 E[Mω
t (α)W ω

t ] E[Mω
t (α)S′t ]

E[W ω
t Mω

t (α ′)] E[W ω
t

2] E[W ω
t Sω

t
′]

E[Sω
t Mω

t (α ′)] E[Sω
t W ω

t ] E[Sω
t Sω

t
′]

 ,
where W ω

t ≡ ∇2
δ
gω

o (Y
ω

t |Xt ;β ∗,δ
ω
∗ )/gω

o (Y
ω

t |Xt ;β ∗,δ
ω
∗ ), for each α ∈ A, Mω

t (α)
≡ gω

o (Y
ω

t |Xt ;β ∗,αδ ω
∗ ) /gω

o (Y
ω

t |Xt ;β ∗,δ
ω
∗ ), and Sω

t ≡∇(β ,δ ω )gω
o (Y

ω
t |Xt ;β ∗,δ

ω
∗ )

/gω
o (Y

ω
t |Xt ;β ∗,δ

ω
∗ ). Furthermore, we also let

Bω(π∗,β ∗,α1∗,α2∗)

≡ E[∇(π,β ,α1,α2)`
ω
t (π∗,β ∗,α1∗,α2∗)∇

′
(π,β ,α1,α2)

`ω
t (π∗,β ∗,α1∗,α2∗)],

where we let `ω
t (π,β ,α1,α2)≡ ln[πgω

o (Y
ω

t |Xt ;β ,α1ζ ω
o )+(1−π)gω

o (Y
ω

t |Xt ;β ,
α2ζ ω

o )], A≡ {α : αζ ω
o ∈ D}, and ζ ω

o is defined as in Assumption 3.

Assumption 3. (i) (β o,ζ
ω
o ) ≡ argmax(β ,δ ω )∈B×DE[lngω

o (Y
ω

t |Xt ;β ,δ ω)] exists
and is unique, and for each (π,β ,α1,α2)∈ [0,1]×B×A×A, E[`ω

t (π,β ,α1,α2)]
exists and is finite;

(ii) For every (π∗,β ∗,α1∗,α2∗), λmin{Bω(π∗,β ∗,α1∗,α2∗)} ≥ 0 such that
(a) if λmin{Bω(π∗,β ∗,α1∗,α2∗)}> 0, λmax{Bω(π∗,β ∗,α1∗,α2∗)}< ∞;
(b) if λmin{Bω(π∗,β ∗,α1∗,α2∗)}= 0, for any ε > 0, λmin{Aω(π∗,β ∗,α1∗,α2∗

)}> 0 and λmax{Aω( α,α)}<∞ uniformly in α ∈A(ε)≡{α ∈A : |α−1| ≥ ε},
where λmin(·) and λmax(·) are the minimum and maximum eigenvalues of the
given matrix, respectively. �

Assumption 4. There exists a sequence of strictly stationary and ergodic ran-
dom variables {Mt} such that for some ε > 0,

(a) E[M1+ε
t ]< ∆ < ∞;

(b) sup(π,β ,α1,α2)
|∇ j`

ω
t (π,β ,α1,α2)∇k`

ω
t (π,β , α1,α2)| ≤Mt;

(c) sup(π,β ,α1,α2)
|∇ j,k`

ω
t (π,β ,α1,α2)| ≤Mt;
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(d) |∇i1gω
o (Y

ω
t |Xt ;β ∗,δ

ω
∗ )/gω

o (Y
ω

t | Xt ;β ∗,δ
ω
∗ )|4 ≤Mt;

(e) |∇i1∇i2gω
o (Y

ω
t |Xt ;β ∗,δ

ω
∗ )/gω

o (Y
ω

t |Xt ;β ∗,δ
ω
∗ )|2 ≤Mt;

(f) |∇i1∇i2∇i3gω
o (Y ω

t |Xt ;β ∗,δ
ω
∗ )/gω

o (Y
ω

t |Xt ;β ∗,δ
ω
∗ )|2 ≤Mt; and

(g) sup(β ,δ ) |∇i1∇i2∇i3∇i4gω
o (Y

ω
t |Xt ;β ,δ ω)/gω

o (Y ω
t |Xt ;β ,δ ω)| ≤Mt , where

j,k ∈ {π,α1,α2,β1, · · · ,βd} and i1, · · · , i4 ∈ {δ ,β1, · · · ,βd}. �

APPENDIX 2: PROOFS

Proof of Theorem 1: The proof of Theorem 1 is completed by letting ω = 1.0
in the proof of Theorem 3. �

We provide the following supplementary lemma to prove the consistency of
the LR test.

Lemma 1. If Assumptions 1 to 4 are satisfied, sup(π,β ,α1,α2)
|n−1

∑`ω
t (π,β ,α1,

α2)−E[`ω
t (π,β ,α1, α2)]|

a.s.→ 0. �

Proof of Lemma 1: First, note that `ω
t (·) is differentiable by Assumption 2(i).

Thus, it is continuous on [0,1]×B×A×A, which is a compact and convex sub-
set of R+×Rd ×R+×R+. Second, for some positive, stationary, and ergodic
random variable, Mt , it follows that ‖∇(π,β ,α1,α2)`

ω
t (π,β ,α1,α2)‖∞ < Mt by As-

sumption 4. Finally, we can, therefore, apply Ranga Rao’s (1962) uniform law
of large numbers to {n−1

∑`ω
t ( ·)}. This completes the proof. �

Proof of Theorem 2: We apply the proof of theorem 3 in Cho and White
(2010). The Kullback–Leibler information criterion implies that E[lnga(Yt |Xt ;
π∗,β ∗,α1∗, α2∗)] > E[lngo(Yt |Xt ;β o,ζo)] under Ha, where ζo = ζ ω

o such that
ω = 1. Therefore, Lemma A implies that there exists n∗(ε) with probability one
such that if n≥ n∗(ε), then |G1n|< ε , |G2n|< ε , |H1n|< ε , and |H2n|< ε , where

G1n ≡ n−1
∑

{
ln[ga(Yt |Xt ; π̂n, β̂ n, α̂1n, α̂2n)]− ln[ga(Yt |Xt ;π∗,β ∗,α1∗,α2∗)]

}
;

G2n ≡ n−1
∑ ln[ga(Yt |Xt ;π∗,β ∗,α1∗,α2∗)]−E{ln[ga(Yt |Xt ;π∗,β ∗,α1∗,α2∗)]};

H1n ≡ n−1
∑

{
ln[go(Yt |Xt ; β̂ on, δ̂on)]− ln[go(Yt |Xt ;β o,ζo)]

}
; and

H2n ≡ n−1
∑ ln[go(Yt |Xt ;β o,ζo)]−E{ln[go(Yt |Xt ;β o,ζo)]}.
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From this, it follows that |(G1n +G2n)− (H1n +H2n)| ≤ η , where η ≡ 4ε . If we
let

Λ̂n ≡ n−1
∑

{
ln[ga(Yt |Xt ; π̂n, β̂ n, α̂1n, α̂2n)]− ln[go(Yt |Xt ; β̂ on, δ̂on)]

}
and

Λ∗ ≡ E{ln[ga(Yt |Xt ;π∗,β ∗,α1∗,α2∗)]}−E{ln[go(Yt |Xt ;β o,ζo)]},

then we obtain Λ∗−η ≤ Λ̂n ≤ Λ∗+η . Thus, for some δ1 ∈ (0,Λ∗−η) and
δ2 ∈ (Λ∗+η ,∞), if n > n∗(ε), then δ1 < Λ̂n < δ2. From LRn(A) = 2nΛ̂n, we
find that LRn(A) = Op(n), but not op(n). This completes the proof. �

Proof of Theorem 3: We derive the desired weak convergence of the LR statistic
by verifying the conditions of theorem 6(a) of Cho and White (2007). First, our
Assumption 1 is sufficient for their assumption A1; second, our Assumptions
1(ii) and 2 satisfy their assumption A2; third, Assumption 4(i) is sufficient for
their assumptions A3 and A4; fourth, their assumptions A5(ii and iii) are satisfied
by our Assumption 4; and finally, our Assumption 4 relaxes their A6(iv) because
it is not necessary to impose the positive definite matrix assumption on A(α,α ′)
for every (α,α ′)(6= (1,1)) to obtain the desired result. Therefore, the desired
weak convergence follows from their theorem 6(a).

Next, we derive the covariance structure (5) using the formula in lemma 1(b)
of Cho and White (2007). First, note that

Mω
t (α) =

[
1−Qt(α/ω)

1−Qt(1/ω)

][
Qt(1/ω)

Qt(α/ω)

]Y ω
t

,

so that

E[Mω
t (α)Mω

t (α ′)|Xt ]−1

=

[
[Qt(α/ω)−1][Qt(α

′/ω)−1]
Qt(1/ω)−1

]
∞

∑
y=1

[
Qt(1/ω)

Qt(α/ω)Qt(α ′/ω)

]y

−1

=
[Qt(1/ω)−Qt(α/ω)][Qt(1/ω)−Qt(α

′/ω)]

[Qt(1/ω)−1][Qt(α/ω)Qt(α ′/ω)−Qt(1/ω)]
,

and
E[Mω

t (α)Mω
t (α ′)]−1 = Aω(α,α ′) (9)

using the law of iterated expectation: E[Mω
t (α)Mω

t (α ′)] = E[E[Mω
t (α)Mω

t (α ′)|
Xt ]]. Here, we can apply the infinite geometric sum formula because infA> 1/2.
Note that for any α and α ′ ∈ A, Qt(1/ω)/{Qt(α/ ω)Qt(α

′/ω)}= exp[(1−α−
α ′)δ ω

∗ h(Xt ;β ∗)] ∈ (0,1) because δ ω
∗ > 0 and h( · ;β ∗)> 0 by Assumption 1(ii).
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Second, we consider E[Mω
t (α)Sω

t ]. For each α ,

Sω
t = δ

ω
∗

[
Qt(1/ω)

Qt(1/ω)−1
−Y ω

t

]
Dω

t ,

where

Dω
t ≡

[
h(Xt ;β ∗)

∇β h(Xt ;β ∗)

]
,

so that

E[Mω
t (α)Sω

t |Xt ] = δ
ω
∗ [Qt(α/ω)−1]

∞

∑
y=1

[
1

Qt(α/ω)

]y[ Qt(1/ω)

Qt(1/ω)−1
− y
]

Dω
t

=
δ ω
∗ [Qt(α/ω)−Qt(1/ω)]

[Qt(1/ω)−1][Qt(α/ω)−1]
Dω

t .

Here, we can apply the infinite geometric sum formula because for each α ∈ A,
1/Qt(α/ω) ∈ (0,1). This implies that

E[Mω
t (α)Sω

t ] = E
{

δ ω
∗ [Qt(α/ω)−Qt(1/ω)]

[Qt(1/ω)−1][Qt(α/ω)−1]

[
h(Xt ;β ∗)

∇β h(Xt ;β ∗)

]}
by the law of iterated expectation, and that

E[Mω
t (α)Sω

t ] = Bω(α). (10)

Third, we consider E[Sω
t Sω

t
′]. Note that

E[Sω
t Sω

t
′|Xt ] = (δ ω

∗ )
2[Qt(1/ω)−1]

∞

∑
y=1

[
Qt(1/ω)

Qt(1/ω)−1
− y
]2[ 1

Qt(1/ω)

]y

Dω
t Dω

t
′

=
(δ ω
∗ )

2Qt(1/ω)

[Qt(1/ω)−1]2
Dω

t Dω
t
′.

This implies that

E[Sω
t Sω

t
′]

= E

{
(δ ω
∗ )

2Qt(1/ω)

[Qt(1/ω)−1]2

[
h(Xt ;β ∗)

2 h(Xt ;β ∗)∇
′
β

h(Xt ;β ∗)

h(Xt ;β ∗)∇β h(Xt ;β ∗) ∇β h(Xt ;β ∗)∇
′
β

h(Xt ;β ∗)

]}
by the law of iterated expectation, so that

E[Sω
t Sω

t
′] = Cω . (11)
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By substituting (9), (10), and (11) into

ρω(α,α ′)≡ E[Mω
t (α)Mω

t (α ′)]−1−E[Mω
t (α)St ]

′{E[StS′t ]}−1E[Mω
t (α ′)St ]

in lemma 1(b) of Cho and White (2007), we obtain that ρω(α,α ′)≡Aω(α,α ′)−
B′ωC−1

ω Bω(α
′). This is the desired covariance structure (5) and completes the

proof. �

Proof of Theorem 4: From the given assumption that Xt is absent, Qt(1/ω) =
exp(δ∗/ω) and Qt(α/ω) = exp(αδ∗/ω). Thus,

Aω(α,α ′) =
[exp(αδ∗/ω)− exp(δ∗/ω)][exp(α ′δ∗/ω)− exp(δ∗/ω)]

[exp(δ∗/ω)−1][exp((α +α ′)δ∗/ω)− exp(δ∗/ω)]

ω→∞−→ (α−1)(α ′−1)
α +α ′−1

;

Bω(α) =
δ∗[exp(αδ∗/ω)− exp(δ∗/ω)]

ω[exp(δ∗/ω)−1][exp(αδ∗/ω)−1]
ω→∞−→

(
α−1

α

)
Cω ≡

δ 2
∗Qt(1/ω)

ω2[Qt(1/ω)−1]2
ω→∞−→ 1.

Thus, it follows that

lim
ω→∞

ρω(α,α ′) =
(α−1)(α ′−1)

α +α ′−1
−
(

α−1
α

)(
α ′−1

α ′

)
=

(α−1)2(α ′−1)2

αα ′(α +α ′−1)

and

lim
ω→∞

ρω(α,α ′)√
ρω(α,α)

√
ρω(α ′,α ′)

=
(2α−1)1/2(2α ′−1)1/2

α +α ′−1
.

This completes the proof. �
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